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Abstract 

Atmospheric heavy  metal contamination  is  a real  threat  to human health. In  this work, we 
examined several models trained on in situ data and indices got from satellite images. During 
2018-2019, 281 samples of naturally growing mosses were collected in the Vladimir, Yaroslavl, 
and Moscow regions in Russia. The samples were analyzed using Neutron Activation Analysis 
to get the contamination levels of 18 heavy metals. The Google Earth Engine platform was used 
to calculate indices from satellite images that represent summarized information about sampling 
sites. Statistical and neural models were trained on in situ data and the indices. We focused on 
the classification task with 8 levels of contamination and used balancing techniques to extend 
the training data. Three approaches were tested: variations of gradient boosting, multilayer per-
ceptron, and Siamese networks. All these approaches produced results with minute differences, 
making  it  difficult  to  judge  which  one  is  better  in  terms  of  accuracy  and  graphical  outputs. 
Promising results were shown for 9 heavy metals with an overall accuracy exceeding 89  %. Al, 
Fe, and Sb contamination was predicted for 3,000 and 12,100 grid nodes on a 500 km 2 area in 
the  Central  Russia  region  for  2019  and  2020.  The  results,  methods,  and  perspectives  of  the 
adopted approach of using satellite data together with machine learning for HM contamination 
prediction are presented.  
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Introduction 

This research complements the author’s earlier paper 
[1] related to the platform-based intelligent environmen-
tal  monitoring  system  of  the  UNECE  ICP  Vegetation 
program. The United Nations Convention on Long-Range 
Transboundary Air Pollution (CLRTAP) obligates partic-
ipants  to  annually  collect  samples  of  naturally  growing 
mosses and analyze them to generate information on the 
contamination  of  air  with  pollutants,  particularly  heavy 
metals (HM), such as Antimony, Mercury, Lead, etc., in 
addition  to  organic  pollutants  like  benzo[a]pyrene,  and 
radioactive constituents like radionuclides. These data are 
then presented in the form of an atlas with statistical met-
rics  and  pollution  maps  [2].  Atmospheric  heavy  metal 
contamination  is  a  real  threat  to  human  health,  and  the 
severity of the hazard depends on the inherent character-
istics of metal contaminants and their concentration in the 
exposed surroundings [3]. The toxic/carcinogenic poten-
cies  of  these  pollutants  are  compound-specific  and  de-
pend  on  their  dose  exposure.  Understanding  compound-
specific contamination levels on local, regional, and 
global scales is important for assessing the severity of the 
adverse consequences of contamination on humans. Bio-
monitoring can provide much more information than sta-
tionary  and  mobile  air  quality  monitoring  stations  fo-
cused on determining the levels of airborne pollutants, in-
cluding particulate matter (PM) [4, 5]. Unfortunately, bi-
omonitoring  surveys  are  limited  both  spatially  and  tem-

porally.  In  such  a  situation,  one  can  choose  modeling, 
which has an enhanced analysis potential.  

We have some experience in predicting contamination 
on regional and urban levels using machine learning and 
satellite imagery techniques [6, 7]. There is still a lot of 
direction  for  improving  and  verifying  our  methods.  We 
have access to the Vladimir, Yaroslavl, and Moscow re-
gion data reported in 2018 and 2019. This motivates us to 
create  a  heavy  metal  contamination  model  for  Central 
Russia.  We  have  information  on  HM  concentrations  at 
281  sampling  sites.  The  data  are  obtained  using  a  moss 
biomonitoring  technique  and  Neutron  Activation  Analy-
sis. Mosses are regarded as one of the 
main bioindicators of air  pollution since  they  have  a  su-
perficial  root  system  [8].  We  use  these  data  to  train  the 
model and create a prediction for 3.000 and 12.100 grid 
nodes  on  a  500 km2  area  in  the  Central  Russia  region. 
The keystone of our research is additional data for models 
and advanced statistical and neural network architectures. 
We focus on satellite imagery as it is an easily accessible 
source  of  data.  Google  Earth  Engine  (GEE)  is  a  cloud-
based  geospatial  analysis  platform  that  enables  users  to 
visualize  and analyze  satellite  images  of our  planet. We 
use  the  GEE  Python  interface  to  calculate  the  so-called 
indices representing sampling areas. The indices are then 
used together with in situ data on heavy metal contamina-
tion to train the model. After that, indices are calculated 
for a specific area with a high spatial resolution and then 
used as the input to the model for a prediction. This ap-
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proach works only if there is a meaningful, informative, 
or correlative connection between the indices and in situ 
measurements. Since the late 1990s, there have been pub-
lished many research reports that mention the use of spec-
troscopy and satellite imagery to determine the concentra-
tion of heavy metals in soil. [9, 10, 11, 12]. The studies 
focus  on  the  estimation  of  heavy  metal  contamination 
near mines and earth breaks. The determination of differ-
ent PMs based on satellite imagery is a highly popular re-
search work [13, 14, 15]. At present, there are specialized 
satellite programs, such as Sentinel-5, useful for as-
sessing  air  quality,  including  concentrations  of  ozone, 
methane, formaldehyde, aerosol, carbon monoxide, nitro-
gen oxide, and sulfur dioxide. In our case, we try to ex-
plain  the  connection  between  data  from  satellite  images 
and  the  concentration  of  heavy  metals  in  mosses.  Many 
researchers  report  that  heavy  metals  in  biomass  directly 
influence satellite imagery data. Muradyan et al. [16] es-
timate  the  content  of  Mo,  Cu,  Ni,  Cd  (heavy  metals)  in 
potatoes and bean leaves using multispectral satellite im-
agery. Meiling et al. [17] show the possibility of applying 
multi-temporal  satellite  images  to  detect  heavy  metal-
induced stress (i.e., Cd stress) in rice crops. Amer et al. 
[18]  report  that  hyperspectral  vegetation  indices  have  a 
potential  for  monitoring  Zn  and  Cu  concentrations  in 
wheat plants and grains. Zhou et al. [19] examine the re-
lationship  between  the  leaf  reflectance  of  different  sea-
sons and the concentration of heavy metal elements, such 
as Co, Cu, Mo, and Ni, in leaves in a post-mining area. 
Yu  et  al.  [20]  show  that  elevated  Cd  and  Pb  concentra-
tions induce contrasting spectral changes in the red-edge 
(690 – 740 nm) region for Tilia tomentosa trees.  

The forest and tree leaves in particular can be a good 
source of contamination data. Bjerke et al. [21] show that 
birch leaves can be used to determine Cu and Ni concen-
trations. Khosropour et al. [22] report that Platanus orien-
talis leaves  have  a  potential  for  monitoring  Cd,  Pb,  Ni, 
and Cr. Alahabadi et al. [23] examine different tree spe-
cies  in  terms  of  their  capability  to  accumulate  airborne 
and  soilborne  HMs  and  report  that  a  number  of  species 
can  be  used  for  the  phytoextraction  of  HM  pollution. 
Terekhina et al. [24] examine the accumulation of chemi-
cal  elements  by  the  leaves  of  trees  and  shrubs  in  urban 
environments. Lyanguzova et al. [25] present the results 
of long-term monitoring of the state of boreal forest eco-
systems (the Kola Peninsula, the European North of Rus-
sia) that experience industrial pollution from the Norilsk 
Nickel  Mining  and  Metallurgical  Company.  Lassalle  et 
al. [26] demonstrate the potential of hyperspectral imag-
ing to assess metal uptake by plants. 

Many  types  of  studies focus on  the determination of 
HMs in soil [27, 28, 29, 30]. They report the possibility 
of As, Pb, Cr, Cu, Cd, Fe, Mn, Zn, Sb, Hg concentration 
determination  using  reflectance  spectroscopy.  For  some 
HMs, there is also an indirect relation between anthropo-
genic emission and sample contamination, which can be 
detected  by  satellite  observations.  Some  researchers  re-

port that a high level of Antimony (Sb) can be associated 
with  a  higher  level  of  temperature  and/or  luminosity, 
which characterize areas with heavy traffic, such as urban 
[31, 32, 33]. Thus, it is recognized that heavy metals in 
aerosol,  biomass,  and  soil  influence  reflection,  absorp-
tion,  or  transmission  spectral  characteristics.  The  above 
mentioned  studies  on  the  estimation  of  HMs  in  soil  use 
advanced  machine  learning  approaches,  and  their  meth-
ods are close to ours. They mostly use soil samples and 
one or a few satellite programs as a source of additional 
data. Fang et al. [34] use a multi-layer perceptron to de-
termine Cu contamination. Xu et al. [35] estimate Hg, Cr, 
Cu, and other heavy metal pollution areas in agricultural 
soils with the help of a generalized regression neural net-
work. In a study by Pyo et al. [36], a convolutional neural 
network  is  adopted  to  estimate  Arsenic  (As),  Copper 
(Cu),  and  Lead  (Pb)  concentrations  using  measured  soil 
reflectance.  There  are  also  several  interesting  investiga-
tions, but we could not find any work related to the esti-
mation  of  atmospheric heavy  metal  contamination using 
mosses as a source of in situ data or Siamese networks as 
a basic neural architecture. 

In  our  previous  studies,  we  used  classical  machine 
learning  approaches  (gradient  boosting,  learning  trees, 
etc.) to train a regression model [7]. We have several ex-
periments using neural networks, however, statistical 
methods over-perform them, probably due to the limited 
training dataset. We are currently focused on the classifi-
cation task for several reasons. Firstly, maps are the main 
object  of  interest,  and  contamination  levels  are  already 
well known or can be easily determined. In most cases, it 
is 5 to 8 levels of contamination. Secondly, the determi-
nation of accuracy metrics is clearer in the classification 
task. We can use accuracy, loss, F-score, and other met-
rics, while for the regression task it is in a general varia-
tion  of  the  mean  square  error  and  R  squared.  Thirdly, 
there are fewer sampling points with a high level of con-
tamination than points with a normal level, and better re-
sults can be achieved by using training dataset balancing 
techniques.  For  example,  after  balancing  the  dataset  for 
Al, we have 1.176 samples instead of 281 (147 members 
in  each  of  the  8  classes).  In  this  research,  we  examine 
three  approaches:  Gradient  Boosting,  Multilayer  percep-
tron, and Siamese network. Gradient Boosting is a well-
established algorithm that showed the best results in our 
previous research. A multilayer perceptron is also a well-
known solution for solving classification tasks. Expecta-
tions are raised on a neural architecture based on a Sia-
mese network. Siamese networks are a well-known solu-
tion in image classification and facial recognition [37, 38, 
39],  but  they  also  show  good  results  in  different  areas 
such as object tracking [40], brain imaging modality 
recognition [41], bioacoustics classification [42], and re-
mote sensing scene classification [43]. The benefit of Si-
amese  networks  is  training  in  pairs  of  examples.  Their 
main task is to distinguish one object from another. Here, 
the training dataset is extended because of combinatorial 
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functions. For Al, we have 8.234 pairs for training. Thus, 
in our study, we use both classical methods and Siamese 
networks to compare the results. 

1. Materials and methods 
1.1. Sampling 

The moss biomonitoring technique was developed in 
the late 1960s by Scandinavian scientists [44]. Since then, 
this method has become widespread. Mosses absorb and 
accumulate chemical compounds and substances from the 
air since they have a superficial root system [45], and for 
this  reason,  they  are  widely  used  as  biomonitors.  In  the 
late ’80s, an international research program was founded 
to  investigate  the  impacts of air pollutants on  crops  and 
semi-natural  vegetation  (ICP  Vegetation).  As  a  part  of 
this program, the Atlas of atmospheric deposition of 
heavy metals is published every 5 years. This Atlas sum-
marizes  data  available  from  associated  scientific  groups 
in Europe and Asia. The Department of Neutron Activa-
tion  Analysis  (NAA)  of  the  Joint  Institute  for  Nuclear 
Research has been taking part in ICP Vegetation since its 
first survey in 1995. 

Since  then,  it  has  performed  investigations  in  many 
Russian regions (Moscow, Tula, Tver, Ivanovo, Udmur-
tia, Yaroslavl, Vladimir, Ryazan, Saint-Petersburg, etc.). 
NAA is a multi-element analysis that enables the analysis 
of up to 45 elements from samples [46]. The ongoing re-
search uses sampling data gathered in the Moscow region 
during the summer of 2019 and in the Yaroslavl and Vla-
dimir regions during the summer period in 2018 follow-
ing a special protocol of the ICP Program [47]. The pro-
tocol  sets  requirements  for  the  choice  of  sampling  sites 
and samples, for example, moss spices, locations  of near-
by trees, areas to be avoided, preferable places for moss 
collection  (ground  or  surface  of  decaying  stumps),  and 
other aspects.  

The  regions  located  in  the  central  part  of  Russia  are 
densely  populated  and  have  diverse  industrial  establish-
ments, which determines the choice of these regions for 
the investigation. We use the information on 73, 53, and 
156 samples from the Vladimir, Yaroslavl, and Moscow 
regions. The sampling map is presented in Fig. 1. 

 
Fig. 1. Sampling map of 281 sampling sites in Central Russia 

The  Moscow  region  is  more  contaminated  than  the 
others.  However,  there  are  also  some  hot  spots  in  the 
Vladimir  and  Yaroslavl  regions.  The  combined  dataset 
reveals  the  diversity  and  extent  of  contamination  ob-
served in the Central Russia region. 

1.2. Satellite data 

Hyperspectral images are a unique source for obtain-
ing many kinds of information about the Earth's surface. 
Modern platforms support users to perform complex 
analyses  with  a  collection  of  images  without  using  any 
specialized  software.  Google  Earth  Engine  (GEE)  is  a 
planetary-scale platform for Earth science data & analy-
sis. Atmospheric, radiometric, and geometric corrections 
have been made to a number of image collections at GEE. 
There are over 100 satellite image collections and mod-
eled datasets. Some  collections  have  a  spatial  resolution 
of up to 15 meters. With just a few commands, GEE ena-
bles  to  get  a  median  image  by  specifying  the  collection 
name,  date  frame,  and  area  of  interest.  We  use  GEE  to 
auto-calculate  indices  for  model  training  and  basic  data 
for prediction. The index includes the name of the satel-
lite image collection, the data retrieved and used, the size 
of the analyzed area, the identifier of the spectral channel 
(band), and the mathematical function applied to the digi-
tal matrix of the obtained image. For example, we can use 
data of monthly average radiance composite images using 
nighttime  data  from  the  Visible  Infrared  Imaging  Radi-
ometer Suite (VIIRS) Day/Night Band (DNB). This col-
lection has only one band, “avg rad”, average DNB radi-
ance  values.  We  can  then  get  the  median  image  of  the 
collection for 01.01.2018 – 31.12.2018, by specifying the 
area  of  interest  (10  km2).  Finally,  we  use  mathematical 
functions,  such  as  sum,  max,  and  median,  to  reduce  the 
volume  of  data  and  get  some  numerical  values.  Fig. 2 
shows  a  general  description  of  the  index  calculation  to 
transform spectral information into textual information. 

In this research, indices for over 40 collections using 
5  reducer  functions,  i.e.,  max,  min,  sum,  median,  and 
mean,  are  computed.  While  working  with  row  data,  we 
use  the  built-in  GEE  function  to  filter  data  and  create 
composites  to  get  the  cloud score  threshold  and  percen-
tile. We also use a variation of the SIAC module for at-
mospheric corrections [48].  

We  calculate  Spearman  and  Pearson  correlations  be-
tween  the  indices  and  HM  concentrations.  While  the 
Pearson correlation assesses linear relationships, the 
Spearman  correlation  evaluates  monotonic  relationships. 
 In a monotonic relationship, the variables tend to change 
together, but not necessarily at a constant rate. Based on 
all  the  data,  we  select  collections  and  reducer  functions 
with the best correlation. It turns out that we can exclude 
some collections and reducer functions as they never ap-
pear on the best index list.  

As  a  result,  we  keep  working  with  only  13  collections 
(see App. 1 for a full list) and the median reducer function. 
We are going to predict contamination not only in 2019, but 
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also in 2020. Therefore, we assume that the median reducer 
is preferable since it can eliminate outliers. We experiment 
with the mapping unit size and end up working with 4 km2 
for 10 collections and 1 km2 for 3 Sentinel V5 collections. 
This combination shows the best results in terms of perfor-

mance and correlation. GEE has some limits, and if we in-
crease the analyzed area, the computation time also increas-
es. At the final stage, the calculation of indices for 3.000 grid 
nodes  takes  over  2  days.  The  calculation  of  indices  for 
12.100 grid nodes takes approximately 1 week. 

 
Fig. 2. Index calculation algorithm 

1.3. Machine learning and neural networks 

In  our  previous  research,  the  best  results  were  ob-
tained using statistical techniques, in particular, variations 
of  Gradient  Boosting.  We  have  some  experiments  with 
neural networks, but due to the lack of training data for 
regression tasks, the accuracy is lower, and it is not worth 
pursuing. Most sampling sites in the regions studied have 
a  low  concentration  of  HMs,  and  there  are  only  a  few 
sites with a high concentration of HMs. In such a situa-
tion,  one  should  prefer  neural  networks  to  work  with  a 
balanced training dataset. In this study, we focus on the 
classification  task,  thus  it  is  possible  to  use  dataset  bal-
ancing techniques. We use the imblearn Python package, 
in  particular,  its  over-sampling  method.  The  idea  is  to 
balance minority classes to reach the majority class. The 
technique  requires  a  careful  attention  to  ambiguous  re-
gions with class overlapping in the data. We analyze dot 
plots and frequently observe overlapping in close classes.  
However, there are parameters in close classes in which 
the intersections are single (fig. 3). 

 
Fig. 3. Scatter plot between the Sentinel-2 and Sentinel-5P 

Indexes for 8 contamination classes 

A  typical  sample  consists  of  10 or  more parameters. 
Thus, we assume that the classes will not intersect strong-

ly  in  a  multidimensional  feature  space,  and  the  applica-
tion  of  the  technique  is  acceptable.  Below  we  use  Ran-
domOverSampler from the imblearn package, the Minori-
ty Oversampling Technique (SMOTE) [49] and 
ADASYN [50] to create new samples with fairly similar 
results.  

For example,  Al, Sb, and Fe  minority classes have 4, 
16,  and  5  elements,  and  majority  classes  have  147,  117, 
133 elements. After balancing, the training dataset increas-
es over 2.5 times. Instead of 281 samples, we have 1,176 
samples for Al (147 members in each of the 8 classes). 

As part of the training data, we have some indices and 
HM element contamination classes. Two approaches are 
tested. First, we use only noncollinear indices with 
Spearman  or  Pearson  correlations  with  HMs  that  are 
meaningful for our task (> 0.35 and < – 0.35). We have 10 
to 14 of such indices. For different elements, the indices 
may vary. Second, we use all the indices we have, despite 
correlation  and  collinearity.  It  is  assumed  that  neural 
models can use only principal features for prediction. In 
the second approach, the feature vector has 88 elements. 
For all models, we use the 80/20 train  /test split. For clas-
sification, we test three approaches: variations of gradient 
boosting, multilayer perceptron, and Siamese networks. 

Gradient  boosting  (GB)  [51]  relies  on  the  judgment 
that  the  best  possible  next  model,  when  combined  with 
previous  models,  minimizes  the overall prediction  error. 
The key idea is to set target outcomes for this next model 
to minimize the error. In gradient boosting, the target out-
comes for each case are set on the basis of the gradient of 
the error for the prediction. Each new model takes a step 
towards  minimizing  the  prediction  error  in  the  space  of 
predictions for each training case. We try XGBoost [52] 
and  gradient  boosting  from  the  scikit-learn  library  with 
the  parameters  found  by  the  grid  search  procedure.  In 
most cases, we use several estimators (nearly 100) and a 
learning rate of 0.075. XGBoost is a unique and universal 
instrument  as  all  fine-tuning  procedures  are  done  auto-
matically; therefore, we use it to create final models. 

A multi-level perceptron (MLP) [53] is a supplement 
of  a  feed-forward  neural  network.  It  has  three  types  of 
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layers: input, output, and hidden. The input layer receives 
an  input  signal  for  processing.  The  classification  task  is 
performed by the output layer. Hidden layers, which are 
placed between  the  input  and output  layers,  are  the  true 
computational  engine  of  the  MLP.  Neurons  in  the  MLP 
are  trained  with  a  back-propagation  learning  algorithm. 
MLPs are designed to approximate any continuous func-
tion and can solve problems that are not linearly separa-
ble.  Different architectures are  tested;  however,  the best 
results are obtained with a multi-level perceptron of three 
hidden layers. A grid-search procedure applies to find the 
best  hyperparameters.  We  use  the  Relu  activation  func-
tion [54] on each layer with binary cross-entropy as a loss 
function. The learning rate is set to 0.01. We try different 
batch  sizes  and  training  approaches,  but  cannot  get  any 
better accuracy metrics than that of GB. 

The Siamese neural network (SNN) [37] architecture 
comprises two or more twin networks with tied weights 
joined by the similarity layer with the energy function at 
the top. Parameter updating is mirrored across both twin 
networks. It is used to find the similarity of the inputs by 
comparing their feature vectors. When we pass an object 
to the network input, we extract some features of the ob-
ject in the output, the so-called encoding. Similar objects 
cannot be in very different locations of the feature space 

since each of the twins computes the same function due 
to  weight  sharing.  The  architecture  of  the  Siamese  net-
work is illustrated in Fig. 4. 

We use the MLP with three hidden layers as the basic 
twin architecture. On the input, we pass a feature vector 
of 11–13 parameters for the selected indices or a vector 
with 88 parameters for all indices. Our Siamese network 
unites the twins within the L1 distance layer, followed by 
sigmoid  activation  to  train  the  network  with  a  cross-
entropy  objective.  The  dimension  of  the  feature  vector 
extracted from the embedding model is 60.  

The  training  dataset  for  the  Siamese  network  com-
prises  positive  and  negative  objects  of  different  classes. 
Because of the different combinations of pairs, the Al da-
taset  for  training  increases  from  1.176  to  10.290  ele-
ments. As a result, we have a network that can distinguish 
object classes with high accuracy. The rest looks similar 
to the transfer learning approach. After training, one twin 
is  used  as  a  feature  extractor  for  the  one-layer  MLP, 
which acts as a classifier.  While the training weights of 
the  feature  extractor  are  frozen,  the resulting  network  is 
trained  with  Adam’s  optimizer  [55]  and  the  categorical 
cross-entropy  loss  function.  For  most  elements,  this  ap-
proach  achieves  an  accuracy  equal  to  or  better  than  the 
accuracy of GB. 

 
Fig. 4. Siamese network architecture 

1.4. General pipeline 

Our approach to heavy metal contamination modeling 
can  be  presented  in  a  series  of  steps.  The  first  is  data 
preparation.  It  is  necessary  to  calculate  indices  for sam-
pling  sites  where  in  situ  measurements  are  carried  out. 
Then, through all the indices, those with a good connec-
tion with HMs should be selected. It is better to use only 
noncollinear  indices  with  sufficient  correlation with real 
measurements. We heuristically determine 0.35 as a cor-
relation level for our task. After that, indices for modeling 
grid nodes with the required spatial resolution should be 
calculated. We calculate indices for different periods 
(2019  and 2020).  At  the  end  of  this phase,  we have  the 

training data and data necessary for prediction. The sec-
ond step is the search for the best model. We have some 
scripts  that  automatically  run  tests.  All  we  have  to  pro-
vide to them is the training data, and as a result, we have 
all accuracy metrics for each model. In our research, we 
only  fine-tune  the  models  at  the  beginning.  Fine-tuning 
the model for each element can have a positive influence 
on the accuracy, but to get the unified solution, we do it 
only  once  and  then  use  the  established  parameters.  The 
third step is the evaluation of the model and the interpre-
tation of the prediction. Even for models with high accu-
racy, the prediction is not always invariant and may differ 
in some areas. We use our best judgment to select plausi-
ble  models  through  all  candidate  models.  Finally,  if  the 
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results are not satisfactory, we can repeat all the previous 
steps  with  needed  corrections.  The  model  is  accepted  if 
the results are satisfactory. In our case, we use the models 
to get a prediction for the area with a high spatial resolu-
tion for 2019 and 2020. 

2. Results and discussion 

The indices are gathered for data from 13 collections 
of 281 sampling sites. Their linkage with the concentra-
tion  of  18  heavy  metals  is  verified.  We  test  two  ap-
proaches to creating a training dataset. In the first one, we 
pass a feature vector with only pre-selected noncollinear 
indices with sufficient Spearman or Pierson correlations. 
In the second approach, we pass all indices. In our previ-
ous research, the best results were obtained when we used 
8 or more noncollinear indices along with concentration 
as training data. This is not an obligatory requirement as 
there  may  be  indirect  connections,  but  the  presence  of 
such indices can be an indicator of successful modeling. 
Currently, all HMs have indices with sufficient Spearman 
or Pierson correlations, but only 9 of them have 8 or more 
noncollinear indices: Al, Fe, Sb, Na, Sc, Sm, Tb, Th, and 

U. We focus on these elements as they seem to be highly 
promising for modeling.  

The selected indices are prepared for Al, Fe, and Sb. 
They are of particular interest for experts in air pollution 
monitoring. The experts in our case are three specialists 
from  the  Frank  Laboratory  of  Neutron  Physics  (JINR), 
with great experience in air pollution monitoring in Rus-
sia and Europe. The selected indices and their correlation 
for Al, Sb and Fe are presented in App. 2. 

Twelve  training  datasets  (3  with  the  selected  indi-
ces,  and  9  with  all  indices)  are  compiled.  After  that, 
we prepare indices for a prediction of 3.000 grid nodes 
on an area of 500 km 2 in the Central Russia region for 
2019  and  2020.  Indices  for  12.100  grid  nodes  in  the 
same  area  are  also  computed  to  provide  detailed  in-
formation about zones of interest. GB, MLP, and SNN 
models are then trained on the data. For all models, we 
use  the  80/20  train  /test  split.  Tab. 1  gives  the  mean 
accuracies for 10 runs of Al, Sb, and Fe models, 
trained on the selected indices and all indices, respec-
tively, except for those of Na, Sc, Sm, Tb, W, Th, and 
U models, trained on all indices. 

Tab. 1. Mean accuracy of the models. GB is gradient boosting. MLP is the multilayer perceptron. SNN is the Siamese neural 
network. Acc Si is the accuracy on the selected indices. Acc Al is the accuracy on all indices  

 
Al Fe Sb Na Sc Sm Tb Th U 

Acc si Acc ai Acc si Acc ai Acc si Acc ai Acc si Acc si Acc si Acc si Acc si Acc si 

GB 0.91 0.92 0.92 0.93 0.94 0.94 0.94 0.93 0.92 0.93 0.93 0.92 

MLP 0.89 0.91 0.92 0.92 0.89 0.92 0.92 0.92 0.92 0.92 0.91 0.90 

SNN 0.92 0.93 0.93 0.93 0.93 0.94 0.93 0.94 0.93 0.93 0.93 0.93 
 

SNN training has two parts. First, we train the Siamese 
network on pairs of samples. The mean accuracy of simi-
larity determination for Al, Sb, and Fe on the selected indi-
ces amounts to 0.86, 0.84, and 0.85, respectively. It shows 
that the network is good at comparing objects of different 
classes. Then we use one of the trained twins with the fro-
zen weights as a feature extractor and the one-layer percep-
tron  as  a  classifier.  The  analysis  of  the  confusion  matrix 
shows that in most cases the models flounder on low-level 

contamination classes. Training on all indices shows slight-
ly better accuracy and simplifies the process. It is good for 
universality; we do not need to specifically search for non-
collinear indices with a sufficient connection with contam-
ination. After expert verification, it turns out that the pre-
diction of such a model is less plausible than the prediction 
of  the  model  trained  on  the  selected  indices.  Fig. 5  illus-
trates  an  example  of  the  output  of  SNN  models  for  Sb 
trained on the selected (B) and all (C) indices. 

 
Fig. 5. Sb contamination in the Central Russia region in 2019. A shows the in situ data. B shows the output of the SNN model trained 

on the selected indices. C shows the output of the SNN model trained on all indices 
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In  Fig. 5С,  one  can  see  clusters  of  yellow  and  red 
points  at  the  bottom  and  in  the  top  right  corner  of  the 
map. It is known that the contamination level is not high 
over  these  areas,  while  the  contamination  level  near  the 
border of the Moscow region is moderate. 

The  models  trained  on  all  indices  are  likely  to  be 
more  imbalanced  since  some  collinear  indices  dominate 
the others. Such a situation is observed for GB, but also 
affects MLP and SNN models. The accuracy of the mod-
els trained on all data for Na, Sc, Sm, Tb, Th, and U leads 
to  a  reasonable  expectation  of  good  results,  as  obtained 
for them with the selected indices. The process of index 
selection can be automated for ease of working. Since we 
have  resource  limitations,  we  focus  only  on  the  models 
trained on the selected indices for Al, Sb, and Fe. 

All  the  models  show  good  accuracy,  and  we  have  to 
identify some way to find the best one. We cannot rely on-
ly on statistical metrics, as the prediction results can vary 
from  run  to  run  because  of  random  selection  in  train-test 
splits. GB is less vulnerable from this point of view than 
the  MLP  and  SNN  due  to  fewer  stochastic  processes  in 
training procedures. Models equal to statistical parameters 
can  show  different  results  in  some  regions.  Here,  while 
general tendencies will be the same, details can vary.  

As the next level of model verification, a comparison of 
some  hot  spots  is  proposed.  The  experts  specify  six-ten 
points  for  each  element  on  the  map  where  contamination 
cannot be higher or lower than certain specified levels. For 
example, we have one of 3.000 points in the southern part of 
Yaroslavl. There  is a working oil refinery here,  and  there-

fore, we can infer that the contamination level at this point 
cannot  be  too  low.  The  same  principle  applies  to  huge 
transport nodes. Conversely, contamination in national parks 
or forest reserves cannot be too high. After determining the 
hot-spot list, a cycle procedure of model retraining is run. On 
each  iteration, we  make  a prediction  and  check  if  the pre-
dicted values in the hot spots are consistent with the expecta-
tions. Several validated models are selected for further anal-
ysis. A blind test is used; therefore, the experts do not know 
about the model used to make a prediction. Twelve Sb con-
tamination maps are passed to the experts; 4 maps for each 
approach, namely, GB, MLP, SNN. Based on their experi-
ence, the experts rank the models using their judgment. Un-
fortunately,  we  cannot  determine  the  best  modeling  ap-
proach, as representatives of each of them appear at the top 
of the list. We can only confirm that MLP models appear at 
the top of the list less often, neural model prediction is less 
positive than GB, and it takes fewer iterations to get a pre-
diction that fits the hot-spot check with neural models.  

The best model can only be identified by collecting and 
examining samples on modeled grid points. Unfortunately, 
we cannot conduct such a kind of research. We try to solve 
the task by using a model trained on the Vladimir and Yaro-
slavl  data  to  predict  contamination  in  the  Moscow  region. 
This  idea  also  does  not  work  as  GB,  the  MLP  and  SNN 
show a fairly comparable accuracy ranging from 54 to 58 %. 
We believe it is a good result, given the huge difference in 
contamination levels in the regions. Since we cannot identify 
the best model, we choose to present the outputs of all the 
three models and in situ data in Fig. 6. 

 
Fig. 6. Sb contamination in the Central Russia region in 2019. A shows the in situ data, B shows the GB prediction, C shows the 

MLP prediction, D shows the SNN prediction 
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Considering that we have limitations in the volume of 
the research, we focus only on the SNN model, as we tru-
ly  believe  in  the  potential  of  this  approach.  To  demon-
strate the abilities of our method, we use the best model 
to  get  a  prediction  on  the  indices  calculated  for  12.100 
grid nodes to obtain detailed information on the Central 
Russia region (Fig. 7). 

Moscow is densely populated, and its population grows 
fast. Published information reveals, there are about 12.5 mil-
lion habitants in Moscow. Therefore, the Sb contamination 
level there is bound to be very high. The map also displays 
clusters  of  hot  spots  in  large  cities,  such  as  Tula,  Kaluga, 
Vladimir, Tver, Nizhny Novgorod, Yaroslavl, etc. It is also 

seen  that  from  Sergiyev  Posad  to  the  north  direction,  the 
contamination  level  is  rather  low,  except  for  Yaroslavl, 
where the already mentioned working oil refinery is located.  

The Tula region stands out on the map. There is a lot 
of industry located in the region, i.e., chemical, metallur-
gical,  and  machine-building, in  addition  to several  large 
thermal  power  plants.  In  terms  of  the  concentration  of 
such enterprises per unit area, the Tula region is second 
only  to  the  Moscow  region.  Huge  transport  nodes  and 
federal freeways are seen, rather clearly, on the map. 

As  an  experiment,  we  use  the  SNN  model  to  get  a 
prediction for Sb contamination of 2020 and compare it 
with the 2019 results (Fig. 8). 

 
Fig. 7. High spatial resolution of the SNN model prediction of Sb contamination 

 
Fig. 8. Sb contamination prediction of the SNN model for 2019 (left) and 2020 (right) 
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The lockdown in Russia, which lasted approximately 
1.5  months,  imposed  different  limitations.  Most  of  the 
limitations restricted the movement activities of the popu-
lation.  According  to  the  official  statistics,  by  the  end  of 
2020, industrial production in Russia decreased by 2.9  % 
from  the  past.  While  there  is  a  general  decrease  in  the 
contamination level, high levels persist in areas with ac-
tive  production  or  high  population  density.  The  excep-
tions  to  the  general  decrease  in  contamination  are  areas 
near Nizhny Novgorod and Arzamas. A plausible expla-
nation  for  this  is  that  the  Nizhny  Novgorod  region  is  a 
well-known place for attracting tourists. In 2020, this re-
gion appeared at the top of the list of destinations attract-
ing tourists from different regions. Arzamas – Diveevo – 
Sarov is a well-known tourist pilgrimage route.  

Contrary  to  the  general  decrease  in  contamination, 
there  is  an  increase  in  contamination  in  the  Lipetsk  re-

gion. We have no reasonable explanation and cannot find 
any clue in the official records. Probably it is a model er-
ror,  but  we  cannot  ignore  a  real  increase  in  contamina-
tion. Proceeding further, it would be appropriate to ana-
lyze changes in the correlation of indices with HMs from 
year to year to select the best indices. Unfortunately, ICP 
Vegetation surveys are held only once in five years. We 
only have information on the Moscow and Tver regions 
for 2014 – 2015, however, as some satellite programs had 
not  started  by  that  time,  the  information  available  is  in-
complete. We believe that the best practice for future re-
search is annual sampling and the determination of satel-
lite  indices,  which  continue  to  have  a  good  connection 
with  contamination  over  the  years.  As  a  next  step,  to 
show  the  applicability  of  the  suggested  approach,  the 
SNN  model  is  trained  to  get  a  prediction  for  2019  and 
2020 for Al (Fig. 9) and Fe.  

 
Fig. 9. Al contamination in the Central Russia region. A shows the in situ data. B shows the output of the SNN model trained on the 

selected indices for 2019. C shows the output of the SNN model for 2020 

In  developed  societies,  aluminum  is  the  most  widely 
used metal after steel and its derivatives. After steel, alu-
minum is the most produced metal, and the most produced 
non-ferrous  metal  [56].  Al  contamination  is  mostly  con-
nected  with  production  and  less  related  to  traffic  [57]. 
There is some decrease in contamination in the model pre-
diction for 2020. However, in most hot spots close to Al-
production factories, the contamination level stays high.  

Iron is an essential element in the blood pigment that 
helps transport oxygen to all parts of the body; however, 

its excessive intake poses a risk to human health [58]. Fe 
contamination  is  associated  with  production  or  natural 
sources [59, 60]. Thus, like Al, Fe is a good candidate for 
research. 

There is no significant decrease in contamination in 
the model prediction for 2020 (Fig. 10). One can even 
see some concentration of contamination around Mos-
cow.  The  lockdown  did  not  affect  Fe-industrial  pro-
cesses as significantly as the traffic activity represent-
ed by Sb. 

 
Fig. 10. Fe contamination in the Central Russia region in 2019. A shows the in situ data. B shows the output of the SNN model 

trained on the selected indices for 2019. C shows the output of the SNN model for 2020 
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3. Discussion 

Obviously, it is better to have a sample grid covering 
all areas of interest, to execute sampling every year, and 
have  enough  samples  to  split  data  for  training,  testing, 
and validation. However, even with the limits in training 
data, we try to show the advantages and prospects of us-
ing satellite data together with machine learning for HM 
contamination  prediction.  With  the  help  of  the  method, 
we can monitor and evaluate the situation when needed, 
get detailed information about areas of interest, check the 
situation  in  the  areas  where  sampling  is  forbidden,  and 
partly automate the environment control process. 

Unfortunately,  we  cannot  determine  which  architec-
ture  (GB,  MLP,  or  SNN)  is  better  for  this.  We  believe 
that the Siamese network is more versatile as there is a lot 
of direction for evaluation. In our future research, we are 
going to examine other loss functions and training proce-
dures. We see the direction of future research in the im-
provement  of  calculation  techniques  of  satellite  indices, 
the examination of new modeling approaches, and the ex-
tension and automation of our pipeline.  

Modern satellite programs such as Sentinel-5 provide 
a great deal of data. A high-resolution spectrometer 
onboard Sentinel-5 operates in the ultraviolet to 
shortwave infrared range with 7 different spectral bands 
ranging  from  270  to  2,385 nm.  We  believe  that  data  of 
such  programs,  together  with  an  advanced  neural  archi-
tecture, can broaden the horizon of environmental moni-
toring and contribute to improving the environmental per-
formance in the world. 

Nevertheless, satellite programs are not the only pos-
sible source of additional data. Meteorological and topo-
logical  data  can  also  be  used  for  modeling.  We  believe 
that  many  interesting  results  can  be  obtained  using  Big 
Data technologies, and the further identification of poten-
tial contamination sources can seriously improve the ac-
curacy of models.  

Conclusion 

The  models  for  air  contamination  by  heavy  metals 
were  designed  using  in  situ  data  and  satellite  imagery. 
The concentrations of elements from 281 samples of nat-
urally  growing  mosses,  chosen  in  the  Vladimir,  Yaro-
slavl,  and  Moscow  regions,  were  used  as  training  data. 
Indices  from  satellite  images  gathered  by  the  Google 
Earth  Engine  platform,  which  represent  summarized  in-
formation  about  sampling  sites,  were  used  as  additional 
data  for  training.  We  focused  on  the  classification  task 
with 8 levels of contamination and used balancing tech-
niques  to  extend  the  training  data.  Gradient  boosting, 
Multi-layer  perceptron,  and  Siamese  neural  network  ap-
proaches were examined. Any of the approaches could be 
called better than the other two. The median accuracy of 
the models for 9 heavy metals (Al, Fe, Sb, Na, Sc, Sm, 
Tb, Th, U) exceeded 89  %. Al, Fe, and Sb contamination 
of 3,000 and 12,100 grid nodes on a 500 km 2 area in the 

Central  Russia  region  for  2019  and  2020  was  modeled. 
The output model was accepted by scientists involved in 
ecology monitoring over Central Russia. The potential of 
using satellite data together with machine learning to pre-
dict contamination was demonstrated. 
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Appendix 1 

Tab. 1. List of the used collections 

1 Name: USGS Landsat 7 Collection 1 Tier 1 Raw Scenes 
Description: Landsat 7 Collection 1 Tier 1 DN values, representing scaled, calibrated at-sensor radiance. 
Spatial resolution: 15 – 60 m 
Number of meaningful bands (channels): 9 

2 Name: USGS Landsat 8 Collection 1 Tier 1 Raw Scenes 
Description: Landsat 8 Collection 1 Tier 1 DN values, representing scaled, calibrated at-sensor radiance. 
Spatial resolution: 15 – 30 m 
Number of meaningful bands: 11 

3 Name: MOD11A2.006 Terra Land Surface Temperature and Emissivity 8-Day Global 1km 
Description: The MOD11A2 V6 product provides an average 8-day land surface temperature (LST) in a 1200 x 1200 kilo-
meter grid. Each pixel value in MOD11A2 is a simple average of all the corresponding MOD11A1 LST pixels collected 
within this 8-day period. 
Spatial resolution: 1000 m 
Number of meaningful bands: 2 

4 Name: VIIRS Stray Light Corrected Nighttime Day/Night Band Composites Version 1 
 Description: Monthly average radiance composite images using nighttime data from the Visible Infrared Imaging Radiome-
ter Suite (VIIRS) Day/ Night Band (DNB). 
Spatial resolution: 463 m 
Number of meaningful bands: 1 

5 Name: PROBA-V C1 Top Of Canopy Daily Synthesis 333m 
 Description: Proba-V is a satellite mission tasked to map land cover and vegetation growth. It was designed to provide con-
tinuity for the VGT optical instrument from the SPOT-4 and SPOT-5 missions. 
Spatial resolution: 333 m 
Number of meaningful bands: 5 
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 Tab. 1. List of the used collections (continuation) 

6 Name: TerraClimate: Monthly Climate and Climatic Water Balance for Global Terrestrial Surfaces, University of Idaho 
 Description: TerraClimate is a dataset of monthly climate and climatic water balance for global terrestrial surfaces. It uses 
climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with 
coarser spatial resolution, but time-varying data from CRU Ts4.0 and the Japanese 55-year Reanalysis (JRA55). 
Spatial resolution: 4638 m 
Number of meaningful bands: 12 

7 Name: MOD09A1.006 Terra Surface Reflectance 8-Day Global 500m 
 Description: The MOD09A1 V6 product provides an estimate of the surface spectral reflectance of Terra MODIS bands 1-
7 at 500m resolution, which is corrected for atmospheric conditions such as gasses, aerosols, and Rayleigh scattering.  
Spatial resolution: 500 m 
Number of meaningful bands: 7 

8 Name: NOAA CDR AVHRR: Surface Reflectance, Version 5 
 Description: The NOAA Climate Data Record (CDR) of AVHRR Surface Reflectance contains gridded daily surface re-
flectance  and  brightness  temperatures  derived  from  Advanced  Very  High  Resolution  Radiometer  (AVHRR)  sensors 
onboard seven NOAA polar orbiting satellites. The data are gridded at a resolution of 0.05° and computed globally over 
land surfaces. 
Spatial resolution: 5566 m 
Number of meaningful bands: 6 

9 Name: MOD13A1.006 Terra Vegetation Indices 16-Day Global 500m 
 Description: The MOD13A1 V6 product provides the Vegetation Index (VI) value at a per pixel basis. 
Spatial resolution: 500 m 
Number of meaningful bands: 2 

10 Name: Sentinel-2 MSI: MultiSpectral Instrument, Level-1C 
 Description: Sentinel-2 is a wide-swath, high-resolution, multi-spectral imaging mission supporting Copernicus Land Mon-
itoring studies, including the monitoring of vegetation, soil and water cover, as well as the observation of inland waterways 
and coastal areas. 
Spatial resolution: 10 – 60 m 
Number of meaningful bands: 13 

11 Name: Sentinel-5P OFFL CO: Offline Carbon Monoxide 
 Description: This dataset provides offline high-resolution imagery of CO concentrations. 
Spatial resolution: 1113 m 
Number of meaningful bands: 2 

12 Name: Sentinel-5P OFFL NO2: Offline Nitrogen Dioxide 
 Description: This dataset provides offline high-resolution imagery of NO2 concentrations. 
Spatial resolution: 1113 m 
Number of meaningful bands: 6 

13 Name: Sentinel-5P OFFL AER AI: Offline UV Aerosol Index 
 Description: This dataset provides offline high-resolution imagery of the UV Aerosol Index (UVAI), also called the Ab-
sorbing Aerosol Index (AAI). 
Spatial resolution: 1113 m 
Number of meaningful bands: 1 

Appendix 2  

Tab. 1. Indices selected for contamination and their connection with AL concentrations at sampling sites 
(rs – Spearman correlation coefficient, rp – Pearson correlation coefficient) 

Collection Band Area 
All regions Moscow r. Yaroslavl r. Vladimir r. 

rs rp rs rp rs rp rs rp 

USGS Landsat 7 Collec-
tion 1 Tier 1 Raw  

B7 
(2.08 – 2.35 µm) 

4 km2 0.39 0.33 0.2 0.21 0.3 0.26 0.26 0.16 

VIIRS Stray Light Cor-
rected Nighttime 

Day/Night Band Comp. 
avg_rad 4 km2 0.48 0.32 0.33 0.24 0.48 0.44 0.18 0.06 

PROBA-V C1 Top Of 
Canopy Daily Synthesis  

SWIR 
(1610 nm, FWHM: 89 nm) 

4 km2 0.4 0.33 0.3 0.15 0.21 0.15 0.32 0.28 

TerraClimate: Monthly 
Climate and Climatic Wa-

ter Balance  
srad 4 km2 0.36 0.36 0.34 0.34 0.15 0.08 – 0.14 – 0.26 

MOD09A1.006 Terra Sur-
face Reflectance 8-Day 

Global 500m 

sur_refl_b03 
(459 – 479 nm) 

4 km2 0.42 0.32 0.24 0.16 0.18 0.3 0.43 0.37 
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Tab. 1. Indices selected for contamination and their connection with AL concentrations at sampling sites 
(rs – Spearman correlation coefficient, rp – Pearson correlation coefficient) (continuation) 

Collection Band Area 
All regions Moscow r. Yaroslavl r. Vladimir r. 

rs rp rs rp rs rp rs rp 

NOAA CDR AVHRR: 
Surface Reflectance V. 5 

SREFL_CH2 
(860 nm) 

4 km2 0.47 0.43 0.25 0.26 0.29 0.28 0.18 0.46 

MOD13A1.006 Terra 
Vegetation Indices 16-Day 

Global 500m 
NDVI 4 km2 – 0.43  – 0.41 – 0.26 – 0.29 – 0.25 – 0.26 – 0.19 – 0.29 

Sentinel-2 MSI: Multi-
Spectral Inst., L 1C 

B10 
(1373.5 – 1376.9 nm) 

4 km2 0.39 0.34 0.31 0.18 0.12 0.17 0.14 0.16 

Sentinel-5P OFFL CO: 
Offline Carbon Monox. 

CO_column 
number_density 

1 km2 0.44 0.37 0.15 0.17 0.35 0.39 – 0.2 – 0.2 

Sentinel-5P OFFL NO2: 
Offline Nitrogen Diox. 

NO2_column 
number_density 

1 km2 0.52 0.54 0.46 0.49 0.34 0.39 0.23 0.12 

Sentinel-5P OFFL NO2: 
Offline Nitrogen Diox. 

Absorbing aerosol 
index 

1 km2 – 0.4 – 0.31 – 0.28 – 0.11 0.19 0.13 0.14 0.25 

Tab. 2. Indices selected for contamination and their connection with Sb concentrations at sampling sites 
 (rs – Spearman correlation coefficient, rp – Pearson correlation coefficient) 

Collection Band Area 
All regions Moscow r. Yaroslavl r. Vladimir r. 

rs rp rs rp rs rp rs rp 

USGS Landsat 7 Collection 
1 Tier 1 TOA Reflect 

B6_VCID_2 
(10.40 – 12.50 µm) 

4 km2 0.36 0.4 0.38 0.38 0.33 0.36 – 0.13 0.14 

VIIRS Stray Light Correct-
ed Nighttime Day/Night 

Band Comp. 
avg_rad 4 km2 0.6 0.45 0.57 0.41 0.55 0.45 0.38 0.17 

MOD11A2.006 Terra Land 
Surface Temperature and 

Emissivity  
LST_Night_1 km 4 km2 0.41 0.39 0.46 0.38 0.2 0.25 0.19 0.13 

TerraClimate: Monthly 
Climate and Climatic Water 

Balance 
srad 4 km2 0.39 0.37 0.5 0.41 – 0.25 – 0.26 – 0.32 – 0.38 

MOD09A1.006 Terra Sur-
face Reflectance 8-Day 

Global 500m 

sur_refl_b03 
(459 – 479 nm) 

4 km2 0.38 0.32 0.25 0.29 0.29 0.39 0.52 0.44 

NOAA CDR AVHRR: Sur-
face Reflectance V5 

SREFL_CH2 
(860 nm) 

4 km2 0.43 0.45 0.27 0.34 0.26 0.29 0.32 0.51 

MOD13A1.006 Terra Vege-
tation Indices 16-Day Glob-

al 500m 
NDVI 4 km2 – 0.41  – 0.43 – 0.33 – 0.36 – 0.14 – 0.23 – 0.25 – 0.31 

Sentinel-5P OFFL CO: Of-
fline Carbon Monox. 

SO2_column 
number density_amf 

1 km2 0.48 0.46 – 0.48 – 0.46 0.25 0.19 0.11 0.15 

Sentinel-5P OFFL NO2: 
Offline Nitrogen Diox. 

tropospheric_NO2 
column_number density 

1 km2 0.63 0.71 0.74 0.73 0.4 0.41 0.14 0.19 

Sentinel-5P OFFL NO2: 
Offline Nitrogen Diox. 

Absorbing aerosol 
index 

1 km2 – 0.37  – 0.34 – 0.26 – 0.17 0.15 0.03 0.3 0.31 

Tab.  3. Indices selected for contamination and their connection with Fe concentrations at sampling sites 
(rs – Spearman correlation coefficient, rp – Pearson correlation coefficient) 

Collection Band Area 
All regions Moscow r. Yaroslavl r. Vladimir r. 

rs rp rs rp rs rp rs rp 

USGS Landsat 7 Collec-
tion 1 Tier 1 TOA Re-

flectance 

B6_VCID_2 
(10.40 – 12.50 µm) 

4 km2 0.36 0.4 0.38 0.38 0.33 0.36 – 0.13 0.14 

VIIRS Stray Light Cor-
rected Nighttime 

Day/Night Band Comp 
avg_rad 4 km2 0.6 0.45 0.57 0.41 0.55 0.45 0.38 0.17 
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Tab.  3. Indices selected for contamination and their connection with Fe concentrations at sampling sites 
(rs – Spearman correlation coefficient, rp – Pearson correlation coefficient) (continuation) 

Collection Band Area 

All regions Moscow r. Yaroslavl r. Vladimir r. 

rs rp rs rp rs rp rs rp 

MOD11A2.006 Terra 
Land Surface Tempera-

ture and Emissivity  
LST_Night_1 km 4 km2 0.41 0.39 0.46 0.38 0.2 0.25 0.19 0.13 

TerraClimate: Monthly 
Climate and Climatic 

Water Balance 
srad 4 km2 0.39 0.37 0.5 0.41 – 0.25 – 0.26 – 0.32 – 0.38 

MOD09A1.006 Terra 
Surface Reflectance 8-

Day Global 500m 

sur_refl_b03 
(459 – 479 nm) 

4 km2 0.38 0.32 0.25 0.29 0.29 0.39 0.52 0.44 

NOAA CDR AVHRR: 
Surface Reflectance V5 

SREFL_CH2 
(860 nm) 

4 km2 0.43 0.45 0.27 0.34 0.26 0.29 0.32 0.51 

MOD13A1.006 Terra 
Vegetation Indices 16-

Day Global 500m 
NDVI 4 km2 – 0.41 – 0.43 – 0.33 – 0.36 – 0.14 – 0.23 – 0.25 – 0.31 

Sentinel-5P OFFL CO: 
Offline Carbon Monox-

ide 

SO2_column 
number density_amf 

1 km2 0.48 0.46 – 0.48 – 0.46 0.25 0.19 0.11 0.15 

Sentinel-5P OFFL NO2: 
Offline Nitrogen Diox-

ide 

tropospheric_NO2 
column_number density 

1 km2 0.63 0.71 0.74 0.73 0.4 0.41 0.14 0.19 

Sentinel-5P OFFL NO2: 
Offline Nitrogen Diox-

ide 

Absorbing aerosol 
index 

1 km2 – 0.37 – 0.34 – 0.26 – 0.17 0.15 0.03 0.3 0.31 
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