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Abstract  

The paper considers the appliance of the featureless approach to the human activity recognition 
problem, which exclude the direct anthropomorphic and visual characteristics of human figure 
from further analysis and thus increase the privacy of the monitoring system. A generalized pair-
wise comparison function of two human skeletal models, invariant to the sensor type, is used to 
project the object of interest to the secondary feature space, formed by the basic assembly of skele-
tons. A sequence of such projections in time forms an activity map, which allows an application of 
deep learning methods based on convolution neural networks for activity recognition. The proper 
ordering of skeletal models in a basic assembly plays an important role in secondary space design. 
The study of ordering of the basic assembly by the shortest unclosed path algorithm and corre-
spondent activity maps for video streams from the TST Fall Detection v2 database are presented. 
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Introduction 

Design of intelligent systems for daily human activi-
ties monitoring to maintain a healthy lifestyle becomes an 
increasingly actual problem due to the raising of elderly 
people amount on the planet. It causes a heavy load on 
welfare and healthcare systems. Most of the monitoring 
methods described in the literature are focused on activity 
recognition and identification systems using video sur-
veillance and depth cameras [1, 2] or wearable devices [3, 
5]. However, the implementation of systems that analyze 
information obtained from GPS receivers, accelerometers 
and other wearable devices is complicated by their rejec-
tion by elderly people. This is due to the necessity of sys-
tem maintenance, learn interaction skills, fear of interfer-
ence into personal life and changing its usual way [6]. It 
follows that the most preferable solution is non-invasive 
systems utilizing binary sensors, infrared cameras, depth 
sensors which provide the information that does not dis-
turb a privacy. Thus, studies [7, 8] show that privacy-
preserving representations of data, such as silhouettes [8] 
or skeletal representations [9 – 13], can reduce the anxiety 
of older people about video surveillance systems. 

In this work, a skeletal model underlies the represen-
tation of the human figure. In general, a skeletal model 
(skeletal representation, skeleton) of the human figure is a 
graph formed by the spatial coordinates of vertices 
(points) reflecting the position of joints and edges that 
connects them [9 – 13].  

Skeleton-based methods for figure, posture and active 
actions representation of the person could be divided into 
four main groups. 

The first group of methods utilizes the position of the 
skeleton vertices, which approximately correspond to the 
position of the joints, in a 3D space. Pairwise relative posi-
tions [13] or covariance matrices of these positions are used 
to describe the human pose [11]. However, as shown in [14], 
the relative vertices positions are not sufficient for accurate 
human activity detection, specifically fall detection, and ad-
ditional spatiotemporal features should be applied. 

The second group of methods covers the general ge-
ometric characteristics of the skeleton such as bounding 
rectangle, geometric moments and its invariants, posi-
tions or distances from the specific point of the skeleton, 
i.e. the point corresponding to the head or center of mass, 
from the floor, etc. These methods are less sensitive to 
the skeleton estimation defects but do not have enough 
flexibility to operate well in the complex or changing en-
vironment. Thus, method [15] uses a bounding rectangle, 
the first derivative in height and the first derivative of the 
width-depth composition. The method involves the Kal-
man filter for a more accurate estimation of the rate of the 
height change and components of width and depth. How-
ever, the parameters described above are exposed to noise 
because of the low sensor accuracy. At works [16, 17] a 
combination of nine relative geometric features is proposed 
to represent a human pose. These features include eight stat-
ic characteristics (e.g. the distance between skeleton points, 
the distance between point and a straight line between the 
two other points of the skeleton) and single characteristic 
that takes into account changes in time (changes in the posi-
tion of points and the speed of their change). The combina-
tion of these features makes it possible to assess the position 
and movement of the human body. 
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The third group of methods utilize the correspondence 
between the skeleton and human body parts [18]. These 
methods consider the human body moves, in particular 
the fact that human body moves in accordance with 
shapes, lengths and location of bones, which are more 
convenient and steadier to observe than joints [19]. The 
work [20] also considers the relations of neighboring 
parts of a human body (two arms, two legs and torso). 

The fourth group of methods operates in the frame-
work of the featureless approach to pattern recognition, 
where objects are represented by appropriate pairwise 
similarity measure or difference. This approach was in-
troduced in [9, 21 – 23] as an alternative to the feature-
based methods. Distance metric learning represent a fur-
ther development of such approach [24, 25].  

Because of acquisition artifacts like missing or extra 
parts of skeletons, geometric and topological noise, etc., 
the immediate usage of corresponding skeleton represen-
tation often becomes intractable. Therefore, the populari-
ty of methods based on pairwise comparison of human 
figures is increasing in the activity recognition field. The 
work [26] propose the similarity measure utilizing shape 
and gradient descriptors. In [16], a semi-supervised dis-
tance metric learning algorithm called Regularized Dis-
tance Metric Learning with Sparse Representation (RDSR) 
was introduced using Geometric Pose Descriptor. 

Following the featureless pattern recognition idea, this 
paper proposes to work with pairs of skeletons at once, 
namely, with the measure of their dissimilarity, instead of 
parametric description the skeletal models.  

The pairwise similarity function provides an oppor-
tunity to hide the coordinate representation of the skele-
ton joints from external observation. Therefore, it allows 
to better preserve the confidential information about cli-
ents and will reduce people's concern about personal pri-
vacy. Each skeletal model is represented by a vector of 
real values reflecting the dissimilarity measure of this 
model with respect to a fixed set of skeletons. The work 
[27] defines such a fixed data set as a “basic assembly”. 
After that, for each skeletal model in three-dimensional 
space received from an RGB-D sensor a set of distances 
(column vector) to each object of the basic assembly is 
determined. We propose to call the sequence of such vec-
tors as an activity map, which will be the subject of anal-
ysis. If we assign the pixel intensity level to the pairwise 
dissimilarity value from the activity map, then a greyscale 
image will be obtained. This image allows to provide a 
visual analysis of the activity map. The advantage of such 
an analysis is that it is not possible to recover any sensi-
tive information, which increases the system's privacy. 

Methods on the basis of pairwise similarity function 
allow to apply the featureless pattern recognition princi-
ples in deep learning approaches with convolutional neu-
ral networks (CNN) which recently have been successful-
ly applied to visual pattern classification. The multilayer 
architecture of the convolutional neural network allows to 
move from the specific image features to more abstract 

concepts. CNN are self-configuring developing the nec-
essary hierarchy of features, filtering the insignificant de-
tails of the bitmap image, and highlighting important fea-
tures. As experiments have shown, the activity map could 
be a suitable object for deep neural networks applying to 
the human activity classification. Figure 1 demonstrates 
the major idea of the proposed approach to the human ac-
tivity classification problem based on the activity map 
analysis.  

 
Fig. 1. Skeletal models representation for human activity 

classification by convolution neural networks  
based on activity map analysis 

According to Fig. 1, it is necessary to prepare a repre-
sentative set of skeletal models that forms a basic assem-
bly. Then, a pairwise dissimilarity function should be 
constructed to compare skeletons from a video stream 
with the skeletons of the basic assembly. The activity 
map, obtained as a result of comparison, forms an input 
data for the neural-network-based classifier.  

The concept of the activity map, the methods of its 
evaluation and analysis are the main contributions of this 
paper.  

Skeletal models of the human figure obtained 
by RGB-D sensors 

Nowadays, along with the growing interest in re-
search of human behavior and activity, the problem of 
representing a human figure with a skeleton obtained 
from RGB-D sensors is also becoming relevant. Accord-
ingly, there are a large number of approaches to the con-
struction of 2D and 3D skeletal models [9, 10, 35, 36]. In 
previous study of the fall detection problem [10] a skele-
tal model (Fig. 2) was obtained by Microsoft Kinect v2 
sensor [37] and related software. Fig. 2 shows the skele-
ton provided by this sensor. Points of the skeletal model 
that corresponds the fingers and feet coordinates in the 
space were excluded because of high moveability and ab-
sence of useful information for following fall activity 
analysis [10].  

However, after the latest release of the Kinect sensors 
and the cessation of their production, more advanced de-
vices were released, such as the Intel RealSense D400 
[38]. The characteristics of Microsoft Kinect v2, Intel 
RealSense 435i and Orbecc Astra Pro cameras are con-
sidered in Tab. 1.  
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Fig. 2. Human figure skeletal representation obtained 

by Microsoft Kinect v2. Unused joints are highlighted by red 
ellipses 

The most important technical characteristics of 3D sen-
sors are maximum working distance, horizontal field of view 
and depth camera resolution. Analysis of presented charac-

teristics shows that Intel RealSense 435i is a superior option. 
However, the skeletal models obtained from these cameras 
are different, that makes it difficult to transition between de-
vices, since the characteristic description of a person in the 
work [10] is based on the position of the skeletal model 
points (Fig. 2) in space. Consequently, the problem of mod-
el’s compatibility is occurred. 

Tab. 1. RGB-D sensors characteristics 

Device name 
Microsoft 
Kinect v2 

Intel  
RealSense 435i 

Orbbec 
Astra Pro 

Camera resolution 1920 × 1080 
@30 fps 

1920 × 1080  
@30 fps 

1280 × 720 
@30 fps 

Depth resolution 512 × 424 
@30 fps 

1280 × 720 
@60 fps 

640 × 480 
@30 fps 

Max distance 4.5 m 10 m 8 m 
Horizontal view 70 deg 87 deg 60 deg 
Vertical view 60 deg 58 deg 49.5 deg 
Skeleton joints 25 18 19 

Tab. 2 shows a comparison of the software to obtain 
skeletal models from the sensors presented in Tab. 1. 

Tab. 2. Skeletal models SDK’s characteristics comparation 

 Microsoft Kinect Nuitrack Cubemos 
Supported programming 
language    

C++ + + + 
C# + + + 
Java – – + 
Python – beta-version + 
Supported devices 

RGB-D sensors Microsoft Kinect 
Microsoft Kinect, Intel Re-

alSense, Azure Kinect, 
Orbbec Astra, Asus Xtion 

Any 

RGB cameras – – Any 
Skeletal model 
Skeletal joints 25 19 18 

Dimension of skeletal mode 3D 3D 
2D + distance to the skeletal 

points estimation based on the 
depth frame 

 

Depth image allows to calculate more accurate skeletal 
model. It is an obvious advantage in favor of Nuitrack and 
Microsoft Kinect SDK’s. However, the ability to construct a 
skeletal model from a 2D image provided by the Cubemos 
SDK is a useful tool while working with RGB cameras. 

Fig. 3 shows examples of skeletal models that could 
be obtained by the Microsoft Kinect, Nuitrack and 
Cubemos software. 

From the Fig. 3 analysis, it could be concluded that 
models 3a and 3b are practically identical and no addi-
tional transformations are required to bring one model to 
another. Nevertheless, it is not easy to get a skeletal mod-
el 3a from a skeletal model 3c. Table 3 shows expressions 
utilizing human anatomical features that allow to approx-
imately transform model 3c to model 3a. The designa-
tions in Tab. 3 (Head, Neck, etc.) means the vector of co-
ordinates of the corresponding skeleton points (Fig. 3). 

Thus, the skeletal models shown in Fig. 3b, 3c could 
be converted to the model in Fig. 2. The conversion pos-
sibility of various skeletal models to the one unified form 

allows the pairwise similarity function to be invariant to 
the sensor and software type. Further, we will assume that 
all skeletons are transformed to the form in Fig. 3b using 
equation in Tab. 3. 

The dissimilarity measure between two skeletal models 

This paper proposes the representation of a human 
figure as a vector of real values reflecting the pairwise 
similarities of its skeletal model with other skeletons [6]. 
Such representation, instead of descriptive skeleton fea-
tures proposed in [10], allows us to increase system ro-
bustness and privacy. The idea is to select and fix a sub-
set of general assembly objects available to the observer 
(basic assembly). Further we define a set of secondary 
projection features for an arbitrary object as a set of its 
pairwise comparisons with objects of basic assembly [23, 
28]. The sequence of projection feature vectors of skeletal 
models (Fig. 1) obtained from the correspondent se-
quence of experimental video frames let us to form the 
activity map. 
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a)   b)   c)  
Fig. 3. Skeletal models obtained by a) Microsoft Kinect SDK, b) Nuitrack SDK, c) Cubemos SDK 

Tab. 3. Transformations for conversion skeletal model 3c to model 3a 

Matching skeletal model points Skeletal model points transformation Unused skeletal model points 
;

;

;

;

;

;

;

;

;

;

Spine Shoulder Spine

Hip Left Left hip

Knee Left Left knee

Ankle Left Left ankle

Hip Right Right hip

Knee Right Right knee

Ankle Right Right ankle

Shoulder Left Left shoulder

Elbow Left Left elbow

Wrist Left Left wrist












;

;

.

Shoulder Right Right shoulder

Elbow Right Right elbow

Wrist Right Right wrist





 

5

;
5

;
2

;
2

.
2

Right eye Left eye Right ear
Head

Left ear Nose

Head Spine Shoulder
Neck

Right hip left hip
Spine Base

Spine Base Spine Shoulder
Spine Mid

 
 













 

Microsoft Kinect: 
; ;

; ;

; ;

; .

Hand Left Hand Right

Hand Tip Left Hand Tip Right

Thumb Left Thumb Right

Foot Left Foot Right

 

Cubemos SDK: 
; ;

; ;

.

Right eye Left eye

Right ear Left eye

Nose

 

Nuitrack SDK: 
; .Right hand Left hand  

 

To calculate the dissimilarity measure (distance) be-
tween the objects from the basic assembly and the skeletons 
from the experimental sequence it is necessary to determine 
a non-negative continuous real function for comparing two 
skeletal models. Since determining the distance between two 
skeletal models is based on the human figure shape, the fol-
lowing aspects should be taken into account: 

– various people height. For a correct comparison of 
two skeletal models to analyze activity by any dissimi-
larity measure, it is necessary to exclude the influence of 
human anthropometric characteristics on the length of the 
skeleton segments; 

– when a person moves in the scene, the skeletal 
model shifts with respect to the camera position (origin of 
coordinates) and have coordinates relative to the 3D 
space of the entire room. However, only the relative co-
ordinates of the two compared models are of interest. It 
follows that it is necessary to neglect the shifting relative 
to the camera position while comparing skeletal models. 

Human height estimation 

We assume here that the human height has little ef-
fect on how he or she performs a particular action. 

Therefore, it is necessary to make a dissimilarity 
measure invariant to the human height and normalize 
the skeletal model by the corresponding height value. 

Let S – is a set of skeletal points and Si – i-th skeletal 
point provided by the sensor. Since every i-th point is 
represented by three coordinates , ,x y z

i i iS S S , we scale 
all of them according to the person height by the follow-
ing expressions: 

, , ,
x y z

i i ix y z
i i i

S S S
s s s

h h h
    (1) 

where h – person height, i = 0,, 16 – number of used 
skeletal model points (fig. 2). 

Two methods of person height estimation have been 
proposed.  

Method 1 assumes that a person height could be eval-
uated as an average of Euclidean distance from point 3 of 
the skeletal model (head) to point 14 (ankle left) and the 
Euclidean distance from point 3 (head) to point 18 (ankle 
right) (Fig. 4). 

The Euclidean distance between two points of the 
skeletal model has the following form: 
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2

{ , , }

( , ) ( ) ,m m
i j i j

m x y z

d S S S S


   (2) 

where S – a point coordinate, i, j – point number in a 
skeletal point set (Fig. 2). 

 
Fig. 4. Skeletal representation of human figure. Auxiliary 

distances for define height estimate by method 1 are highlighted 
by blue lines 

Height estimation is done by the expression: 

3 14 3 18( , ) ( , )
,

2

d S S d S S
h


  (3) 

where d is calculated by (2). 
A more reliable and accurate estimate of height is the 

average value calculated from the ten highest values ob-
tained after a certain time of a person's stay in the field of 
view of the sensor. However, the height estimation de-
termined by method 1 significantly depends on a human 
pose (e.g., sit or stay). Hence, it is proposed to consider 
another method.  

Method 2 assumes the human height estimation as the 
geodesic distance between points 3 and 15 and between 
points 3 and 19 (Fig. 5). We propose to estimate human 
height by following expression (4).  

3 2 2 20 20 1 1 0

0 12 12 13 13 14

0 16 16 17 17 18

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , )

2
( , ) ( , ) ( , )

,
2

h d S S d S S d S S d S S

d S S d S S d S S

d S S d S S d S S

    
 

 

 


 (4)

 

where d – is calculated in accordance with (2).  
As well as in the first method, the final heigh estimation 

is the average of the ten highest values obtained after a cer-
tain time of a person's stay in the sensor's field of view.  

Both methods were evaluated on a video stream in 
which the actor stands for the first 35 frames and then sits 
down on a chair. Fig. 6 and 7 show a plot of frame-by-
frame height estimations calculated by the first (Fig. 6) 
and the second methods (Fig. 7).  

The diagram analysis of height estimation shows that 
second method allows to calculate the steadier values 

than the second method. Bar charts of height estimation 
were also constructed (Fig. 8 and 9). 

 
Fig. 5. Skeletal representation of human figure. Auxiliary 

distances for the height estimation by method 2 are highlighted 
by blue lines 

Bar charts analysis show that geodesic distances be-
tween points lead to an asymmetric unimodal distribution 
on the histogram. The actor’s height in the video stream 
could be clearly recorded as 170 cm. Note, that the first 
method finds here at least two maximum values. 

The fact that the actor in the video stream has two 
states (standing and sitting) is the reason for the presence 
of two quasi-constant values in human's height calcula-
tion utilizing the Euclidean measure. Such a defect is 
eliminated by calculating geodetic distances between 
points 3, 15 and 3, 19 (see Fig. 5). 

 
Fig. 6. Frame-by-frame estimation of actor height by method 1 

 
Fig. 7. Frame-by-frame estimation of actor's height by method 2 

 
Fig. 8. Bar chart of frame-by-frame height estimation  

for an actor in a video sequence according to method 1 
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Fig. 9. Bar chart of frame-by-frame height estimation  

for an actor in a video sequence according to method 2 

Distance between two skeletal models 

The following problems arise when comparing skele-
tons in three-dimensional space. All skeletal models 
move around the scene, even within the same video se-
quence. Thereby, one skeleton can be farther from the 
camera or higher than the other. It follows that a correct 
comparison of skeletal model requires elimination of the 
bias between them. Considering that the height of the 
skeleton position in space depends on the person pose, it 
is proposed to eliminate the vertical bias of each skeletal 
model in the following way: 

– determine the point of the skeletal model with the 
smallest ordinate (fig. 10a) 

– subtract the smallest ordinate from each point of the 
skeletal model. (fig. 10b). 

a)   b)  
   

Fig. 10. The elimination of skeletal model vertical bias 
a) location of the skeletal models before bias elimination, 
b) location of the skeletal models after bias elimination 

The elimination of vertical bias in camera space is 
performed by the following expression: 

min ,y y y
i is s s   (5) 

where i = 0,, 16 – index of skeletal model point (Fig. 2). 
After that, it is necessary to move the skeletal models 

to the origin of X and Z axes and combine them at the ze-
ro point of the skeletal model (Spine-Base) (Fig. 11). 

The combination is performed by the following ex-
pression: 

0 0, ,x x x z z z
i i i is s s s s s     (6) 

where i = 0,, 16 – index of skeletal model point (fig. 2). 
After bias elimination, the measure of dissimilarity be-

tween skeletons is calculated. This work considers the aver-
age Euclidean distance between the corresponding points of 
two skeletons as a dissimilarity measure (Fig. 12). 

The distance between pairs of skeletons P and Q 
could be determined by the following expression: 

 21

0 { , , }

1
( , ) .

N m m
k kk m x y z

R P Q p q
N



 
    (7) 

where N – number of used points of skeletons, pk – k-
th point of skeletal model P, qk – k-th point of skeletal 
model Q. 

a)   b)  
Fig. 11. Combining two skeletal models along X and Z axes  

at the point 0 (SpineBase) a) location of the skeletal models before 
combining, b) location of the skeletal models after combining 

a)  

b)   c)  
Fig. 12. Combining of two skeletal models a) skeletal models 

without combining, b) combining of skeletal models at point 0, 
c) combining of skeletal models along X, Z axes and along 

common line 

Overview of databases with falls recorded 
by Microsoft Kinect v2 

Experimental studies require a database containing 
human activity monitoring data, including falls. A com-
prehensive overview of databases could be found in [29]. 
In the works [9, 10] dedicated to the human fall detection 
problem, the TEST Fall Detection v2 database [30] was 
used for experimental research of fall detection algo-
rithms. It contains depth maps and 3D skeletons collected 
by the Microsoft Kinect v2 sensor and presented as rec-
ords of various durations. The dataset consists of daily 
activity records and falls, modeled by 11 actors. It in-
cludes Daily Living Activities (ADL) in the following 
categories: sitting, bending over and lifting, walking, ly-
ing down, as well as activities in the FALL category: fall-
ing forward, falling backward, falling sideways, falling 
back, and staying in a sitting position. 

The total number of entries in the TST Fall Detection 
v2 dataset is 264, and the total number of frames is 
46,418. The frame rate of records is 30 frames per sec-
ond. The shortest record duration is 2.5 s (75 frames), and 
the longest record duration is 15.4 s (463 frames).  
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Another considered database NTU RGB+D 120 [31] 
is also recorded by the Microsoft Kinect v2 sensor. It 
contains 120 classes of activities presented in 114 480 
videos. Each instance in the database is accompanied by 
the following data: RGB video, depth maps, skeletal 
models and infrared data. Activities are divided into 3 
categories: 

– daily actions, such as "drinking water", "eating 
food", "brushing teeth", "jumping", "putting on / taking 
off clothes" and so on; 

– medical conditions such as "cough", "back pain", 
"neck pain", "fall", "yawn"; 

– mutual actions or two-person interactions. 
The activities were recorded by three cameras with 

three different horizontal views at different heights and 
distances to the object. For each activity, there are also 
several videos with different actors in this database. 106 
different actors from different countries were invited. Ac-
tors of various ages from 10 to 57 years old, the height of 
actors from 1.3 to 1.9 m [31]. 

The TST Fall Detection database has fewer different 
activities than the NTU dataset. However, each video in 
TST database contains not only a record of the activity it-
self, but the actions before and after this activity. This al-
lows us to trace the transition processes between human 
activities on the distance matrix visualization. 

TST Fall Detection v2 is one of the most modern da-
tasets that have a quite large number of video streams 
with various contents. Therefore, this particular data set 
was chosen for experiments. 

Activity map construction based on the distances 
between skeletal models 

After determining the pairwise dissimilarity function 
of two skeletal models, it becomes possible to use the 
principle of featureless pattern recognition based on the 
basic assembly idea [23]. A representative set of skeletal 
models recorded during the laboratory research is used as 
a basic assembly. The objects are chosen empirically, so 
that the skeletal models of the basic assembly correspond 
to different positions of an actor:  

– standing (32 frames); 
– sitting on the char (28 frames); 
– sitting on the floor (72 frames); 
– lying (4 frames). 
For a clear demonstration, it is proposed to construct a 

distance matrix between objects of the basic assembly 
and also to provide its visualization. 

The values in the distance matrix could be replaced by 
grayscale values, where black is the zero distance be-
tween objects, and white is the maximum distance. The 
distance between the skeletal models from all videos in 
TST Fall Detection v2 database and skeletons from basic 
assembly was accepted as a maximum distance value. 
This value is approximately equal to 0.86. 

A matrix of pairwise distances between the basic 
skeletons K×K is constructed following the dissimilarity 

measure in the form of (7). The visualization of such a 
matrix is shown in Fig. 13. The skeletons in the basic as-
sembly are not ordered in any way. They are only divided 
according to the classes of activities described above. 

 
Fig. 13. The grayscale representation of the distance matrix 
between skeletal models of the basic assembly. The axes are 
numbered according to the order number of a skeletal model 

in the basic assembly 

The fixed basic assembly allows us to obtain a dis-
tance matrix between its elements and frames of the video 
sequence. Such a distance matrix is called an activity 
map. For each skeleton from the video sequence a vector 
of secondary projective features is calculated which we 
will interpret as one column of the activity map. A se-
quence of such dissimilarity measure values, with respect 
to the certain object in the basic assembly in time, forms 
one row of the activity map. The greyscale visualization 
of the activity map clearly shows how far the objects are 
from each other with respect to the proposed dissimilarity 
measure.  

Several video sequences from the TST Fall Detection 
v2 database were randomly selected to provide experi-
ments and obtain activity maps. The first video sequence 
(Data1/Fall/EndUpSit/1) has 180 frames with the fall ac-
tivity. The fall start was noted by experts at frame 55, and 
the end of the fall at 146. After the fall, the actor remains 
in a sitting position. The visualized activity map for video 
sequence 1 is shown in Fig. 14. 

 
Fig. 14. Activity map visualization for video sequence 1  

(action: falling) 
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The second experimental video sequence (Data 
2/ADL/sit/1) contains 155 frames. It has only two activities. 
The first activity (0 – 100 frames) – the actor is standing, the 
second activity (100 – 155 frames) - the actor is sitting. Such 
a video sequence allows us to visually estimate the presence 
of an explicit brightness boundary between activities on the 
activity map. The visualization of the activity map for video 
sequence 2 is shown in Fig. 14. 

From the Fig. 14 analysis it could be concluded that 
the visualization of the activity map reflects obvious tran-
sitions between types of activities but does not demon-
strate its clearly enough. 

Ordering of the basic assembly of skeletal models 

The quality of the activity map directly depends on the 
rows order. Initially the rows order in the distance matrix of 
the basic skeletal representations is not strictly defined.  

But such an order should be obviously determined by 
the structure of the basic assembly. This structure, in turn, 
should reflect the similarity between the objects of the 
basic assembly itself. Since the row for the particular 
basic skeleton represents the distance to other objects in 
basic assembly, the following hypothesis could be set up. 
If each element of the basic assembly is an element of the 
metric space, then the shortest path will arrange the ele-
ments in such an order that: 

 the transition between the boundaries will be 
smoother;  

 the boundaries between the individual activities 
themselves will be more explicit and recognizable; 

 the activity map will be smoother and more repre-
sentative. 

 
Fig. 15. Activity map visualization for video sequence 2 

(action: sitting) 

The use of the principle of the decision rule smooth-
ness promotes to reduce the Curse of Dimensionality 
when recognizing images in the work [32]. The experi-
ments on face recognition showed that the proposed mod-
ification significantly increases the predictive ability of 
the Support Vector Machine learning method initially 
used in several previous works. In [32] it is assumed that 
ignoring individual insignificant details of the face by 
smoothing the training set images will help to significant-

ly improve the quality of recognition. Therefore, when 
working with images as training objects, it is useful to 
consider the proximity between objects and their order. 
The introduction of constraints on the ordering of objects 
in the training set is called the decision rules regulariza-
tion [33]. Works [33] also shows that the application of 
the principle of decision rule smoothness will lead to an 
improvement in the recognition quality. 

To find the shortest unclosed path (SUP) between all 
the objects of the basic assembly a SUP search algorithm 
from [34] could be applied. The article [34] proposes 8 
algorithms for searching the quasi-shortest unclosed path 
and provides a comparative analysis on several datasets. 
Recursive modification of the A4 algorithm makes it pos-
sible to find the best result on the data of the basic as-
sembly in a reasonable time [34]. The "ant" algorithm 
was proposed to improve the solution obtained by modi-
fications of the greedy algorithm. This algorithm search 
for the SUP between two terminal points [39]. Such 
points are assumed to be the terminal points of the SUP 
found by the A4R algorithm from [34].  

The "ant" algorithm simulates the process of ant’s 
natural behavior in nature. It is based on the exploring 
of the territory adjacent to the anthill (starting point) 
for the presence of food sources (end point) and mark-
ing more successful paths from the ant colony to the 
source with a large amount of pheromone [6]. The 
principle of the algorithm is as follows: a virtual "ant" 
is placed at the initial node. Further, the probability of 
moving to the next available points is determined by 
the edge length (the distance between points) and the 
amount of pheromone lay on it by previous "ants" gen-
erations. The initial amount of pheromone on all edges 
is initialized with a nonzero starting value. It should be 
noted that the initial idea of the algorithm is to find the 
shortest path from the starting point to the final point, 
without considering the obligatory passage through all 
points. Thus, to solve the problem the shortest path 
searching through all points, it is necessary to enter a 
queue that contains unvisited nodes except for the final 
one. By the moment when all nodes from the queue 
have been visited, the accessibility of the transition 
from the last point in the path to the terminal one is 
checked. If the transition is available, then the path is 
considered successful.  

Eventually, the result obtained by the basic algorithms 
was improved by applying the "ant" algorithm [38]. The 
length of the SUP found by this algorithm decreased from 
5.95 to 5.897. During the SUP length decreasing the ob-
jects sequence of the first and second cluster in basic as-
sembly was greatly reordered. The third cluster was rec-
orded in reverse order, the fourth cluster remained un-
changed. 

Fig. 16 shows a comparison of visualization of dis-
tance matrices between skeletal models of the basic as-
sembly placed in the arbitrary order and in the strict or-
der, which is determined by the solution of the SUP 
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search problem. By Fig. 16 analysis, it could be noted 
that Fig. 16b has smoother color transitions between 
skeletal models. 

A comparison of activity maps with an unordered and 
ordered basic assembly obtained for video sequences 1 
and 2 is presented in Fig. 17 and 18. 

a)   b)  
Fig. 16. Visualization of distance matrix between basic skeletons а) any order, b) strict order 

a)   b)  
Fig. 17. Activity map comparation for video sequence 1 (action: falling) а) Unordered basic assembly b) Ordered basic assembly 

according to solution obtained by the SUP search 

a)   b)  
Fig. 18. Activity map comparation for video sequence 2 (action: sitting) а) Unordered basic assembly b) Ordered basic assembly 

according to solution obtained by the SUP search 

Comparison of the visualizations in Fig. 17 and 18 
shows that the ordering of basic assembly allows us to 
obtain more explicit and contrast transitions between the 
activities on the distance matrix visualizations. It allows 
us to assume that the regularization of the decision rules 
[33] will entail a more effective recognition result. 

Experimental results 

The experimental part compares results of fall detec-
tion, obtained by the proposal method, with results pub-

lished earlier. The evaluation was provided on the TST 
Fall Detection v2. In this paper the FALL and ADL activ-
ities represented by activity maps was recognized by re-
sidual convolutional neural network ResNET50 without 
pretrained weights. Resnet50 decision is reinforced by 
CUSUM procedure to adjust classifier decisions on suc-
cessive frames as proposed in [10].  

We solve two-class problem using the binary cross-
entropy loss function. The neural network was trained on the 
activity maps with 136 × 32 shape because the size of basic 
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assembly is 136 and the minimal first layer input shape is 
32. The training dataset was prepared as follows (Tab. 4). 

The pairwise distances (7) between the skeleton from 
the video frame and basic assembly were evaluated on

 each frame. The first activity map we obtained after the 
first 32 frames of video sequence. Then we accumulated 
activity maps for whole video stream by the one-step slid-
ing window (fig. 1).  

Tab. 4. The accuracy of fall detection algorithms on TST Fall Detection Dataset v2 

Method Source data Classifier Evaluation Scheme Accuracy 

Gasparrini et al., 2016 [40] 
Skeleton joint position; 
accelerometer data 

Empirical thresholding rule Not described 0.990 

Fakhrulddin et al., 2018 [41] 
Two accelerometers 
time series data 

CNN 
(self-structured) 

Separate data on 90 % and 
10 %, then averaging 

0.923 

Hwang et al., 2017 [42] Depth map 
3D-CNN 
(self-structured) 

5 random trials from 240 
and 24 records splitting and 
averaging 

0.942 

Min et al., 2018 [43] 
Skeleton joints infor-
mation 

SVM 
Two-third for training and 
one-third for tests 

0.920 

Seredin et al., 2021 [9] 
Reduction skeleton 
joints information 

SVM + 
One-class classifier + 
CUSUM 

Leave-One-Person-Out 0.936 

Proposed 
Skeleton based activity 
map 

CNN (ResNET50) + 
CUSUM 

Leave-One-Person-Out 0.947 

 

This pipeline is applied for all video sequences in 
TST V2. The activity map categories “FALL” and 
“ADL” were defined by the binary code. If the activity 
map contains entire fall activity then we marked it as 
“FALL” and code 10, otherwise the activity map had 
“ADL” label and code 01. It’s important that activity 
maps which contain both “ADL” and “FALL” labeled 
vectors were excluded from the train dataset. 

Next, we splitted the dataset into training and test parts, 
with the condition that the training set includes ten of the 
eleven actors in the database, and the remaining actor rec-
ord was used exclusively for tests. Such a test procedure 
was applied to each actor (Leave-one-person-out) [9, 10].  

The experiments show that the application of the pro-
posed approach to the fall activity recognition increases 
the accuracy to 0.947. It follows that we outperform our 
previous results as well as others except of Gasparrini et 
al., 2016 (tab. 4). Notice that our method excludes any 
wearable devices as opposed to Gasparrini’s method that 
is important for non-invasive systems. 

Conclusion 

The paper describes an approach to representing a 
skeletal model by projecting the object of interest to the 
secondary feature space, formed by the basic assembly of 
skeletons. A series of experiments was provided to de-
termine the best method of human height estimation to 
eliminate difference in the height of skeletal models. Al-
so, we propose a measure of dissimilarity between skele-
tal models and the activity map concept. As a result, ac-
tivity maps were obtained for video sequences from the 
TST Fall Detection v2 database.  

The proposed method for representing human activity 
by activity maps extends the principles of featureless pat-
tern recognition to deep learning methods based on con-
volutional neural networks for solving the activity classi-
fication problem. Also, the experiments based on Leave-

one-person-out procedure showed that this approach in-
creases the accuracy from 0.936 to 0.947. 
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