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Abstract  Öz 

Wastes with high metal content are an important secondary source. 
Utilisation of these wastes is important offering environmental and 
economic advantages as well as the conservation of natural resources. 
Due to the widespread use of portable electrical and electronic devices 
(mobile phones, laptops, video cameras, etc.) and electric cars, the 
consumption of lithium and cobalt, which are used as main components 
in lithium-ion batteries/batteries (LIB), has increased. Because LIBs 
contain lithium (1.5-7%), cobalt (5-20%), manganese (15-20%), copper 
(8-10%), aluminium (5-8%), and nickel (5-10%), they are considered as 
an important secondary source. Industrially, mechanical pretreatment, 
pyrometallurgical and hydrometallurgical methods as alone or in 
combination are used to recover metals from waste LIBs. After 
mechanical pretreatment and physical separation processes, 
hydrometallurgical methods, including solution purification, 
precipitation and solvent extraction methods, are used after leaching 
with inorganic such as H2SO4, HCI and HNO3 or organic acids. In this 
study, processes for recovery of metals from LIBs are discussed with a 
critical review of studies carried out on this. In addition, flowsheets of 
industrial applications for lithium/cobalt recovery in the world are 
presented. 

 Yüksek metal içeriklerine sahip olan atıklar önemli bir ikincil kaynak 
konumundadırlar. Bu atıkların değerlendirilmesi, çevresel ve ekonomik 
avantajlarının yanı sıra doğal kaynakların korunması açısından da 
önemlidir. Taşınabilir elektrikli ve elektronik cihazların (cep telefonları, 
dizüstü bilgisayarlar, video kameralar vb.) ve elektrikli otomobillerin 
yaygınlaşmasına bağlı olarak bunların temel bileşeni olan lityum-iyon 
pillerde/bataryalarda (LIB) kullanılan lityum ve kobalt tüketimleri de 
artmıştır. LIB’ler, lityum (%1,5-7), kobalt (%5-20), manganez  
(%15-20), bakır (%8-10), alüminyum (%5-8) ve nikel (%5-10) gibi 
metalleri içermesinden dolayı önemli bir ikincil kaynak olarak 
değerlendirilmektedirler. Atık LIB’lerden metallerin geri kazanımında 
endüstriyel olarak mekanik ön-işlem, pirometalurjik, hidrometalurjik 
veya bunların birleşimden oluşan yöntemler kullanılmaktadır. Mekanik 
ön-işlem ve fiziksel ayırma işlemlerinden sonra H2SO4, HCI ve HNO3 gibi 
inorganik ya da organik asitlerle liç sonrası çözelti saflaştırma, 
çöktürme ve solvent ekstraksiyon yöntemlerini içeren hidrometalurjik 
yöntemler kullanılmaktadır. Bu çalışmada, LIB’lerden metallerin geri 
kazanım prosesleri ve yapılmış farklı çalışmalar tartışılmıştır. Ayrıca, 
Dünya’da lityum/kobalt kazanımının gerçekleştirildiği endüstriyel 
uygulamalardan akım şemaları sunulmuştur. 

Keywords: Li-ion battery, Recycling, Hydrometallurgy, Leaching, 
Lithium, Cobalt. 

 Anahtar kelimeler: Lityum-iyon pil, Geri Kazanım, Hidrometalurji, 
Liç, Lityum, Kobalt. 

1 Introduction 

Due to the rapid depletion of natural resources to meet the 
ever-increasing demand, some metals/raw materials used in 
advanced technologies have become "critical metal/raw 
materials". Alternative sources need to be sought to provide 
sustainability in industrial development. Scraps with high 
content of metals are often regarded as an important secondary 
resource. In addition to its environmental and economic 
benefits, the exploitation of the resource potential of scraps is 
significant for the conservation of natural resources and the 
sustainable development of metals and related industries.  

Due to the widespread use of portable electrical/electronic 
equipment (mobile phones, laptops, video cameras, etc.) and 
electric vehicles (EV, PHEV, HEV), the importance of lithium-ion 
batteries (LIBs), which are the essential components of these 
devices, have particularly increased in recent years [1],[2]. In 
effect, the growth in the automotive sector with the 
development of electric vehicles/automobiles has led to the 
widespread use of these batteries. This has concomitantly 
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increased the demand and consumption of battery raw 
materials.  

LIBs are widely used due to their high electrical density, high 
operating voltage and long cycle life. In 2017, 43% (19,870 
tons) of lithium supplied in the world was used in battery 
production, and this value is estimated to increase to 65% 
(61,123 tons) in 2025 [3]. Similarly, about 43% of the cobalt 
produced in 2014 was used in battery production [4]. Cobalt 
prices soared by approximately 500% between 2016 and 2018 
in concordance with the ever-increasing demand for lithium-
ion batteries [5]. The EU predicts that 18 times more lithium 
and 5 times more cobalt by 2030, and almost 60 times more 
lithium and 15 times more cobalt by 2050 will be needed in 
electric vehicle batteries and energy storage systems [6]. 

LIBs that typically complete their economic life within 3-8 
years) harm the environment and human health since they 
contain heavy metals (Cu, Pb, Cd, Zn) in high quantities and 
toxic electrolytes. Therefore, proper management of end-of-life 
LIBs is of uttermost importance for the protection of the 
environment and the exploitation of its economic potential. In 
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this regard, LIBs containing lithium (1.5-7%), cobalt (5-20%), 
manganese (15-20%), copper (8-10%), aluminium (5-8%), and 
nickel (5-10%) are considered as a ready secondary source.  

In this study, an overview of LIBs is presented. The treatment 
of LIBs for the recovery of the contained metal values is 
comprehensively reviewed. Worldwide industrial processes 
developed for the recovery of metals from LIBs are also 
discussed. 

2 Overview of lithium-ion batteries 

LIBs are electrochemical cells that can reversibly convert 
chemical energy into electrical energy through a redox reaction. 
They are essentially energy storage systems developed for the 
highest energy density among rechargeable batteries 
(Figure 1). 

 
 

 

Figure 1. Schematic views of; (a): A cylindrical lithium-ion 
battery; (b): The operation of a lithium-ion battery (LiCoO2/Li+ 

electrolyte/graphite) [9]. 

As a result of the oxidation (electrode to electrolyte) and 
reduction (electrolyte to electrode) reactions, ion movement 
occurs between the anode and the cathode by the movement of 
electrons. Lithium ions move between the anode and the 
cathode in a rechargeable LIB. While the battery is charged by 
the movement of lithium ions from the cathode, which is 
commonly a lithium-metal-oxide material, towards the anode 
(mostly graphite), it is discharged in the opposite case. When 
using the battery, lithium ions (Li+) move from the negative 
electrode to the positive electrode, while the current moves in 
the opposite direction Figure 1(b). The oxidation-reduction 
reactions taking place at the anode and cathode are given in 
Equations 1-3, [14],[19]-[21]. 

 Anode (oxidation) Cathode 
(Reduction) 

 

Charge: LiMO2

→ Li1−x MO2 + xLi+

+ xe− 

yC + xLi+ + xe−

→ LixCy 
(1) 

Discharge: LixCy  

→ yC + xLi+ + xe− 

Li1−xMO2 + xLi+

+ xe− → LiMO2 
(2) 

Total: LiMO2 + yC ↔ Li1−xMO2 + LixCy (3) 

(M=Co, Ni, Mn) 

LIBs consist of different components such as positive electrode 
(cathode), negative electrode (anode), electrolyte, and 
separator in addition to the iron or aluminium coating  
(Figure 1), (Table 1), [1]-[6].  

Table 1. Lithium-ion battery components and metal contents 
[27],[33],[34],[37],[49],[53]-[61]. 

Component Content Content, % 
Coating Fe-Ni alloy 20-26 

 Al 5-23 

Cathode  25-33 

Aluminium Al (Current collector foil) 5-8 
Binder PVDF 1-2 

   
Metal Oxide 

(80-85%, 
LiMO2, M=Co, 

Ni, Mn) 

Li 1.5-7 

 Co   LCO (LiCoO2, 33.5%) 5-20 
 Ni   LNO (LiNiO2) 1-15 
                  NCA (LiNi0,8Co0,15Al0,05O2)  
 Mn   LMO (LiMnO2) 5-10 
 NMC (LiNixCoyMnzO2)  

LiFePO4   
   

Polymeric 
separator 

Micro-pores polyethylene or 
polypropylene 

4-10 

   
Electrolyte  10-15 

Li salts LiPF6, LiAsF6, LiCIO4, LiBF4  
Organic 
Solvents 

DMC-EC, PC-DME, BL-THF, EMC, 
DEC(1) 

 

   
Anode  15-30 
Copper Cu  (Current collector foil) 8-10 
Binder PVDF 1-2 

Graphite  15-17 

1: DMC-EC: dimethyl carbonate-ethylene carbonate; PC-DME: propylene 
carbonate-1,2-dimethoxyethane; BL-THF: butyrolactone (BL) tetrahydrofuran 
(THF), EMC=ethyl methyl carbonate; DEC=diethyl carbonate; PVDF: 
Polyvinylidene fluoride. 

Materials such as LiMO2 (lithium metal oxide, M: Co, Ni, Mn) and 
LiFePO4 have been developed as cathode materials [7]-[10]. 
LiCoO2 (LCO) cathode batteries with graphite anode, which 
were first developed in 1991 are the most widely used 
batteries. The production of 32,000 tons of LCO cathodes were 
reported in 2013 [11]. Li(Ni0.33Mn0.33Co0.33)O2, LiMn2O4 and 
LiFePO4 are also currently widely used cathode materials 
(Table 1) [11]-[13]. High voltage electrodes such as LiNiPO4, 
LiCoPO4, LiNi0.5Mn1and.5O4, LiCoMnO4 are proposed for use in 
batteries requiring high energy density [14]. Depending on the 
composition of the cathode, anode or electrolyte, the lithium 
content varies between 50-563 g/kWh (according to the 
specific battery capacity) [15]-[18]. 
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Graphite is the most preferred anode material in LIB’s due to its 
low cost and low-voltage reaction with lithium. Anodes such as 
silicon, tin and lithium titanate (Li2TiO3) could also be used in 
place of graphite [1],[22]. 

The electrolyte provides the transmission of lithium ions 
between the anode and the cathode. The electrolyte contains a 
lithium salt dissolved in an organic solvent mixture  
(e.g., ethylene carbonate and dimethyl carbonate) [23]. The 
most commonly used lithium salts are LiClO4, LiAsF6, LiBF4 and 
LiPF6 [24]. The separator is a microporous polymer membrane 
that allows lithium ions to pass through the pores and prevents 
short circuits between the cathode and the anode [25]-[27]. 

3 Recovery of metals from LIB’s 

World lithium-ion battery production increased 800% between 
2000 and 2010 [28]. Spent LIBs are considered important 
secondary resources because they contain metals such as 
lithium, cobalt, manganese, copper, aluminium and nickel 
[3],[9]-[34]. Current industrial applications are mostly for the 
recovery of the contained metal values from lithium-cobalt-
oxide (LCO) and nickel-manganese-cobalt oxide batteries 
(NMC) [35]-[44]. Mechanical pretreatment, pyrometallurgical 
processes, hydrometallurgical processes or their combination 
are used to recover metals from waste LIBs. The main steps 
applied for the hydrometallurgical recovery of metals from 
lithium-ion batteries are:  

i. Disassembly of the battery after the cathode 
discharge, 

ii. Extraction of the electrolyte and salt by vacuum 
distillation, 

iii. Dissolution of the binder to separate the Cu and Al 
collectors from the electrodes, 

iv. Grinding of the electrode material, 

v. Physical separation, 

vi. Leaching, 

vii. Solution purification, 

viii. Recovery of metals by precipitation, crystallisation or 
electro-winning methods (Figure 2), [12]. The 
crushing and physical separation steps are applied to 
obtain a material enriched in metals (Li, Co, Ni, Mn) 
[12],[34],[45]-[49].  

 

Figure 2. Recovery of metals from lithium-ion batteries [2],[4]. 

Pyrometallurgical processes often suffer from high energy 
consumption/cost, toxic gas and dust output. In these respects, 
hydrometallurgical processes offer some advantages, such as 
low toxic gas emissions and relatively low investment costs, 
with their suitability for small-scale applications. Metal 
recovery efficiencies of pyrometallurgical processes could be 
lower than hydrometallurgical ones. On the other hand, there is 
no need to separate batteries in pyrometallurgical processes. 
Although extensive research/development studies are directed 
for hydrometallurgical processes, most industrial recycling 
processes are based on pyrometallurgical processes [11, 50-
52]. 

3.1 Pretreatment 

Before the recovery of metals from lithium-ion batteries, the 
battery is discharged using saturated salt solutions such as NaCl 
and Na2SO4 to prevent risks such as spontaneous 
combustion/explosion and short-circuiting [22],[37],[62]-[65]. 
Thereafter, mechanical pretreatment and separation processes 
such as crushing, screening, magnetic separation, fine crushing 
and classification are applied to ensure the separation of 
certain parts and fragmentation/decomposition of batteries 
[49],[65], [66]. Flotation is also suggested for 
separation/recovery of graphite from the fine fraction (<75µm) 
[22]. After physical separation processes, the cathode can be 
leached with alkaline reagents such as either N-methyl-2-
pyrrolidone or NaOH to separate the aluminium foil 
[34],[38],[64]-[68]. Since organic binders (such as PVDF) cause 
problems during the leaching and solid-liquid separation 
stages, thermal pretreatment is tested for the removal of these 
organic compounds and graphite  
[45],[50],[69],[70]. In addition, the presence of graphite is 
reported to cause low lithium recovery in leaching processes 
[37]. Batteries are heated at 300 °C and burned to evaporate 
solvents and electrolytes [63]. The battery electrolyte (LiPF6) 
can be also dissolved in organic solvents, but it may react with 
water to form toxic gases such as pentafluorine arsenic, 
pentafluorophosphate and hydrogen fluoride (HF), causing 
lithium losses (Equation 4). Therefore, recovery of the 
electrolyte often incurs high costs with environmental risks [2]. 

LiPF6 + H2O → LiF + POF3 + 2HF (4) 

3.2 Recovery of metal by hydrometallurgical methods 

In the recovery of metals from the material obtained after 
mechanical pretreatment and physical separation processes, 
inorganic acids such as H2SO4 [56], HCI [71], and HNO3 [72], 
organic acids [73] such as oxalic acid [74], formic acid and malic 
acid [75], and alkaline (NaOH) reagents are used in the 
development of leaching processes. In addition, ascorbic acid is 
also suggested as a reducing agent in leaching with glycine, 
which is an amino acid. Hydrometallurgical methods including 
solution purification, precipitation, solvent extraction and ion 
exchange can be utilised after leaching (Figure 3), 
[34],[37],[67],[75]-[81]. Inorganic acids are more 
advantageous than organic acids because they are 
comparatively cheaper. 

Leaching of lithium-cobalt oxide is often difficult due to the 
strong chemical bond between cobalt and oxygen. Although 
Co3+ is more dominant in the cathode material, Co2+ dissolves 
more rapidly in leaching solutions at room temperature [4]. 
Therefore, Co3+ needs to be reduced to Co2+ to increase the 
leaching efficiency. For this purpose, a wide variety of 
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reductants including H2O2 [56],[71],[82]-[85], Na2S2O3 [28], 
NaHSO3 [47],[86[-[88] and Na2S2O5 [89] are used. 

 

Figure 3. Recovery of metals from lithium-ion batteries by 
hydrometallurgical methods [2]. 

In recent years, D-glucose [90],[91], cellulose [92], Phytolacca 
Americana [92], grape seeds [93], orange peels [94], and waste 
tea [92] have been tested as alternative reducing agents [95]. 

Leaching solutions containing metals such as Li, Co, and Ni are 
subjected to purification and metal recovery steps. Dissolved 
cobalt is recovered by precipitation with NaOH (4M NaOH, pH: 
11-12) as cobalt hydroxide Co(OH)2 (Equation 5) and lithium 
remaining in the solution is recovered as lithium carbonate  
[96],[97]. 

M2+ + 2OH− → M(OH)2     (M: Co, Ni, Mn) (5) 

3.2.1 Alkaline leach 

The electrodes are first treated with N-methyl-2-pyrrolidone 
(NPM) to separate the active material from the Al and Cu foils 
and dissolve the binder [98]. After this stage, metals such as 
aluminium and copper are recovered before leaching lithium 
and cobalt. Alkaline (NaOH) leaching can be exploited for 
selective recovery of aluminium from cathode material 
(Equation 6) [20],[99]. The dissolved aluminium is then 
recovered by precipitation with NH4OH (pH: 5), [36]. Nayl et al. 
[100] obtained 98% Al and 65% Cu recovery with ammonia 
(NH4OH) solution (4 M NH4OH, 80 °C, 66.6 g/L, 60 min.) with 
Co and Li remaining in the solids. After selective leaching of Cu 
and Al, the solids are further leached using various acids for the 
extraction of Li, Co and other metal values present. 

2Al0 + 2NaOH + 6H2O → 2Na [Al(OH)4SO4] + 3H2 (6) 

3.2.2 Inorganic acids for leaching 

Inorganic acids such as sulphuric acid (H2SO4) 
[20],[36],[49],[62],[101]-[104], hydrochloric acid (HCI) 
[14,[96],[105], nitric acid (HNO3) [45],[106]-[108], and 
phosphoric acid (H3PO4) [64],[65] are extensively studied for 
the recovery of metals from lithium-ion batteries. This can be 

attributed to their relatively low cost, effectiveness as leaching 
reagents, well-known chemistry of reactions and ready 
availability of downstream treatments for solution purification 
and metal recovery processes.  

3.2.2.1 Sulfuric acid leaching 

As the cheapest inorganic acid, sulphuric acid (H2SO4) is widely 
used in the leaching of metals such as copper, cobalt and nickel 
from primary or secondary sources. It is also the most widely 
studied reagent for the leaching of metals from the cathode 
material of lithium-ion batteries (Table 2). High acid 
concentrations (2-4 M H2SO4) are often required to achieve 
high metal extractions and concomitantly, pregnant leach 
solutions obtained contain high levels of sulphate [4],[109]. In 
addition, due to the high acidity, a high amount of neutralising 
reagent is often warranted for the neutralisation of leach 
solution prior to the downstream recovery of metals. Inorganic 
reducing reagents such as H2O2 (1-15%), NaHSO3 and Na2S2O5 
are added as reductants in sulphuric acid leaching to achieve a 
high rate and extent of metal (e.g. cobalt) extractions 
[20],[89],[102],[103],[110],[111]. The dissolution reactions of 
lithium and cobalt with sulphuric acid leaching from LiCoO2 are 
given in Equations 7 and 8 [62]. Figure 4 illustrates a typical 
flowsheet for treatment of LIBs based on sulphuric acid 
leaching. 

4LiCoO2 + 6H2SO4  
→ 2Li2SO4 + 4CoSO4 + 6H2O + O2 

(7) 

2LiCoO2 + 3H2SO4 + H2O2  
→ Li2SO4 + 2CoSO4 + 4H2O + O2 

(8) 
 

 

Figure 4. Recovery of metals from lithium-ion batteries by 
H2SO4 leaching [67]. 

The leaching characteristics and conditions can be predicted by 
the Eh-pH diagrams. Figures 5 illustrates the stability diagram 
of an individual metal ion in the presence of other constituents 
at 298 K and 50 g/L solids for the sodium bisulfide. 
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Table 2. Parameters and results of studies on sulfuric acid leaching. 

Leach condition Metal Recovery (Precipitation/SX) Recovery Ref. 

3 M H2SO4, 70 °C, 4 h, 200 g/L Prec. + SX (Acorga M5640, Cyanex 272) Prec.: %90 Co; SX: 97% Cu (Acorga M5640), %97 
Co (Cyanex 272) 

[62] 

1 M H2SO4 + 5% H2O2, 65 °C, 1 h, 33 g/L Prec. (NH3, pH 5) 
Co/ Li SX (0.72 M Cyanex 

80% Co, 95% Li, 55% Al; SX: 85% Co (Cyanex 
272) 

[36] 

2 M H2SO4 + 5% H2O2, 75 °C, 40 min., 100 
g/L 

SX (0.5 M Cyanex 272, pH 5.35) 93% Co, 94% Li [30], 
[101] 

4 M H2SO4 + H2O2, 80 °C, 4 h Prec.: ethanol (3:1), 15 min. 92% Co (CoSO4); 8% Co (Co(OH)2, with Li(OH)2, 
pH 10) 

[101] 

2 M H2SO4 + 6% H2O2, 60 °C, 1 h., 100 g/L Prec.: Cu, Fe, Al (pH 6,5) 
SX: 0.4 M Cyanex 272, pH 6, O/L=2 

>99% Co, 
SX: 99,9% Co, pH 6 Co/Ni 

[102] 

1 M H2SO4 + 30% H2O2, 80°C, 2 h, 714 g/L Prec.: 1 M citric acid, 2 h, 65 °C, 450°C 
calcination, 4 h. 

88,3% Co, LiCoO2 [120] 

4 M H2SO4 + 10% H2O2, 85 °C, 3 h, 100 g/L SX: 25% P507; Prec.: Ammonium 
oxalate, pH 1.5 

SX: 98% Co, 97% Ni and Li [99] 

0,4 M H2SO4, 5% H2O2, 1 h, 75 °C, 100g/L Prec.: Oxalic acid; Na2CO3 86% Li, Li2CO3 and 90% Co, CoC2O4 [117] 
2 M H2SO4 + 15% H2O2, 75 °C, 20 min., 50 

g/L 
- %95 Co, %100 Li [49] 

3 M H2SO4, H2O2, - 99% Co and Li [121] 
3 M H2SO4, 1.5 M H2O2, 70 °C, 1 h - 99.4% Co, 99% Li [46] 

2 M H2SO4 + 0.25 M H2O2, 90 °C, 3 h, 67 g/L - >99 [88] 
H2SO4, glucose, 90 °C, 3 h - 98% Co and Li [91] 

2 M H2SO4 + %% H2O2, 75 °C, 1 h, 100 g/L - 99.1% Li, 70% Co [122] 
2 M H2SO4 + 2% H2O2, 60 °C, 2 h, %3,3 

solid ratio 
- 87.5% Li, 96.3% Co [4] 

1 M H2SO4, 5% H2O2, 95 °C, 4 h, 5% solid 
ratio 

- 93.1% Li, 66.2% Co, 96.3% Ni, 50.2% Mn [47] 

2 M H2SO4, 4% H2O2, 70 °C, 2 h, 100 g/L - 98.8% Li, 99.6% Co, 99.4% Ni, 97.8% Mn [100] 

 

 
 

 
 
 

 
 

 
 

Figure 5. Eh-pH diagrams (25 C) for NaHSO3 system. (a): Li-SO3-SO4, (b): Co-SO3-SO4, (c): Mn-SO3-SO4, (d): Ni-SO3-SO4, in the 
presence of other elements [112]. 

 

In a recent study, Zhao et al. (2020) [95] utilised ethanol to 
reduce Co3+ to Co2+ in sulphuric acid leaching. When 3 M H2SO4 
and 5% ethanol (by volume) are used (S/L= 20 g/L, 90 °C,  
160 min.), >99% Li and Co recoveries were apparently obtained 
by these researchers. Yang et al. [113] (2020) found 97% Li, 
96% Ni, 95% Co and 86%Mn extractions using hydrazine 
sulphate (N2H6SO4, 30 g/L) as a reductant in sulphuric acid 
leaching (2 M, 50 g/L, 80 °C, 1 h). There are also studies in which 

various organic compounds are suggested as reducing agents. 
D-glucose (C6H12O6) as the reducing reagent instead of H2O2 
(Equation 9) was preferred by various researchers [87],[91], 
[114]. 

2LiCoO2 + 3H2SO4 + H2O2  
→ Li2SO4 + 2CoSO4 + 4H2O + O2 

(9) 
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Chen et al. [115] (2018) achieved 54%, 96%, 98% Co and 100%, 
100% and 96% Li recoveries using cellulose, sucrose and 
glucose (0.4 g/g), respectively as reducing agents in sulphuric 
acid leaching (3 M, 95 °C, 25 g/L, 2 h). Glucose and sucrose were 
shown to have better reducing properties than cellulose 
(Glucose>sucrose>cellulose). Chen et al. (2019) [116]  
recovered 90% Co and all of Li, Ni and Mn using waste tea  
(0.3 g/g) as a reductant in sulphuric acid leaching (2 M, 90 °C, 
50 g/L, 2 h). They stated that the polyphenols in tea have 
reducing properties. Various downstream treatment options 
appear to be available for purification and metal recovery from 
pregnant acid leach solutions. Cobalt can be precipitated as 
CoC2O4.2H2O (Equation 10) by ammonium oxalate from 
sulphuric acid leach solutions [4],[117]. 

CoSO4(l) + (H4)2C2O4(l)

→ CoC2O4(s) + (NH4)2SO4(s) 
(10) 

Chen et al. [99] investigated the recovery of lithium and cobalt 
from waste lithium-ion batteries by alkali and acid leaching 
processes. First, after burning the carbon and binder at  
700-800 °C, they leached the material with NaOH to recover Al 
prior to the leaching of Co and Li. In the presence of H2O2, they 
obtained 95% Co and 96% Li by H2SO4 leaching (4M H2SO4, 
10% H2O2, L/S=10:1, 2 h, 85 °C).  

3.2.2.2 Hydrochloric acid leaching 

Another common leaching reagent used in the extraction of 
metals from LIB’s is hydrochloric (HCl) acid (Table 3) [98]. 
Main disadvantages of this reagent system are the release of 
toxic Cl2 gas during leaching and its highly corrosive nature, 
which requires the use of corrosion-resistant equipment with 
increased operating and investment costs. Although the 
sulphuric acid system is preferred in most cases [118] 
hydrochloric acid is stronger than sulphuric acid since 
hydrogen ions have much higher activity due to chloride in this 
system [119]. The dissolution reactions of lithium and cobalt 
from LiCoO2 in HCl solutions are given in Equations 11 and 12. 

2LiCoO2 + 6HCl → 2LiCl + 2CoCl2 + 3H2O + 0.5O2 (11) 

2LiCoO2 + 6HCl + H2O2  
→ 2CoCl2 + 2LiCl + 4H2O + O2 

(12) 

In a previous study, Zhang et al. [14] achieved >99% Co and Li 
recovery by HCl leaching (4 M HCl, 80 °C, 1 h) from the spent 
lithium-ion battery cathode material. Wang et al. [105] also 
reported high extractions of metals, i.e. >99% Co, Mn, Ni and Li 
from lithium-ion battery cathode material by HCl leaching (4M 
HCl, 80 °C). The flowsheet showing the recovery of metals by 
HCl leaching from lithium-ion batteries is presented in Figure 6 
[96]. 

 

Figure 6. Recovery of metals from lithium-ion batteries by HCl 
leaching [96]. 

3.2.2.3 Nitric acid leaching 

Nitric acid (HNO3) with its high oxidising potential (E0 = +0.96 
V) can be exploited as oxidising lixiviant [125]. But, it is more 
expensive than other mineral acids. It can also be used as an 
oxidiser in sulphuric acid leaching [119]. The dissolution of Li 
and Co by leaching HNO3 from LiCoO2 is given in Equations 13 
and 14. Zhang et al. [14] obtained 40% Co and 75% Li recovery 
in HNO3 leaching but obtained 99% Co and Li recovery with the 
addition of 1.7% H2O2. Dorella and Mansur [36] also reported 
an increase in the cobalt recovery from 50% to 100% with the 
addition of H2O2. Castillo et al. [98] showed 100% lithium and 
95% Mn recovery in the nitric acid leaching (1 M HNO3, 80 °C, 2 
h) (Table 4). It was separated from lithium by precipitating 
Mn(OH)2 with NaOH at pH 10 (Figure 7). 

2LiCoO2 + 6HNO3  → 2Co(NO3)2 + 2LiNO3 + 0.5O2 + 3H2O (13) 

2LiCoO2 + 6HNO3 + H2O2  
→ 2Co(NO3)2 + 2LiNO3 + 4H2O + O2 

(14) 
 

 

Table 3. Parameters and results of studies on hydrochloric acid leaching (DMG: Dimethylglyoxime). 

Leach conditions Metal Recovery (Precipitation/SX) Recovery Reference 
4 M HCI, 80 °C, 1 h, 100 g/L Prec: NaCO3; SX: 0.29 M D2EHPA and 0.9 M PC-

88A 
Leach: >99% Co and Li; SX: 0.9 M PC-88A, 

>99.9% Co and 12.6% Li; Prec.: 80% Li 
[14] 

4 M HCI, 80 °C, 1 h., 100 g/L Prec.: 4 M NaOH, pH 6-8 Co(OH)2 [96] 
4 M HCI, 80 °C, 1 h., 20 g/L Prec.: Mn (KMnO4, pH 2, 40 °C); Ni (DMG, pH 9); 

Co (NaOH, pH 11); Li prec. (NaCO3, 100 °C) 
Leach: >99% Co, Mn, Ni, Li; Prec.: 97% Li 

(LiCO3; 98% Mn, 97% Co and 97% Ni 
[105] 

3 M HCI + 3.5% H2O2, 80 °C, 1 h, 
50 g/L 

Prec.: NaOH for Co, pH 11-12; Na2CO3 for Li, 100 
°C 

95% Co and 93% Li [97] 

4 M HCI, 90 °C, 18 h, 50 g/L Prec.: pH 3 and pH 11 with NaClO 100% Co and 99,99% Ni [123] 
4 M HCI, 90 °C, 2 h, - 97% Li, 99% Co [124] 
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Table 4. Parameters and results of studies on HNO3 leaching. 

Leach condition Recovery Reference 

1 M HNO3 + 1.7% H2O2, 75 °C, 1 h, 20 g/L 95% Co, Li [45] 

1 M HNO3 + 1% H2O2, 80 °C, 1 h, 20 g/L 100% Co, Li [106] 

2 M HNO3, 80 °C, 2 h 100% Li [98] 

 

 

Figure 7. Recovery of metals from lithium-ion batteries by 
HNO3 leaching [98]. 

3.2.3 Organic acid leaching 

Due to the harmful nature of inorganic acids, many organic 
acids (Lactic acid-C3H6O3, ascorbic acid-C6H8O6, malic acid-
C4H6O5, citric acid-C6H8O7, tartaric acid-C4H6O6, aspartic acid-
C4H7NO4, oxalic acid-H2C2O4, succinic acid-C4H6O4, etc.) have 
been tested for the treatment of lithium-ion batteries (Table 5) 
[3],[34],[38,[51],[64],[72],[73],[126]-[30]. H2O2 is often used as 
a reductant for converting Co3+ to Co2+ in organic acid leaching. 
Compared to citric and malic acid, ascorbic acid was reported 
to have advantages such as low temperature and short leaching 
time under the same leaching conditions [126]. Oxalic acid 
leaching is more advantageous than other organic acids due to 
the selective precipitation of cobalt as oxalate salt (CoC2O4)  
[72],[74]. Because organic acids have relatively slow leaching 
kinetics, high acid concentrations are often required to obtain 
high metal extractions. 

Organic acids such as methanosulfonic acid (MSA; CH3SO3H) 
and p-toluenesulfonic acid (TSA) have also been proposed in 
the leaching of Li and Co from lithium-ion batteries [131],[132]. 
Wang et al. [131] achieved 100% Li and Co recoveries from 
waste LiCoO2 cathode material by MSA leaching (1 M MSA, 0.9% 
H2O2, 70 °C, 1 h, solid ratio: 20 g/L) in the presence of H2O2 as 
the reductant. 

Table 5. Parameters and results of studies with organic acids. 

Leach Condition Recovery Referen
ce 

1.5 M aspartic acid, 4% H2O2, 90 
°C, 2 h, 10 g/L 

60% Li and 
Co 

[67] 

1.5 M DL-Malic acid + 2% H2O2, 
90 °C, 40 min., 20 g/L 

90% Co and 
100% Li 

[34] 

1.25 M citric acid + 1% H2O2, 90 
°C, 30 min., 20 g/L 

90% Co, 
100% Li 

[38] 

1.25 M ascorbic acid, 70 °C, 20 
min., 25 g/L 

94,8% Co, 
98,5% Li 

[126] 

1 M oxalic acid, 80 °C, 2 h, 50 g/L 98% Li and 
Co% 

[74] 

100 mM citric acid+ 20mM 
ascorbic acid, 80 °C, 6 h, 2 g/L 

100% Li and 
Co 

[42] 

1.5 M succinic acid, 4% H2O2, 70 
°C, 40 min., 15 g/L 

100% Co, 
96% Li 

[82] 

1 M oxalic acid, 95 °C, 2.5 h, 1.5% 98% Li, 97% 
Co 

[72] 

1 M MSA, 0.9% H2O2, 70 °C, 1 h, 
20 g/L 

100% Li and 
Co 

[131] 

0.6 M tartaric acid, 3% H2O2, 30 
mL/g, 80 °C, 30 min. 

98% Li and 
97% Co 

[116] 

The reactions in the leaching of methanesulfonic acid, oxalic 
acid, citric acid, malic acid, succinic and ascorbic acid are given 
in Equations 15 to 20. 

2LiCoO2 + 6CH4O3S + H2O2  
→ 2LiCH3O3S + 2(CH3O3S)2Co + 4H2O
+ O2 

(15) 

2LiCoO2 + 7H2C2O4  → 2LiHC2O4 + 2Co(HC2O4)2 + 4H2O
+ 2CO2 

(16) 

LiCoO2 + 6H3Cit + H2O2  
→ Co3(Cit)2 + Co(HCit) + Co(H2Cit)2

+ Li3Cit + Li2(HCit) + Li(H2Cit) + H2O
+ O2 

(17) 

2LiCoO2 + 6C4H6O5 + H2O2  
→ 2LiC4H5O5 + 2Co(C4H5O5)2 + 4H2O
+ O2 

(18) 

LiCoO2 + 3C4H6O4 + H+

→ LiC4H5O4 + Co(C4H5O4)2 + 2H2O 
(19) 

2LiCoO2 + 4C6H8O6  → Li2C6H6O6 + 2CoC6H6O6 + C6H6O6

+ 4H2O 
(20) 

Tartaric acid (C4H6O6) has a lower cost and higher acidity than 
most organic acids [85]. It was used as a leaching and 
precipitating reagent in the selective separation and recovery 
of Co [85],[133]. In 2 M tartaric acid solution (4% H2O2, 17 g/L 
solids ratio, 70 °C, 30 min.), 99.07% Li, 98.64% Co, 99.31% Ni 
and 99.31% Mn extractions were reported [133]. The citric acid 
(C6H8O7-H3Cit), which is widely used as an organic lixiviant, 
ionises to H+, H2Cit-, HCit2- and Cit3- in leaching solutions and 
forms complexes such as Co3(Cit)2 and Li3Cit [38],[90]. 
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A variety of organic products/wastes such as Phytolacca 
Americana [92], waste tea [92], grape seed [93], and orange 
peels [94] have also been used as reducing agents in citric acid 
solutions. Chen et al. [92] found 98% Co and 99% Li, 83% Co 
and 98% Li, 96% Co and 98% Li using H2O2 (70 °C, 2 M, 0.6 g/g 
H2O2, solids ratio 50 g/L, 80 min.), Phytolacca Americana  
(80 °C, 1.5 M, 0.4 g/g PA, solids content 40 g/L, 120 min.) and 
waste tea (90 °C, 1.5 M, 0.4 g/g, solids content 30 g/L, 120 min.) 
respectively in citric acid leaching. 

In a recent study, Wu et al. [94] used orange peels (200 mg) as 
a reductant in citric acid leaching (1 M, 90 °C, 25 g/mL, 24 h) 
and achieved complete extraction of metals (Co, Li, Ni and Mn). 
The authors mooted that the cellulose in orange peels turns into 
sugars such as glucose, which have reducing properties when 
heated under acidic conditions. Firstly, Mn(OH)2 and Ni(OH)2 
were recovered at pH 12 using NaOH. In the second step, cobalt 
was recovered as Co(OH)2 using ethanol (ethanol/solution = 
1/10). 

Using D-glucose (C6H12O6) (0.5 g/g) as a reductant, Chen et al. 
[90] obtained high extractions of metals i.e. 99% Li, 92% Co, 
91% Ni and 94% Mn in citric acid leaching (1.5 M, 80 °C, 20 g/L, 
120 min.). D-glucose is easily oxidised and converted to 
gluconic acid, glyceric acid and CO2, increasing the leaching 
efficiency [87],[91]. In the presence of D-glucose, high-valent 
transition metals such as Co3+ and Mn4+ are reduced to Co2+ and 
Mn2+, respectively and hence, readily dissolved during leaching 
[134]. 

18 LiNi1
3

Co1
3

Mn1
3

O2 + 18H3Cit + C6H12O6  

→ 6Li3Cit + 2Co3(Cit)2 + 2Co3(Cit)2

+ 2Mn3(Cit)2 + 33H2O 

(21) 

In the malic acid leaching of lithium-ion batteries, various waste 
products have been utilised as reducing reagents. Zhang et al. 
[93] used grape seeds as a reducing agent obtaining 92% Co 
and 99% Li extractions (0.6 g/g) in malic acid leaching  
(1.5 M, 80 °C, 180 min. 20 g/L). These researchers attributed 
the reducing properties of grape seed to its content of catechin, 
gallic acid and oligoprocyanidin as active substances.  

3.3 Solution purification and metal recovery 

Since the leaching solutions of lithium-ion batteries are highly 
acidic and contain many metals, solution purification and metal 
recovery stages may involve complex processes for the 
selective recovery of metals of interest [11]. Depending on the 
mechanical pretreatment applied, the cathode material 
contains varying amounts of Fe, Cu and Al from foil. It would be 
good practice to avoid Cu and Al leaching so as to ease the 
downstream processing for efficient and selective recovery of 
metals [118],[135]. Metals such as Cu, Fe, Mn and Al are often 
removed from Li, Co and Ni. These can then be recovered from 
clean solutions by precipitation or solvent extraction methods 
[3],[91],[136]. 

3.3.1 Precipitation 

Pregnant leach solutions are treated to reject impurities such 
as Cu, Fe, Al and Mn through precipitation by using NaOH or 
CaCO3 [36],[56]. Precipitation of metals from leaching solutions 
is a relatively easy and simple process. The required pH for 
precipitation of some metals as hydroxide is given in Table 6. 
Also, Figure 8 shows the precipitation curves of some metals 
from saturated NaCl solutions as a function of pH [137]. pH is 
one of the most important parameters controlling the 

precipitation of metals, allowing their selective 
recovery/removal under suitable conditions (Table 7). In this 
regard, from pregnant leach solutions, Co and Li can be 
recovered selectively by precipitation exploiting the difference 
in pH for the formation of their respective hydroxides. 

Table 6. Precipitation pH of some metals as hydroxide (25 °C) 
[138]. 

Metal pH 
Ag 8.0 
Zn 7.0 

Co(II) 6.8 
Ni 6.7 

Fe(II) 5.5 
Cu(II) 5.3 
Co(III) 3.0 
Fe(III) 2.0 

Table 7. Studies to remove metals from leaching solutions. 

Reagent Metal pH Efficiency, % Ref. 
10% NaOH Al, Fe 5,5 98% Al [62] 
4 M NaOH, 

Ca2CO3 
Al, Cu, Fe 6,5 99% [102] 

NH4OH Al 5 80 % [36] 
NaOH Al, Cu, Fe 5 100% Al, 100% Fe, 

60% Cu 
[91] 

Na2S Cu  99,9% Cu [103] 
 

 

Figure 8. pH-dependent precipitation curves of some metals 
from saturated NaCl solutions [138]. 

Iron is removed as jarosite from leach solution (pH 3-3.5; 95 °C) 
(Equation 22), [99]. 

3Fe2(SO4)3 + 12H2O + Na2SO4  
→ Na2Fe6(SO4)4(OH)12

+ 6H2SO4 
(22) 

Cobalt is recovered as CoC2O4·2H2O (99.3% purity) by oxalic 
acid [93] and Li is recovered as Li3PO4 (98.5% purity) by 
phosphoric acid (H3PO4, 0.5 M) (60 °C, 30 min. 300 rpm) 
(Equations 23-24), [139]. It has been stated that the citric acid 
obtained after the metal recovery stage is reusable. 

Co3(Cit)2 + 3H2C2O4  → 4CoC2O4 ↓ +2H3Cit (23) 

Li3Cit + H3PO4  → Li3PO4 ↓  +H3Cit (24) 

Joulie et al. [123] demonstrated that Co2+ could be oxidised to 
Co3+ with NaCIO at pH 3 to selectively precipitate cobalt in the 
form of Co2O3.3H2O (Equations 25 and 26). Then, nickel is 
precipitated as nickel hydroxide at pH 11. 

2Co2+ + ClO− + 2H3O+  → 2Co3+ + Cl− +  3H2O (25) 

2Co3+ + 6OH−  → Co2O3. 3H2O (26) 

Recovery of cobalt by precipitation with ammonium oxalate 
from purified leaching solutions was also reported [30],[62]. 
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After the recovery of Co2+ and Ni2+ by solvent extraction from 
leach solutions. Lithium is usually precipitated from the 
solution using Na2CO3, CO2 or H3PO4 (Equations 27 and 28), 
[91],[140],[141]. 

2Li+ + CO3
  2− → Li2CO3 (27) 

3Li+ + PO4
  3−  → Li3PO4 (28) 

Manganese was recovered from the solution as MnO2 or Mn2O3 
by adding potassium permanganate (0.5 M KMnO4) [105]. 
Then, nickel (98.5%), cobalt (96.8%) and lithium (92.7%) were 
recovered as Ni(C4H6N2O2)2, CoC2O4.2H2O and Li3PO4, 
respectively, using dimethylglyoxime (DMG, 0.2 M, C4H8N2O2) 
(Equation 29), oxalic acid (0.5 M H2C2O4) (Equation 23) and 
phosphoric acid (0.5 M H3PO4) (Equation 24) from the purified 
solutions. 

6C4H8N2O2 + Ni3(Cit)2 → 3Ni(C4H6N2O2)2

↓  +2H3Cit  
(29) 

Manganese was removed at pH 4 (70 °C) with ammonium 
persulfate (Equation 30) [140]. Then, the concentrated Co2+ 
from the purified solution by solvent extraction (P507) was 
recovered as cobalt oxalate (93% recovery, >99.9% purity) by 
adding ammonium oxalate (ratio: 1.15:1; pH: 1.5). 

Mn2+ + (NH4)2S2O8 + H2O 
→ MnO2 + (NH4)2SO4 + H2SO4

+ 2H+ 
(30) 

Wang et al. [105] reported the treatment of HCl leach solutions 
for the recovery of Mn, Ni, Co and Li. They initially precipitated 
Mn as MnO2 by using KMnO4 at low pH values. Then, these 
investigators used NH3 to complex Ni as [Ni(NH3)6]2+ and 
precipitated it with dimethylglyoxime at pH 9. Co was also 
recovered as hydroxide by further increasing the pH using 
NaOH to 11. A saturated solution of Na2CO3 was used to 
precipitate Li2CO3 from the residual solution at 100 °C. This 
scheme of recovery process is complex with high-consumption 
reagents. Nayl et al. [100] described a process in which metals 
are precipitated as carbonate with sodium carbonate after 
adjusting the pH using NaOH (Figure 9).  

 

Figure 9. Recovery of Li, Co, Mn and Ni by precipitation from 
leaching solutions [100]. 

They reported 91% Ni as NiCO3 recovery from the leach 
solution at pH 9. Then, the solution pH was increased to 11-12 

with NaOH at room temperature to recover Co as cobalt 
hydroxide. Finally, lithium was precipitated as Li2CO3. by 
further adding Na2CO3 to the solution (at 90 °C). Pure Li2CO3 
was obtained after washing the precipitate with hot water to 
remove the residual Na prior to drying at 100 °C. 

Aktas et al. [101] investigated the crystallisation of metals from 
sulphuric acid solutions of waste LIBs by using ethanol. They 
obtained copper sulphate (CuSO4.3H2O) at 96% Cu recovery 
and cobalt sulphate (CoSO4) at 92% Co recovery with ethanol 
at a solution-to-ethanol ratio of 3. Cobalt that did not 
precipitate with ethanol but remained in solution was 
precipitated as cobalt hydroxide (Co(OH)2) by increasing the 
pH using lithium hydroxide to pH 10. After the removal of 
cobalt, the residual solution was acidified with sulphuric acid to 
precipitate lithium sulphate (Li2SO4) at 90% recovery with the 
addition of ethanol. These investigators also noted the 
precipitation of 99% of aluminium as aluminium hydroxide 
(Al(OH)3). 

3.3.2 Solvent extraction 

Solvent extraction (SX) is the process of extracting the metal 
from the inorganic (aqueous) phase into the organic phase by 
bonding a liquid organic reagent with the metal in the solution 
[142]. It is used both to remove impurities and to recover 
metals from the leaching solutions of lithium-ion batteries 
(Table 8). Many SX reagents are available with bis(2,4,4-
trimethylpentyl) phosphinic acid (Cyanex 272),  
di-(2-ethylhexyl) phosphoric acid (D2EHPA), 2-ethylhexyl 
phosphonic acid mono-2-ethylhexyl ester (PC-88A) and the 
hydroxy-oxime derivative (Acorga M5640) being extensively 
used in SX applications [143]. The main detractions to solvent 
extraction include the challenges in Co/Ni/Mn separation, high 
reagent requirements for the concentrated solutions and high 
operating and capital costs [5]. 

Metals such as Cu, Al, Co, Ni, Fe and Mn can be selectively 
extracted at pH 6.5 using a suitable SX process while lithium 
remains in solution. SX reagents, including Cyanex 272, Acorga 
5640 and PC-88A, appear to be used for the treatment of 
pregnant leach solutions of waste LIBs [30],[62]. Pranolo et al. 
[144] exploited the synergistic effect of two solvents  
(7% PC-88A and 2% Acorga M5640) to effectively separate 
Fe3+, Cu2+ and Al3+ from Co2+, Ni2+ and Li+ (pH 4-4.5). 

2RH(org.) + M(aq)
2+ → R2M(org.) + 2H+ 

(RH: Acidic extract; M: Metal) 
(31) 

ROH(org.) + A(aq)
−  → RA(org.) + OH− 

(RH: Alkaline extract; A: Metal complex) (32) 

Cyanex 272 is widely used commercially in the Co/Ni 
separation (pH 5.5-6) [62],[102],[118],[144],[145]. PC-88A is 
generally used in the extraction of Co from Ni and Li 
[3],[102],144]. Suzuki et al. [146] proposed a for the recovery 
of Al, Cu, Co and Li from synthetic acidic sulphate solutions 
(2x10-3 M metal, 0.2 M Na2SO4) by solvent extraction (Figure 
10). In the first step, after copper was recovered by Acorga 
M5640 (pH: 1.5-2), aluminium was selectively extracted with 2-
ethylhexyl 2-ethylhexylphosphonic acid (PC-88A, pH: 2.5-3). 
Cobalt and lithium were separated with high separation 
efficiency (>98%) by PC-88A/TOA (Tri-n-octylamine, pH: 5.5-
6). Granata et al. [91] initially precipitated Fe, Al and Cu as 
hydroxide at pH 5 from the sulphuric acid-leaching solution  
(2M H2SO4, S/L: 100 g/L, 90 °C, 50% glucose). 
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Table 8. Removal of metals from leaching solutions by solvent extraction method. 

Solvent Metal pH Efficiency, % 
Stripping from the organic 

phase  
Reference  

0.3 M Cyanex 272 Al 2.5-3 100% Al - [118] 

10% Acorga 5640 Cu 1.5-1.7 98.5% Cu 2 M H2SO4, O:L=1:1, 2-stage [62],[145] 

7% PC-88A and 2% Acorga 5640 Al, Cu, Fe 4-4.5 100% Al, Cu, Fe 100 g/L H2SO4, O:L=1:8, 2-stage [144] 

10% Acorga 5640 

%10 PC-88A 

Cu 

Al 

1.5-2 

2.5-3 

100% Cu 

100% Al 
3 M H2SO4 [146] 

 

 

Figure 10. Recovery of Cu, Co, Li and Al from acidic sulphate 
solutions by solvent extraction method [146]. 

They used solvent extraction (Cyanex 272 and D2HEPA) to 
obtain a purified solution from which cobalt carbonate with 
high purity (47% Co) (Na2CO3, pH: 9-10, 2 h) was precipitated. 
They found that the purity of cobalt was limited to 36-37% Co 
without the application of SX. The researchers also reported the 
recovery of Li2CO3 with 98% purity through crystallisation at 
80% yield as the final stage of the proposed solution 
purification and recovery process. 

4 Industrial applications 

There are many commercial applications for metal recovery 
from spent batteries (Table 9), [15],[124],[136],[147]. Toxco 
and Sony processes were the first commercial processes to 
recycle lithium-ion batteries. The Toxco process is designed for 
the treatment of all types of lithium-containing waste. The main 
products are cobalt, lithium and other important metals. 

In the recycling of spent LIBs, four basic recycling technologies 
are mechanical pretreatment, mechanical+hydrometallurgical, 
pyrometallurgical, pyrometallurgical+hydrometallurgical. 
Some companies separate only battery components by 
mechanical processes and sell them to others that recover 
metals by hydrometallurgical or pyrometallurgical operations. 
While high purity lithium can be recovered in 
hydrometallurgical processes, it remains in the slag phase in 
pyrometallurgical processes [52]. 

4.1 Recupyl (France) 

Recupyl process is a combination of physical and chemical 
processes to produce lithium carbonate. In this process, the 
mechanical treatment is carried out in an inert environment 
(CO2 and 10-35% argon). Plastics, steel and copper are 
separated by physical separation processes such as screening, 
magnetic and gravity separation. The fine powder is separated 
by sieving and subjected to hydrolysis and leaching processes. 
The hydrolysis solution is filtered to obtain a pulp containing 
an alkaline lithium salt solution, metal oxides and carbon. 
Lithium is precipitated as Li2CO3 using CO2 obtained from 
mechanical processes. Metal oxides are dissolved by sulfuric 
acid in the leaching process. Copper is cemented using steel 
balls. From the purified solution, cobalt (II) is oxidised with 
NaClO to precipitate as hydroxide (Co(OH)3). In the process, 
lithium remaining in solution is precipitated with CO2 gas 
(Figure 11), [52],[124],[148]. 

 

Figure 11. Flowsheet of Recupyl (France) process [124]. 

4.2 Toxco (Canada) 

This process is designed to treat various types of batteries. The 
first stage of the process involves cryogenic crushing in a liquid 
nitrogen environment to avoid fire hazards. After crushing, the 
fraction that contains protective plastic and steel mixture, 
referred to as 'Li-ion fluff', is removed. Large batteries are cut 
in an alkaline environment to neutralise acidic components and 
dissolve lithium salts as LiCI and Li2SO4. The dissolved salts are 
precipitated and separated in the filter press for use in the 
production of lithium carbonate. The waste is sent to the cobalt 
recovery. The lithium-bearing solution is carbonated to 
produce Li2CO3 (Figure 12). Copper is extracted in the next step 
[60],[124],[150].  
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Table 9. Industrial lithium-ion battery recycling processes [149]. 

Proses Company Material Product 
Hydrometallurgy Recupyl, France All batteries LiCoO2, Co(OH)2 

 Toxco, Canada Li, Ni- batteries LiCoO2, 
 Sony, Japan Li-ion batteries Co(OH)2 

Pyrometallurgy Eurodieuze, France All battery Ni, Cd, steel 
 Zimaval, France Zn, Mn, Hg battery Zn, Mn 
 Dowa, Japan All batteries Co, Ni 
 Batrec AG, Schweiz Li, Hg battery - 
 Nippon, Japan Ni-Cd, Ni-MH, LIB Ni, Co, Cd, Al, Cu 
 Accurec GmbH, Germany All batteries Ni, Cd, Fe, LiCO3 
 INMETCO, ABD Ni-Cd Cd, Ni, Zn 

Pyro-hydrometallurgy Umicore, Belgium LIB’s, Ni-MH Co, Ni 
 Glencore Plc., Schweiz LIB’s, EV Cu, Ni, Zn, Li 

 

 

Figure 12. Flowsheet of Toxco (Canada) process [136]. 

4.3 Umicore (Belgium) 

Umicore process is a combined pyro-and-hydro-metallurgical 
process. Spent waste batteries are melted (500 °C) with the 
patented ultra-high temperature (UHT) technology based on 
plasma technology to obtain a molten matte containing metals 
(Co, Ni, Cu, Fe). Li, Al, and Mn remain in the slag [60],[69],[124].  

Metals are recovered using the hydrometallurgical treatment 
that involves sulphuric acid leaching and solvent extraction. Ni 
and Co are obtained as cobalt oxide and Ni(OH)2 products 
[124]. A slag containing Al, Ca, Li, and Si is formed as a by-
product, which can be used as a building material. Cobalt 
compounds are used in the production of LiCoO2. Plastic, 
solvent and graphite are removed as a gas during smelting 
operation [52]. 

5 Environmental impacts of spent lithium-ion 
batteries 

Mrozik et al. [151] provided a comprehensive review that 
identified potential routes and hazards for the environmental 
impacts of LIBs. There appear no universal standards on the 
disposal of waste LIBs worldwide. Hazardous materials that are 
released during the management of waste LIBs through 
landfilling, incineration and recycling, as well as undesired 
incidents such as fires and explosions, can cause environmental 
pollution. These materials include vapours/gases (i.e. HF, CO or 
HCN), heavy metals present as oxides (i.e. LMO, NMC) and 
degradation products of electrolyte such as 
alkylfluorophosphates [151],[152],[153]. 

6 Conclusions 

The importance of lithium-ion batteries (LIBs) has increased in 
recent years due to the widespread use of portable electrical 
and electronic equipment (mobile phones, laptops, video 
cameras, etc.) and electric cars (EV, PHEV, HEV). Accordingly, 
there is a recent trend of an increase in the demand and prices 
of lithium and cobalt. Since LIBs contain heavy metals (Cu, Pb, 
Cd, Zn) and electrolytes that are harmful to the environment 
and human health, they should be appropriately managed. LIBs 
with a chemical composition of Li (1.5-7%), Co (5-20%),  
Cu (8-10%), Ni (5-10%), Mn (15-20%) and Al (5-8%) are 
regarded as a significant secondary source for these metals. 

Mechanical, hydrometallurgical and pyrometallurgical 
treatment processes are used for the recycling process of LIBs. 
However, hydrometallurgical processes that often involve 
leaching of metals and the recovery of metals after the removal 
of impurities from leaching solutions, seem to have received 
most attention. Sulfuric acid in the presence of various reducing 
agents, is widely used in the leaching of LIBs. Biodegradable 
organic acids are also extensively promoted as 
environmentally-friendly alternatives. Chemical precipitation 
and/or solvent extraction processes are extensively exploited 
for the treatment of leach solutions for the recovery of metals 
in various forms. Production of metal hydroxides and 
carbonates as main products has received the most attention.  

R&D studies seem to continue for the development of 
sustainable technologies/processes that can effectively recover 
metals from spent LIBs with an emphasis on minimising the 
environmental impact, simplifying recycling processes, and 
reducing costs. 
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