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Abstract 

Detailed automated analysis of crop images is critical to the development of smart agriculture 
and can significantly improve the quantity and quality of agricultural products. A hyperspectral 
camera potentially allows to extract more information about the observed object than a conven-
tional one, so its use can help in solving problems that are difficult to solve with conventional 
methods. Often, predictive models that solve such problems require a large dataset for training. 
However, sufficiently large datasets of hyperspectral images of agricultural plants are not currently 
publicly available. Therefore, we present a new dataset of hyperspectral images of plants in this 
paper. This dataset can be accessed via URL https://pypi.org/project/HSI-Dataset-API/. It contains 
385 hyperspectral images with a spatial resolution of 512 by 512 pixels and spectral resolution of 
237 spectral bands. The images were captured in the summer of 2021 in Samara and Novocher-
kassk (Russia) using Offner based Imaging Hyperspectrometer of our own production. The article 
demonstrates the work of some basic approaches to the analysis of hyperspectral images using the 
dataset and states problems for further solving.  
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Introduction 

Smart agriculture is a new concept for the develop-
ment of agriculture using modern IoT technologies, ro-
botic technologies, computer vision, machine learning, 
etc. Today, smart agriculture is considered the most 
promising direction for the development of agriculture, 
which should significantly increase the production effi-
ciency of food, industrial raw materials and other agricul-
tural products [1]. Also, similar ideas for the development 
of agriculture might be referenced as “Agriculture 4.0” 
[2] or “Digital agriculture” [3]. 

Computer vision plays an important role in smart ag-
riculture. The use of computer vision can automate the 
fight against weeds, watering plants, treating plants with 
fertilizers and herbicides, and more. To do this, object de-
tection or image segmentation can be used in plant pho-
tographs captured with a conventional digital camera [4]. 
There are many publications devoted to the analysis of 
plant images using machine learning methods, including 
deep learning [5]. 

A hyperspectral camera can provide additional infor-
mation on a digital image than a conventional one. Hy-
perspectral images store in each pixel information not on-
ly about three RGB bands, but about several hundred 
spectral bands reflecting the amount of energy in each of 

the spectral components of the visible electromagnetic 
field specter. In such images, computer vision algorithms 
can see even more information than the naked human eye 
can see. Due to this, approaches to the object detection 
and analysis in such images can work more efficiently 
than in conventional digital images [6]. This also applies 
to hyperspectral images of plants [7]. 

One can see that most of the predictive models used 
in the analysis of plant images are supervised and require 
a large learning sample for training. For natural compari-
son reasons, researchers use open plant imaging datasets 
such as PlantDoc dataset containing images of plants with 
various diseases [8] or BJFU100 dataset containing 100 
species of ornamental plants in Beijing Forestry Universi-
ty campus captured by mobile device camera [9]. There is 
also DeepWeeds dataset with 17 thousand labelled imag-
es of eight weed species [10] and a lot of others. 

However, all these datasets contain conventional RGB 
images. There are significantly fewer publicly available 
datasets containing hyperspectral images. This is because 
hyperspectral cameras are expensive and only available to 
qualified specialists. For example, there is a Specim hyper-
spectral camera, which can also be used for plant analysis 
[11], but its use in practice is quite difficult and requires spe-
cially trained personnel. It is also difficult to find a publicly 
open large dataset captured using this camera. 
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In [12], the open Hyperspectral Image Dataset is pre-
sented for detecting objects in a hyperspectral image with 
a size of 1024 by 768 pixels and 151 spectral bands. In 
total, it contains 60 images, the objects of which are a va-
riety of outdoor objects, including some plants. The au-
thors demonstrate the performance of some State-of-the-
Art segmentation methods on images from this dataset, 
obtaining a maximum AUC-Borji Performance of 0.82. 
The objects in this article are not agricultural plants, so it 
cannot be used to solve smart agriculture problems. 

Paper [13] presents an open dataset containing mi-
croscopy hyperspectral images of cholangiocarcinoma 
with a resolution of 1280 ×1024 pixels and 60 spectral 
bands. The authors show an example of region of interest 
segmentation using neural network and support vector 
machine approaches. As a result, they achieved an accu-
racy of 94 %. This dataset looks great, but again it has 
nothing to do with smart agriculture. 

In [14], authors present their experiments aiming to 
differentiate between herbicide-resistant and herbicide-
susceptible of weed kochia by the hyperspectral images. 
They collected a total of 152 hyperspectral images with a 
resolution of 640 by 2500 pixels and 240 spectral bands 
at the Montana State University Southern Agricultural 
Research Center. Using support vector machine with ra-
dial basis function kernel they achieved 80 % accuracy of 
classification. Unfortunately, it does not appear that the 
authors have published the dataset on which they con-
ducted their experiments anywhere. 

Thus, there is currently no open access to a sufficient-
ly large dataset containing hyperspectral images of agri-
cultural plants. Therefore, we created such a dataset and 
present it in this article. We describe the method of image 
registration, the characteristics of the dataset itself, and 
show an example of how basic approaches to the analysis 
of such images work. The presented dataset can be used 
in the future to train predictive models that solve the 
problems of smart agriculture, and to compare the per-
formance of such models. 

1. Image acquisition 

Images were acquired using a self-produced Offner 
based Imaging Hyperspectrometer. The optical design of 
a compact hyperspectrometer based on the Offner scheme 
was described in [15 – 16]. A feature of this scheme is the 
need to manufacture a lattice on the convex surface of the 
mirror. At the same time, the quality and profile of such a 
lattice significantly affects the efficiency and perfor-
mance of the final device [17 – 18]. Modeling and exper-
imental studies have managed to achieve high indicators 
[19 – 20]. The calibration procedure for this device is de-
scribed in [21]. The capturing was carried out in the 
summer of 2021 on agricultural land in Russia in the Sa-
mara region and in the Irkutsk region. Days with sunny 
weather and low clouds were predominantly chosen for 
shooting. The wind was moderate (2 – 4 meters per sec-
ond). The objects of the capturing were such agricultural 

crops as corn, oats, border areas of field plots, as well as 
borders of fields with areas of growing weeds. The most 
widespread among weeds is the common amaranth. 

Fig. 1 shows the Offner based Imaging Hyperspec-
trometer appearance capturing agricultural field of the 
farm of E.P. Tsirulev located in the Samara region on a 
spot with coordinates 52.81 degrees latitude and 48.61 
degrees longitude. As one can see, the shooting was car-
ried out by scanning, by installing a hyperspectral camera 
on a special shooting tripod. On the left in the Fig. 1 there 
are plantings of corn, there are oats on the right, and there 
is a strip of amaranth between them. 

 
Fig. 1. The appearance of a scanning hyperspectrometer  

on a swivel platform capturing plants 

 
Fig. 2. Capturing scheme with a hyperspectral camera placed 

on a rotating tripod 

For the survey, cultivated and irrigated areas were se-
lected, predominantly with a uniform distribution of one 
crop over the survey area, as well as areas where several 
crops border. For shooting, the camera was mounted on a 
special rotating tripod equipped with an angular rotation 
drive with the ability to set the rotation speed in the range 
of 0.2 – 3 rpm. A hyperspectrometer with an Offner opti-
cal scheme was installed during shooting so that the slit 
diaphragm was perpendicular to the spatial scanning vec-
tor. The tripod is also equipped with a mechanical device 
that allows one to set different tilt angles of the camera 
relative to the subject. 

Changing the installation height and the tilt angle 
makes it possible to capture hyperspectral images of dif-
ferent scales, and a certain depth of the scene is formed 
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on one image, where the same vegetation objects are 
simultaneously located near the camera (near the center 
of the scene) and at some distance from the camera (the 
edge of the image). It can also be noted that hyperspectral 
panoramic images have spatial distortions. The imaging 
quality can be evaluating using reference images in the 
manner described in [22]. 

For shooting objects, a lens with a fixed focal length 
MIR-1V 2.8 / 37 (Russia) was chosen, with the aperture 
set at a value of approximately 3.2. The choice of the 
specified lens is due to the sufficient field of view from 
such a short distance to the subjects. The equivalent focal 
length for a sensor with a crop factor of 2.7 is approxi-
mately 85mm, which corresponds to an angle of approx-
imately 25 degrees. The frame rate in all scenes is fixed 
and corresponds to 15 fps, which ensures the consistency 
of spatial resolution in all obtained images. Due to the use 
of a reflective diffraction grating with glare in the Offner 
optical scheme, a sufficiently high illumination on the 
matrix sensor is provided. Fig. 3 shows the internal struc-
ture of the Offner based Imaging Hyperspectrometer. 

 
Fig. 3. Schematic representation of the hyperspectrometer 
optical layout: 1 – lens, 2 – slit diaphragm, 3 – spherical 

mirror, 4 – diffraction grating; 5 – visible range photodetector 

Fig. 4 shows the original grayscale image projected 
onto the photosensitive matrix CMV4000. One can clear-
ly see the bright scanning optical slit at the top of the im-
age. There is also visible spectral decomposition of the 
image passed through the slit at the bottom of the image. 
Thus, the horizontal direction in this image is spatial, and 
the vertical direction is spectral. We reconstruct the final 
hypercube from the series of such images using our own 
approach presented in [23]. 

2. Dataset description 

Fig. 5 shows an example of image reconstruction re-
sult from a hypercube, the capture of which is shown in 
Fig. 1. An extended horizontal artifact can be seen caused 
by the quality of the optical slit. Also, plants look blurry 
in some regions, since the recording is taken for a long 
time, and the plants move in the wind. Despite this, one 
can notice that the illumination is sufficient to obtain a 
clear, bright image. There is an X-Rite ColorChecker in 
the center of the image. It presents in many other images 
too, so one can compare color rendering. 

The dataset itself can be accessed via URL 
https://pypi.org/project/HSI-Dataset-API/ and consists of 
385 hyperspectral images with a spatial resolution of 512 

by 512 pixels and spectral resolution of 237 spectral 
bands with wavelengths from 420 nm to 979 nm. These 
images were manually cropped from 59 different raw hy-
perspectral images of a larger size. All hyperspectral im-
ages are stored as 3D NumPy arrays in NumPy binary 
NPY format [24]. The first dimension is spectral and the 
other two dimensions are spatial. 

 
Fig. 4. The original image formed on the photosensitive matrix 

(Invert) 

 
Fig. 5. Image reconstructed from a hypercube 

The pixels in the images are labeled for 16 different 
classes: apple tree, beet, cabbage, carrot, corn, cucumber, 
eggplant, grass, milkweed, oats, pepper, potato, shchiritsa 
(amaranth), strawberry, soy, and tomato. The annotation 
was processed in the semi-automatic way using the most 
informative indexes [25]. The binary masks obtained 
from the informative indexes were manually adjusted to 
more closely match the boundaries of the objects. After 
that, the masks were divided according to the type of 
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plant. The fragments of the original full-size hyperspec-
tral images that were the most meaningful in terms of the 
number of pixels corresponding to plants were selected to 
create a set of hypercubes. Binary masks corresponding 
to different plants for one cube were combined into a sin-
gle mask, where each plant has its own value, which is 
unique within the entire set. The final label masks are 
stored in PNG format. 

Fig. 6a shows the distribution of hyperspectral images 
in the dataset by types of plant presented. Fig. 6b repre-
sents the detailed distribution of the individual pixels in 
all images in total by classes. The number of pixels in the 
figure should be multiplied by 107, as marked above the 
axis. As one can see, the most common plant presented in 
the images is soy. The least frequent plants are apple tree, 
cabbage, eggplant, and shchiritsa (amaranth).  

a)  

b)  
Fig. 6. Distribution of images (a) and pixels (b) by classes 

Metadata is described in text YAML files. There is 
file meta.yml containing general information about clas-
ses and wavelength to spectral band mapping. Also, for 
each image there is a YAML file with the same name de-
scribing presented classes, image size, and some other 
less important information. 

For convenient work with the dataset, a public API 
was developed using the Python language. This is a regu-
lar Python package that can be installed using standard 
Python tools, for example the pip package management 
system. The API source code is publicly available in the 
open GitHub repository. In addition, the repository in-
cludes a Jupyter notebook that shows an example of 
working with a dataset. The example shows how to pre-
pare data and how to train the model using the Scikit-
learn software package [26], which is widely used in 
solving data analysis problems. 

Fig. 7 shows examples of images from the dataset. 
Fig. 7a represents the color-synthesized image obtained 
from the original 237-band image using average by three 
bands with wavelengths 476 nm, 550 nm, and 667 nm re-
spectively. Again, one can see some vertical jitter in the im-
age caused by the vibration of plants and shooting equip-
ment in the wind. Fig. 7b represents the semi-automatic 
segmentation of the image by plants type. One can see two 
beds of different plants on the left and right. This image is 
auto contrasted: the actual grayscale values in the image is 0, 
1, and 2. Different gray levels correspond to different plants. 
Zero value corresponds to the background. 

a)  

b)  
Fig. 7. Examples of images from the dataset: a color-

synthesized hyperspectral image (a) and a manually segmented 
mask for it (b) 
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3. Processing hyperspectral images from the dataset 

As an example of an applied problem that can be 
solved using the presented dataset, we have chosen the 
problem of hyperspectral image segmentation to distin-
guish some plant species from each other. The problem is 
to select a region of the image that corresponds to a cer-
tain type of plant. For simplicity, we consider this prob-
lem as a pixel-by-pixel classification of spectral vectors 
into a given number of classes. Thus, we do not care 
about the spatial relationships between pixels but take in-
to account only the spectral characteristics of each partic-
ular pixel. 

In order to eliminate the class imbalance that is ob-
served in the Fig. 6 in advance, we took only the four rar-
est classes: apple tree, cabbage, eggplant, and shchiritsa 
(amaranth), as well as all the classes of plants that are 
found in the images, in which plants of these four classes 
are found. For the same reasons, we did not consider the 
background as a separate class, so the total number of dif-
ferent classes was 9. So, we took all the pixels in the se-
lected images, corresponding to the above nine classes, 
and put them in a general sample U  RL, where L = 9 is a 
number of classes, and R is a set of real numbers. For 
each pixel x from the sample U, we know its real manual-
ly annotated class  (x): RL  [1; L]  Z, where Z is a set 
of integers. 

We can solve segmentation problem by constructing 
the operator  Φ : [1; ]Lx L R Z , which relies only on 
knowledge of the learning sample Ũ  U. This is a classic 
pattern recognition problem that can be solved using any 
known classifier. Also, we can employ various classifica-
tion metrics to evaluate the classification quality using 
the test sample Û  U \Ũ. 

Fig. 8 shows the class distribution in the sample we 
use for the experimental research the same way as Fig. 6 
shows it for the whole dataset. Fig. 8a presents the num-
ber of hyperspectral images we included in the sample for 
each of 9 classes. Similarly, Fig. 8b shows the distribu-
tion of pixels in the selected sample by classes. So, Fig. 8 
gives an idea of the materials for the problem being 
solved. As we can see, classes here look more balanced 
than in Fig. 6. 

We employed Logistic Regression, Quadratic Dis-
criminant Analysis, Random Forest and K Nearest 
Neighbors (KNN) as classifiers just for example as 
some popular universal classifiers. We developed a 
program in Python using Scikit-learn implementations 
[20] of these classifiers. We did not use any further da-
ta preprocessing, except for the one that was previous-
ly described in the article. 

Logistic regression (LR) is a linear classification 
model that considers the l-th outcome possibility in a 
form of logistic function 

   
1

,
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l T
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  RL and cl

  R are selectable parameters. The 
training algorithm varies these parameters trying to min-
imize the cost function [27] 
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where yl
 (x) equals 1 if  (x) = l and (-1) otherwise. We used 

Broyden–Fletcher–Goldfarb–Shanno algorithm to solve this 
nonlinear optimization problem [28]. The final multinomial 
decision rule was based on the softmax function: 
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a)  

b)  
Fig. 8. Distribution of images (a) and pixels (b) by classes 

in the sample used for the experimental research 

The classifier based on Quadratic Discriminant Anal-
ysis (QDA) constructs the quadratic decision surface with 
a help of the Bayesian rule [29] 
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where prior probabilities are inferred from the training 
data as 

  Φ .
lU

P x l
U

 


  

The |Ũ | means the number of elements in the finite set 
Ũ and Ũl

 = {xŨ |  (x) = l} is a set of vectors of the l-th 
class in the training sample. The p (x | l ) is considered to 
be Gaussian: 
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where l is a mean value of the class l: 
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and Rl is an estimation of correlation matrix for the l-th 
class: 
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So, the predicted class should maximize the log poste-
rior probability 
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Random Forest (RF) is an ensemble classifier consist-
ing of randomized decision trees. We build each of 100 
decision trees in the ensemble from a bootstrap sample 
with random replacements considering only randomly 
chosen L  of L features [30]. We evaluate the quality of 
each split using Gini impurity measure: 

     2

1

1 Φ .
L

RF

l

J P x l


    

So, the best split in the decision tree should minimize 
the weighted mean of Gini impurity among the nodes of 
the tree. The final decision rule is based on simple ma-
jority voting across all decision trees. 

K Nearest Neighbors (KNN) classifier just assigns the 
input feature vector x to the class to which most of its K 
nearest neighbors from the training sample Ũ belong [31]. 
We considered the number of neighbors K = 5 and used 
classic Euclidean distance to find the nearest of them: 

     , .
T

x y x y x y     

To evaluate the quality of prediction model we used 
different scoring parameters: accuracy, F-macro, F-
weighted, precision macro, precision weighted, recall 
macro, and recall weighted. 

Classification accuracy is simply the proportion of 
correctly classified items from the test sample Û: 
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Let us consider the precision and recall measures for 
each class l: 
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As we can see, precision is the fraction of correctly clas-
sified objects among the objects classified in the class l, and 
recall is the fraction of correctly classified objects among the 
objects that really belong to the class l. In that case we can 
define precision macro, precision weighted, recall macro, re-
call weighted, F-macro and F-weighted as follows: 
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The most relative metrics are accuracy, F-macro and F-
weighted. Table 1 shows the results of the classification 
quality evaluation. As one can see, simple KNN classifier 
outperforms other classifiers by all quality metrics. It cor-
rectly classifies 96 % of pixels in the images. Other classi-
fiers are also doing well, especially the Random Forest. 
For the convenience of visual perception, the main results 
from the Tab. 1 are also shown in the Fig. 9 as a bar chart. 

Tab. 1. Classification report 

 LR QDA RF KNN 
Accuracy 0.83 0.79 0.95 0.96 
F-macro 0.68 0.71 0.91 0.93 
F-weighted 0.82 0.80 0.94 0.96 
Precision macro 0.71 0.73 0.93 0.94 
Precision weighted 0.82 0.84 0.95 0.96 
Recall macro 0.67 0.75 0.89 0.92 
Recall weighted 0.83 0.79 0.95 0.96 

Fig. 10 shows an example of image segmentation re-
sult obtained using Random Forest pixel-wise classifica-
tion. There is an original color-synthesized image in 
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Fig. 10a. Fig. 10b shows the semi-manual annotation of 
this image and Fig. 10c shows the result of automatic 
image segmentation by pixel-wise classification using 
Random Forest classifier. As one can see, the differ-
ences between Fig. 10b and Fig. 10c are not noticeable 
to the naked eye. That means in this case image segmen-
tation works almost perfectly. 

 
Fig. 9. Classification performance 

Another approach to segmentation of images from the 
presented dataset using convolutional neural networks

 can be found in [32]. Authors of that paper achieve the 
classification accuracy of 94 %. 

Conclusion 

We managed to create a new dataset of hyperspectral 
images of plants, suitable for researching methods of im-
age processing of this kind. It can be useful for the further 
development of smart agriculture technologies. Experts in 
this field can use our dataset to develop and test computer 
vision systems that automatically analyze plant health and 
agricultural decision support systems. 

Unfortunately, the shooting conditions hardly allow 
using this dataset as an ultimate tuning table, for which 
the characteristics of the image spectrum obtained once 
could be used in the future for other hyperspectral camer-
as. At least the possibilities of this kind have not been 
proven and require additional research. We hope to con-
tinue working on the creation of datasets of this kind and, 
finally, to obtain a reference calibration dataset, the use of 
which within a certain calibration procedure can allow 
the creation of unified hyperspectral image processing 
methods for any hyperspectrometers. 

a)  b)  c)  
Fig. 10. Example of image segmentation using Random Forest: original color-synthesized image (a), semi-manual segmentation (b), 

automatic segmentation (c) 
We presented an example of simple image segmenta-

tion approach based on pixel-wise classification on the 
reduced version of the dataset. After going through four 
popular universal classifiers, we achieved a classification 
accuracy of 96 % using the KNN classifier with Euclidian 
distance. This indicates to the fine quality of the prepared 
dataset and the fundamental possibility of pattern recog-
nition with its help. Of course, it would be interesting to 
conduct a larger-scale study on the possibility of segmen-
tation of images from this dataset on the full set and con-
sidering the spatial relationships between pixels. 

We have so far produced several hyperspectrometers 
capable of capturing images like those presented in this 
dataset [33]. We are interested in the opportunities of us-
ing these devices for solving applied problems, including 
for smart agriculture and not only this. We have a service 
that allows one to collect hyperspectral data from un-
manned aerial vehicles and even from satellites. We 
would be glad if potential customers who are experienc-
ing the need to solve such problems would contact us. 
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