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Abstract 

Videoendoscopic and tomographic research are the two leading medical imaging solutions for 
detecting, classifying and characterizing a wide array of pathologies and conditions. However, 
source information from these types of research is very different, making it hard to cross-correlate 
them. The paper proposes a novel algorithm for combining results of videoendoscopic and tomo-
graphic imaging data based on 3D surface reconstruction methods. This approach allows to align 
separate parts of two input 3D surfaces: surface obtained by applying bundle adjustment-based 3D 
surface reconstruction algorithm to the endoscopic video sequence, and surface reconstructed di-
rectly from separate tomographic cross-section slice projections with regular density. Proposed 
alignment method is based on using local feature extractor and descriptor algorithms by applying 
them to the source surface normal maps. This alignment allows both surfaces to be equalized and 
normalized relative to each other. Results show that such an adjustment allows to reduce noise, 
correct reconstruction artifacts and errors, increase representative quality of the resulting model 
and establish correctness of the reconstruction for hyperparameter tuning. 
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Introduction 

Videoendoscopic research and tomographic imaging 
techniques are two of the most important and widespread 
methods for diagnosing and treating a wide array of con-
ditions. While these two imaging techniques are different 
in both base physical principle of image acquisition and 
in the representation of their results, combining the two 
forms a unique challenge and opportunity of providing 
new types of visual representations that can be used to 
enhance the diagnostics process. One of the specific di-
agnostic areas that could benefit from such an approach is 
gastrointestinal tract imaging, which is used to detect, di-
agnose, classify and plan treatment of numerous patholo-
gies, most notable adenomas and other types of growths 
which may pose a risk of developing cancer. 

Cancer is currently the second leading cause of death 
globally – about 1 in 6 deaths occur due to cancer, ac-
cording to the 2020 report of World Health Organization. 
Gastrointestinal cancer (including colon, rectum intestine, 
stomach and other gastrointestinal tract organs) makes up 
one of the largest cancer danger groups, mostly because it 
may develop without symptoms and can only be observed 
on screening procedures [1]. Both videoendoscopic re-
search and tomographic imaging are the most prominent 
tools in early detection, diagnosis and treatment of these 
types of cancer. 

These two research methods are not mutually exclu-
sive; in fact, both methods have their own advantages and 

disadvantages, and for situations where maximum 
amount of information is required about specific case (i.e. 
about any kind of object of interest found during screen-
ing), it is very likely that both these methods need to be 
employed complementary. Therefore, algorithms for 
combining videoendoscopic research data with tomo-
graphic imaging results can be used to provide a compo-
site 3D model representation.  

This paper presents a combined algorithm for building 
3D surface representations of specific areas of interest 
based on both videoendoscopic data and tomography da-
ta, where tomography-based surface is used as a reference 
for geometric structure of the area, while videoendoscop-
ic reconstruction results are adjusted towards this refer-
ence structure in order to correct reconstruction artifacts 
and errors. The resulting model is therefore more repre-
sentative of the area as a whole, combining both visual 
representation obtained by videoendoscopic research and 
spatial representation obtained by tomography. 

1. 3D reconstruction from videoendoscopic data 

Videoendoscopic research is one of the most im-
portant in-vivo diagnosis methods that allows for diag-
nosing and treatment of wide array of pathologies, most 
notable potentially oncological objects. 

Videoendoscopes are specialized medical devices for 
visual (i.e. visible-light spectrum) observation of cavities 
in internal organs, often equipped with additional hard-
ware that also allows taking biological samples for re-
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search, injecting various types of drugs, and performing 
different therapeutic and surgical tasks. Modern videoen-
doscopes employ a powerful directed light source (usual-
ly LED-based) that illuminates the area of interest within 
the patient’s body, after which reflected light is captured 
by a digital imaging sensor (CMOS or CCD) on the distal 
end of the endoscope. Captured image is then transmitted 
in digital format using regular wiring in the flexible endo-
scope tube. This signal is later displayed in real-time on 
an external monitor, and is additionally recorded as a vid-
eo sequence [2]. 

The input data that is used for further processing by 
proposed methods and algorithms are represented by vid-
eo sequences captured during the procedure. While some 
of the proposed methods may be used in real time during 
the procedure itself, usually visual analysis is best per-
formed separately, because of the reasonable time con-
straints on endoscopic procedures. Most of the modern 
video endoscopes record full-colored digital images with 
two primary resolutions – High Definition (HD) of 
1280 × 1024 pixels, or High Definition Plus (HD+) of 
1600 × 1200 pixels, with framerate of 25, 30 or 60 Hz. 

Video sequences obtained during videoendoscopic re-
search have a limited representative quality, especially 
when researching a specific area of interest. It is usually 
hard or impossible to perform linear measurements of the 
objects of interest, or observe the larger area than what’s 
directly visible from endoscopic imaging system. One of 
the solutions for this problem is building 3D representa-
tions based on videoendoscopic research data based on 
structure from motion family of algorithms. 

In our research, we perform 3D reconstruction using 
methods previously proposed in [3]. The approach is 
based on wide-angle spherical projection model [4], as 
well as adaptive feature descriptors and detectors [5]. It 
includes the following steps: 

1. Frame extraction, 
2. Frame filtering, 
3. Point matching, 
4. Point match filtering, 
5. Sparse point cloud reconstruction, 
6. Iterative dense point cloud reconstruction, 
7. Polygonal model reconstruction, 
8. Texturing. 

Video frame extraction and filtering is used to estab-
lish a minimum required baseline of projections that will 
be used for further structure from motion reconstruction. 
Using proposed detectors and descriptors, keypoints are 
located and matched across the filtered frames. Since 
some of the keypoint matches may be invalid, they are 
additionally filtered. After that, proposed modified bun-
dle adjustment based on spherical wide-angle projection 
is used in order to build initial sparse point cloud. The 
cloud density is then iteratively increased, repeated until 
the error starts to stably increase across consecutive itera-
tions. After dense point cloud is obtained, polygonal 
model is interpolated using screened Poisson reconstruc-

tion algorithm. Since dense point cloud coordinates on 
the polygonal model can be traced back to specific two-
dimensional image points, it’s possible to use them as 
reference for model texturing by back-projecting image 
pixel colors onto the polygonal model itself, thus estab-
lishing its texture. 

3D reconstruction from videoendoscopic data allows 
to retain the original visual look of the objects of interest. 
This is especially important in diagnosis, since visible pat-
terns of potentially cancerous objects are generally used to 
classify and distinguish between different types of polyps, 
adenomas and other growth kinds (e.g. Kudo’s Pit Pattern 
classification [6]). However, due to specific nature of 
source data for videoendoscopic 3D reconstruction, the re-
sulting representation has numerous disadvantages: 

1. 3D reconstruction based on structure from motion 
algorithms is generally very sensitive to noise; 

2. Texturing the surfaces may produce visual artifacts 
where certain parts of source two-dimensional projec-
tions are stretched or shrunk along a certain direction; 

3. 3D reconstruction in the areas with insufficient spa-
tial information available (i.e. on edges or in areas 
only visible on a small number of frames) will pro-
duce anomalies, “floating” keypoint regions, tear-
ing, gaps, unexpected peaks and other types of spa-
tial artifacts. 

As such, enhancing spatial characteristics of resulting 
models is a very important problem. It should also be 
noted that using heuristic post-processing methods can 
potentially lead to loss of important data, so usefulness of 
artifact correction techniques for such models is limited. 

2. 3D reconstruction from tomographic data 

Medical tomographic data typically refers to visual 
representations obtained using magnet resonance imaging 
and X-ray-based computer tomography techniques. 

Computer tomography (CT) employs X-ray scanning 
to obtain multiple cross-sectional slice projections of the 
human body. Most common scanner construction is spiral 
CT, which uses one or several X-ray tubes and detector 
plates placed on the opposite ends of a rotating mecha-
nism, so that they can be rotated around the central axis 
of the scanned area where patient is placed. X-rays pro-
duced by the tubes travel towards the detector plate and 
are partially absorbed along the way as they encounter 
different kinds of obstacles; moreover, absorption amount 
depends on the density of the substance along the ray 
path. Intensities of the passing X-rays are captured on a 
discrete sensor grid of the detector plate to produce a 
two-dimensional radiographic image. This way, multiple 
radiographic images are obtained during the scan. After 
that, an algorithmic reconstruction method (usually based 
on a combination of Fourier projection-slice theorem and 
one of the algebraic reconstruction techniques) can be 
used to match tube and detector positions for each radio-
graphic image to produce a series of projected rays [7] 
that were used to generate the image and refine them to 
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find out the density of a given point in 3D modelling 
space, usually represented as a voxel grid. 

Magnetic resonance imaging (MRI) tomography is 
based on the principle of nuclear magnetic resonance, 
where subatomic particles with non-zero spin exposed to 
an external magnetic field start to resonate, i.e. precess 
perpendicular the magnetic field direction with frequency 
depending on the field strength. Most commonly, mag-
netic fields in MRI cause resonance on frequencies corre-
sponding to radio wave frequency range. After that, to 
produce a tomographic image, a series of radio frequency 
bursts and magnetic field adjustments are employed. The 
relationship between frequencies of produced bursts, their 
repetition times and particle resonance frequencies allows 
to perform the scan in various modes. Weighting inputs 
from different types of produced signals allows to differ-
entiate between various types of tissue, depending on its 
substance composition. Sensors placed at fixed or rotat-
ing positions allow forming multiple cross-sectional im-
ages, which can be later combined using algebraic recon-
struction methods, two-dimensional and three-
dimensional Fourier transforms and various other algo-
rithms. Similar to CT imaging, the results are usually rep-
resented as 3D voxel grid. 

Voxel grid representation of scanned objects allow to 
produce cross-sectional images along any axis, typically 
along one of the anatomical planes that allows to examine 
different internal areas of human body. 

Numerous techniques exist that allow to perform sur-
face reconstruction based on voxel grid data. These algo-
rithms typically determine the boundaries of the object of 
interest based on the density or composition similarity in 
order to distinguish surface tissue from other areas [7, 8]. 

Representation based on voxel grid also has numerous 
disadvantages: 

1. Some types of tissue could be indistinguishable from 
the surroundings because of the similar density or 
substance composition. The biggest problem among 
these types of tissue are specific kinds of adenomas. 
Detecting these kinds of anomalies using tomograph-
ic scanning is usually impossible without using vari-
ous complex contrasting techniques, whereas video-
endoscopic scan would allow to distinguish them 
based on their color, which isn’t available in tomo-
graphic scan; 

2. The large amount of information produced by a sin-
gle tomographic scan in a voxel grid representation 
can be very hard to analyze. For instance, in typical 
digestive tract screening it is necessary to check for 
adenomas on the inner surface of the tract, which 
would require to form several complex cross-section 
projections with irregular angles to observe at any 
given point; 

3. Whole-body tomographic scans typically tend to 
have lower resolution. This might cause the special-
ists to miss smaller objects that would otherwise be 
clearly visible during videoendoscopic screening. As 

a consequence, even for adenomas detected using 
tomographic scans, the information on them is not 
enough to fully diagnose and plan the treatment – 
usually, in such cases, additional videoendoscopic 
examinations need to be performed in order to classi-
fy the growth based on its visible pattern and estab-
lish its spatial parameters. 

3. Combining tomographic and videoendoscopic 3D 
surface reconstruction results 

Typically, the problem of medical 3D reconstruction 
in context of analyzing various internal organs and parts 
of human body is associated with 3D reconstruction 
based on tomographic scans. Indeed, the representation of 
a scanned object as a voxel grid allows to produce cross-
sectional images and not only observe the external 
boundaries of a certain area of interest, but also evaluate 
its internal composition. On the other hand, this kind of 
representation also has various disadvantages. 

Videoendoscopic imaging is generally completely dif-
ferent from tomographic, because the representations ob-
tained by video endoscope correspond to visible spectrum 
examination of the surfaces of internal organs, presented 
as a sequence (video) of wide-angle full-color images. 
This kind of representation generally tends to be much 
easier to interpret and understand by medical specialists 
than tomographic scan projections and cross-sections. 
Moreover, in gastrointestinal tract diagnosis a single vid-
eoendoscopic screening allows to observe the entire inner 
surface of the tract in one go, with high enough spatial 
resolution to detect and analyze various objects of inter-
est, while controlled nature of the screening allows the 
specialist to focus on specific areas in order to obtain a 
more complete view of their surroundings. However, it is 
an invasive procedure with more complex time limits and 
constraints, and the representations obtained by videoen-
doscopic scans are limited to cavities that can be reached 
by the endoscope. 

As such, there is no general approach for combining 
these two types of input data. Most of the existing re-
search papers on the topic of combining and adjusting 
various 3D representation types do not consider using 3D 
models obtained by visual spatial reconstruction from en-
doscopic data [9, 10], instead focusing mostly on working 
with more streamlined CT and MRI 3D imaging data. 
Moreover, 3D reconstruction from monocular endoscopic 
visual representation is a relatively novel approach [3, 4, 
11], so combining it with other types of research is a 
promising way of increasing visual quality and spatial ac-
curacy of the resulting model. 

A proposed solution is performing 3D reconstruction 
from videoendoscopic data in order to obtain a 3D model 
that can be later traced and cross-correlated with specific 
points in tomographic modeling space. However, this is 
not something that can be performed directly, since sur-
face reconstruction based on videoendoscopic data pro-
duces a surface which needs to be matched against specif-
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ic parts of cross-sectional projection from the tomograph-
ic voxel grid. In order to perform the match, 3D surface 
generation must be used in order to transform voxel-
based representation of the object into a parametric sur-
face that can be later matched against the results of vide-
oendoscopic image 3D reconstruction [12]. 

The general schema of base image acquisition model 
is presented in fig. 1. 

 
Fig. 1. Combined tomographic and videoendoscopic image 

acquisition model 

Cross-sectional tomographic images are reconstructed 
into a voxel grid. After that, surface reconstruction algo-
rithms are used to determine the boundaries of object of 
interest based on the density or composition similarity in 
order to distinguish surface tissue from other areas. This 
produces a reconstructed 3D surface of object of interest.  

Likewise, videoendoscopic image frames are recon-
structed based on the algorithms discussed earlier to cre-
ate sparse and dense 3D point clouds, and then use point 
clouds as references to backproject image data onto the 
modelling space and reconstruct a continuous 3D surface. 

After both 3D surfaces are obtained, point matching 
can be used in order to establish similar regions across 
the reconstructed surfaces and combine them. The com-
bination can be used to compare one type of reconstruc-
tion against the other, using it as baseline reference, or in 
order to normalize artifacts and anomalies across both 
surfaces to produce a combined refined result. 

The key stage of the proposed algorithm is matching 
two surfaces based only on their spatial configuration, 
since color information is unavailable for tomographic 
images. In order to perform this matching, we propose an 
algorithm based on local feature matching across 
smoothed surface normal maps. 

Normal map is a two-dimensional image representa-
tion of any surface, where intensities of a single pixel 
across different color channels correspond to the respec-
tive normal vector to the surface at this point. In other 
words, if normal map is projected towards the surface as 
a texture, each point on the surface of this texture will 
have a three-channel intensity, corresponding to color, 
with one fixed channel (usually blue) where intensity de-
fines a two-coordinate direction vector that would be 
normal (perpendicular) to the represented surface at this 
point. That means that each point of the normal map cor-
responds to a specific surface point in the modelling 

space, while its color corresponds to the curvature of the 
surface at this point. An example of 3D surface recon-
structed from videoendoscopic data and its corresponding 
normal map is presented in fig. 2. The input of the matching 
algorithms are surfaces Sv with normal map N [Sv] obtained 
from videoendoscopic 3D reconstruction, and St with normal 
map N [St] obtained from tomographic imaging. 

(a)  (b)  
Fig. 2. (a) 3D surface model obtained during reconstruction 

from videoendoscopic images; (b) its corresponding  
normal map 

Finer detail on the 3D surface (smaller bumps and 
pits) correspond to high-frequency component on the 
normal map. Because these high-frequency components 
can be introduced by noise or other types of artifacts, it is 
generally preferable to avoid matching across these 
points. For this reason, the first stage of surface alignment 
and matching is smoothing. To perform smoothing, we 
propose using simple two-dimensional Gaussian kernel 
convolution G across both normal maps (G  N [Sv])ij and 
(G  N [St])ij (fig. 3). 

(a)  (b)  
Fig. 3. Gaussian blur applied to normal map to eliminate  

high-frequency components: (a) before smoothing;  
(b) after smoothing 

After normal maps are smoothed, it’s possible to align 
them using local feature matching. We propose to use the 
same adaptive circumference-based keypoint algorithms 
that were developed for 3D reconstruction from videoen-
doscopic images [3, 5], with parameters adapted to work-
ing with colored normal maps. Feature extraction and 
matching allows to establish a number of common points 
across both smoothed normal maps, which means that 
these points correspond to the same area of space. This 
can be used to align smoothed normal map obtained by 
3D surface from videoendoscopic reconstruction and 
from tomographic reconstruction. To eliminate false 
matches, we use distance ratio test based on Lowe’s sim-
ulated probability distribution function for potentially in-
correct matches [13] and filter out points that have match-
ing descriptors but greatly differ in geometry. While these 
points might be indicative of actual discrepancies be-
tween the two surfaces that need to be corrected later, it is 
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important not to use them for surface alignment since it 
may lead to errors in refinement later.  

After establishing a number of aligned keypoints 
M  0

 × 0 (where 0
 =   {0}, i.e. a set of non-

negative integers), a homographic projection matrix H is 
calculated to align one normal map respective to the oth-
er, minimizing projection error ije


: 

( , ) : ( [ ]) ( ( [ ]))v ij t ij iji j M G N S H G N S e      


. (1) 

Both of the resulting surfaces are then back-projected 
into 3D modelling space. 

In order to perform artifact correction, a weight coef-
ficient w  [0; 1] is introduced. Each point of the non-
smoothed projected normal map obtained from videoen-
doscopic 3D reconstruction N [Sv] is then adjusted based 
on its difference between non-smoothed aligned tomo-
graphic 3D surface normal map: 

    [ ] [ ] [ ] [ ]v res v ij t v ijij ij
N S N S w H N S N S    . (2) 

Weight coefficient w can be used to adjust the relative 
influence of videoendoscopic and tomographic surface. 
For, videoendoscopic normal maps remain almost un-
changed. For w  1, videoendoscopic normal maps are 
almost completely replaced by normal maps from surface 
obtained using 3D reconstruction from tomography. 

Example of the resulting adjusted surface for different 
values of w are presented in fig. 4. 

(a)  (b)  

(c)  (d)  
Fig. 4. Adjusted videoendoscopic surface for different weight 

values: (a) w = 0, equivalent to videoendoscopic surface model; 
(b) w = 0.3; (c) w = 0.6; (d) w = 0.8 – tearing and artifacts are 

mostly removed, but surface configuration is simplified 

As seen from the fig. 4, weight coefficient needs to be 
carefully considered when performing the process. Lower 
values tend to retain most of the tearing, artifacts and 
high-frequency errors produced by structure from motion 
reconstruction, usually caused by misalignment of one or 
more cameras during the bundle adjustment. On the other 
hand, higher values, while helpful for alleviating artifacts, 
tend to simplify the geometry too much, essentially “flat-
tening” the surfaces and thus making it harder to distin-
guish finer detail. 

The results of 3D reconstruction and its further ad-
justments based on proposed algorithms are intended for 
use by medical endoscopy specialists, and different levels 

of detail and artifact tolerance might be required based on 
specific diagnostic or therapeutic goals. For this reason, it 
is useful to present the results not as a single resulting 
model, but as a range of models for different weight coef-
ficient values, so that medical specialists may choose what 
form of visual representation works best for specific case. 

One open problem of using 3D reconstruction and ad-
justment algorithms is establishing the correctness of the 
results [4, 9]. In traditional photogrammetry-based 3D re-
construction methods, correctness is evaluated by com-
paring it to an existing base; however, establishing a base 
in videoendoscopic imaging is way harder, since direct 
measurements are not possible, and secondary research 
methods usually have lower spatial definition. For this 
reason, correctness and visual quality of the resulting mod-
el are usually evaluated by medical experts. Such an evalu-
ation has an inherent bias since it is highly subjective and 
non-quantifiable. Therefore, researching new ways of con-
firming spatial correctness of the resulting models is an 
important direction of further research on the topic. 

Conclusion 

3D reconstruction techniques provide a unique and 
powerful tool for medical data visualization. While 
tomographic reconstruction methods are generally ac-
cepted as the standard for 3D data representation, 3D re-
construction from video sequences obtained during vide-
oendoscopic research provides a more understandable 
representation. Both of these techniques have their ad-
vantages, disadvantages and usage scenarios, but both 
endoscopic and tomographic research are generally used 
complementary in tandem in order to obtain more infor-
mation about specific regions of interest. 

As such, combining the results of these two types of 
3D reconstruction helps alleviate some of the shortcom-
ings of each method by creating a geometrically and spa-
tially correct representation of objects of interest, as guar-
anteed by tomography, while preserving finer detail and 
visible-spectrum overview of the areas provided by video 
endoscopy, as well as correcting spatial artifacts intro-
duced by reconstruction based on structure from motion 
family of algorithms. 

A method proposed in this paper is based on aligning 
the surfaces based on local feature descriptor matching 
across their two-dimensional normal map representations. 
After the surfaces are aligned, it is possible to adjust both 
surfaces to incorporate spatial data of tomographic recon-
struction with finer detail and visible texturing of video-
endoscopic reconstruction. This provides a unique type of 
visualization that can be helpful in analyzing and diag-
nosing various types of objects observed during videoen-
doscopic screening and tomographic scanning.  
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