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Abstract  Öz 

This article presents large deflection data for prismatic (unvarying 
cross section across length) and non-prismatic (tapered, i.e. varying 
cross section across length) cantilever beams subjected to concentrated 
tip loads using the finite element method for different taper ratios. The 
approximate nonlinear solution is derived from the perspective of a 
polynomial function. The tapered beams that correlate to the non-
prismatic cantilever beams have different widths, depths, and 
diameters. Using the aforementioned large displacement data that have 
been analysed, a very simple approach is used to evaluate the large 
amplitude first mode frequency for the cantilever beam with (non-
prismatic) tapered and without (prismatic) tapered. The current 
approach can be used effectively to find accurate results with far less 
computer capacity as compared to other methods available in the 
literature. The difference between the current findings and the 
bibliographic data is shown. The major goal of this work is to contribute 
to the simple description of polynomial functions for large amplitude 
first mode free vibration frequency problems with and without tapered 
beams in terms load parameter(𝜆) versus tip slope (𝛼)and tip 
amplitude(𝑎/𝐿). Large amplitude first mode frequency (𝛺) increases 
with tip slope(𝛼). This indicates that the prismatic and non-prismatic 
cantilever beams exhibit hardening type nonlinearity. At a particular tip 
slope(𝛼), the diameter taper shows higher frequency than other tapered 
beams and uniform beams.  According to current studies, it can be 
restricted to a lower range of tip slope(𝛼)or amplitude(𝑎/𝐿). 

 Bu makale, farklı koniklik oranları için sonlu elemanlar yöntemini 
kullanarak konsantre uç yüklerine maruz kalan prizmatik (uzunluk 
boyunca değişmeyen enine kesit) ve prizmatik olmayan (konik, yani 
uzunluk boyunca değişen enine kesit) konsol kirişler için büyük sapma 
verileri sunmaktadır. Yaklaşık doğrusal olmayan çözüm, bir polinom 
fonksiyonunun perspektifinden türetilir. Prizmatik olmayan konsol 
kirişlerle ilişkili olan konik kirişlerin farklı genişlikleri, derinlikleri ve 
çapları vardır. Yukarıda bahsedilen ve analiz edilen büyük yer 
değiştirme verileri kullanılarak, konik (prizmatik) ve konik olmayan 
(prizmatik) konik kiriş için büyük genlikli birinci mod frekansını 
değerlendirmek için çok basit bir yaklaşım kullanılır. Mevcut yaklaşım 
etkin bir şekilde kullanılabilir. literatürde mevcut olan diğer yöntemlere 
kıyasla çok daha az bilgisayar kapasitesi ile doğru sonuçları bulmaktır. 
Mevcut bulgular ile bibliyografik veriler arasındaki fark 
gösterilmektedir. Bu çalışmanın ana amacı, konik kirişli olan ve 
olmayan büyük genlikli birinci mod serbest titreşim frekansı 
problemleri için yük parametresi (𝜆)ile uç eğimi (𝛼) ve uç genliği (𝑎/𝐿) 
cinsinden polinom fonksiyonlarının basit tanımına katkıda 
bulunmaktır. Büyük genlikli birinci mod frekansı (𝛺) uç eğimi (𝛼) ile 
artar. Bu, prizmatik ve prizmatik olmayan konsol kirişlerin sertleşme 

tipi doğrusal olmayanlık sergilediğini gösterir. Belirli bir uç eğiminde 
(𝛼), çap konikliği, diğer konik kirişlerden ve düzgün kirişlerden daha 
yüksek frekans gösterir.Mevcut çalışmalara göre, daha düşük bir uç 
eğimi (𝛼)veya genlik (𝑎/𝐿) aralığı ile sınırlandırılabilir. 

Keywords: Large amplitude, uniform (prismatic), Tapered (non-
prismatic), Cantilever beam, Tip slope, Free vibration. 

 Anahtar kelimeler: Büyük genlik, Üniforma (prizmatik), Konik 
(prizmatik olmayan), Konsol kiriş, Uç eğimi, Serbest titreşim. 

1 Introduction 

A particularly prevalent class of structural element that has 
been the focus of extensive study is the beam.It can be classified 
as prismatic (having a uniform or non-changing cross-section 
along the length) or non-prismatic (having a tapering or 
variable cross-section along the length), thin or thick, based on 
its geometry. Numerous beams are used in many engineering 
applications, and numerous studies on the transverse vibration 
of uniform isotropic beams have been published in the 
literature. However, when analysing usage and service, a non-
uniform tapered (non-prismatic) beam[1] may have a superior 
mass and load intensity distribution than a uniform prismatic 
beam. This enables the needs of various engineering 
disciplines, such as aeronautical engineering, civil engineering, 
and other innovative engineering applications, to be met while 
taking into account economic and other factors. The natural 
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vibration frequencies of such structures must be known in 
order to design them to withstand dynamic forces. 

Linear vibration theory predicts that the frequency of natural 
vibration is amplitude-independent [1]-[3]. Such conclusions 
are often not valid when the amplitude of vibration is large, as 
one or another is accompanied by an absenceof linearity effect. 
A helpful overview of the literature on nonlinear beam 
vibrations has been provided by [4]. Large-amplitude 
oscillations of uniform beams are conducted with different 
support boundary conditions[5]. The geometric nonlinearity 
was approximated using a truncated series and the solution 
obtained by solving the mode equation by the averaging 
method using the assumed modal shape and Langrange 
equations[6]. The large-amplitude response of beams with 
varying cross-sectional areas was performed using a fourth-
order iterative Runge-Kutta numerical scheme [7]. An 

https://www.bing.com/search?q=define+conduct&FORM=DCTRQY
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alternative analytical approach has been proposed to assess the 
non-linear vibrational performance of tapered(non-prismatic) 
cantilever[8]. Fully constrained tapered (non-prismatic) beams 
experiencing large-amplitude free vibrations caused by 
nonlinear elastic foundations have been reported [9]. 

A simple relationship for the linear taper cantilever beam to 
determine its first mode linear natural frequency is presented. 
[10] depicts the relationship between a beam's linear frequency 
expressed as a function of beam stiffness, beam mass, and mass 
distribution parameters. A study was successfully proposed to 
obtain the large amplitude first mode of the uniform (Figure1) 
prismatic cantilever [11] and spring hinge cantilever [12]. In 
both works [11],[12] the linear stiffness of [10] was replaced by 
nonlinear stiffness. 

 

Figure 1. Prismatic (unvarying cross section along length) 
uniform cantilever beam experiencing large amplitudes [11]. L 

is length of beam; P is vertical tip load; a is tip lateral 
deflection; α is tip slope. 

This article presents a study to provide the large-amplitude 
first mode frequency for the non-prismatic(tapered beam) 
cantilever (Figure 2(a), (b), (c) in a simple approach, following 
the previously published [11],[12] approach with modification( 
nonliner stiffness in place of linear stiffness) of the 
methodology of [10]. Nonlinear stiffness is related to tip 
amplitude (𝑎/𝐿), tip slope (𝛼), and load parameter (𝜆). In the 
literature, the nonlinear stiffness of uniform beams can be 
found using the relationship between tip amplitude, tip slope, 
and load parameters available in article [11],[13]. However,for 
tapered beams, these above relationships are not available in 
the literature. To evaluate nonlinear stiffness, 
nonlinear(geometric)static parametric studies through 
FEM[14]modeling have been carried out to derive a set of 
polynomial functions with different taper ratios for the 
different tapered types cantilever beams in terms of the load 
parameters (𝜆 = 𝑃𝐿2/𝐸𝐼)and tip amplitudes(𝑎/𝐿), and load 
parameters and tip slopes(𝛼). These polynomial functions are 
obtained for the prismatic and non-prismatic (tapered) 
cantilever beam with tip concentrated load. Based on the 
outcomes of the load-deflection data, the first mode nonlinear 
frequency is estimated by the use of the easy relation modified 
[11] of the tip slope in a range. Compared to the result in  
[7], this result shows the effectiveness of the proposed simple 
method. The aforementioned approach is the original aspect of 
the present study and contribution to the literature.  

The present study is of practical interest as it applies to an ideal 
aeroplane wing with a tip tank or engine, gas turbine fans, and 
wind turbine blades, etc. 

 

 

 

(a) 

 

(b) 

 

(c) 

Figure 2. Non-prismatic (tapered) cantilever beam [10] 
experiencing large amplitudes: (a): Tapered in breadth, 

constant in depth. (b):Tapered in depth, constant in breadth 
(c):Tapered in diameter. 

2 Polynomial functions for different taper 
ratios for large displacement under tip load 

of a tapered (non-prismatic) cantilever 
using FEM 

A tapered cantilever beam (linear tapered in breadth (B) taper, 
depth constant; linear tapered in depth (H), breadth constant 
and linear tapered in diameter (D)) of length L undergoing large 
amplitude with tip concentrated load(P) is shown in Figure 
2(a), (b), and (c). The approximate nonlinear solutions in the 
form of polynomial functions are obtained using finite element 
software[14]. For analysis, 2 node( 6 dof per node) prismatic 
3D general beam elements (NKTP=39) are used for analysis. 
The formulation includes stretching and  bending and accounts 
for geometric nonlinear(large displacement, large strain) 
behavior. The beam is based on the Kirchhoff assumption, so no 
transverse shear deflection effect is considered. Figure 3(a) 
shows the finite element model for a cantilever beam with 
elements and nodes( total elements=20 and nodes=21).  
Figure 3(b) shows the prismatic (uniform) cantilever beam. 
Figure 3(c) shows the varying cross-section 𝐵𝑡/𝐵𝑅(breadth 
taper)=0.2. Figure 3(d) depicts a varying cross-section 
𝐻𝑡/𝐻𝑅(depth taper)=0.2. Figure 3(e) shows the varying cross-
section 𝐷𝑡/𝐷𝑅(diameter taper)=0.2. For clarity of modeling, the 
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author only shows the varying cross-section for a root to tip 
ratio of 0.2. However, all ratios from 0.2 to 0.8 are modelled by 
writing a NISA programming code (BMSEC), and section 
properties are supplied to the software in the property card of 
the beam. 

 

(a): Cantilever beam showing elements, nodes, boundary 
conditions and loads. 

 

(b): Prismatic (uniform ) cantilever beam. 

 

(c): Non-prismatic cantilever beam: Breadth tapered and 
depth constant. 

 

(d): Non-prismatic cantilever beam: depth tapered and 
breadth constant. 

 

(e): Non-prismatic cantilever beam: diameter tapered. 

Figure 3(a): Finite element model for cantilever beam showing 
element and node (total element= 20 and nodes=21). 

(b): Prismatic (uniform ) cantilever beam, (c): Varying cross-
section (breadth taper) 𝐵𝑡/𝐵𝑅 =0.2, (d): Varying cross-section 
(depth taper) 𝐻𝑡/𝐻𝑅 =0.2, (e): Varying cross-section (diameter 

taper)𝐷𝑡/𝐷𝑅 =0.2. 

In this work, author has followed the concept of [10] and 
applied it to a tapered cantilever subject to large displacement 
to find the frequency of the first mode. Nonlinear stiffness is 
used here instead of linear stiffness. Nonlinear stiffness is 
related to tip amplitude (𝑎/𝐿), tip slope (𝛼), and load parameter 
(𝜆). In the literature, the nonlinear stiffness of uniform beams 
can be found using the relationship between tip amplitude, tip 
slope, and load parameters available in article [13],[11]. 
However, for tapered beams, these above relationships are not 
available in the literature. To evaluate nonlinear stiffness, 
geometric nonlinear analysis parametric studies have been 
performed using FEM program (NISA-II) for prismatic 
(uniform) and non-prismatic cantilever (different taper ratios 
and different taper types) beams. Based on parametric studies, 
the relationship between amplitude (𝑎/𝐿) with load parameter 
(𝜆) and tip slope (𝛼) with load parameter (𝜆) is proposed in 
terms of polynomial functions. To find the aforementioned 
polynomials, first a tip load (P) is applied to a given taper ratio 
and taper type beam with assumed geometry (length, breadth, 
depth, diameter in case of circular cross section). The tip lateral 
deflections (a) and tip slope (𝛼) are estimated for the applied 
load from the converged nonlinear solution. The load 
parameter (𝜆 = 𝑃𝐿2/𝐸𝐼) versus tip amplitude (𝑎/𝐿) and load 
parameter (𝜆 = 𝑃𝐿2/𝐸𝐼) versus tip slope (𝛼) are plotted. The 
relations obtained from these plots are expressed in terms of 
polynomials by curve fitting the data. 

For a given load parameter, tip amplitude is estimated using the 
proposed polynomial functions for a tip slope, and different 
taper ratios and taper types of cantilever beam. In addition, the 
load parameters and amplitudes are used to calculate the 
nonlinear stiffness (P/a) is for a given tip slope and different 
taper ratios and taper types of cantilever beam. Finally, using 
nonlinear stiffness, beam mass and mass distribution 
parameter for different taper [10], first mode (fundamental) 
nonlinear large amplitude frequency is evaluated.  

The polynomial functions in terms of tip amplitude (𝑎/𝐿), tip 
slope (𝛼) and load parameter (𝜆) as illustrated in Figure1, 
Figure 2 and Figure3 are presented for various taper ratios () 
as follows. 
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2.1 Prismatic (without taper) uniform beam 

 = 0.0;  

𝑎

𝐿
= −2.79 X 104 + 0.509𝜆 − 0.0396𝜆2 (1) 

𝛼 = −3.44 X 104 + 0.341𝜆 − 0.032𝜆2 (2) 

2.2 Non-prismatic with breadth taper and depth is 
constant 

 = 0.2; 

𝑎

𝐿
= −8.67 X 10−5 + 0.336𝜆 − 0.018𝜆2 (3) 

𝛼 = −1.07X 10−4 + 0.573𝜆 − 0.023𝜆2 (4) 

 = 0.4; 

𝑎

𝐿
= −1.06 X 10−4 + 0.358𝜆 − 0.023𝜆2 (5) 

𝛼 = −1.35X 10−4 + 0.559𝜆 − 0.029𝜆2 (6) 

 = 0.6; 

𝑎

𝐿
= −1.34 X 10−4 + 0.385𝜆 − 0.029𝜆2 (7) 

𝛼 = −1.80 X 10−4 + 0.621𝜆 − 0.039𝜆2 (8) 

 = 0.8; 

𝑎

𝐿
= −1.82 X 10−4 + 0.422𝜆 − 0.040𝜆2 (9) 

𝛼 = −2.63 X 10−4 + 0.718𝜆 − 0.057𝜆2 (10) 

2.3 Non-prismatic with depth taper and breadth is 
constant 

 = 0.2; 

𝑎

𝐿
= −4.47 X 10−5 + 0.399𝜆 − 0.0528𝜆2 (11) 

𝛼 = −6.017X 10−5 + 0.632𝜆 − 0.070𝜆2 (12) 

 = 0.4; 

𝑎

𝐿
= −7.12 X 10−4 + 0.488𝜆 − 0.0958𝜆2 (13) 

𝛼 = −1.06X 10−3 + 0.841𝜆 − 0.143𝜆2 (14) 

 = 0.6; 

𝑎

𝐿
= −1.173 X 10−3 + 0.641𝜆 − 0.198𝜆2 (15) 

𝛼 = −2.199X 10−3 + 1.266𝜆 − 0.361𝜆2 (16) 

 = 0.8;   

𝑎

𝐿
= −2.161 X 10−5 + 0.907𝜆 − 0.167𝜆2 (17) 

𝛼 = −5.915X 10−5 + 2.378𝜆 − 0.437𝜆2 (18) 

2.4 Non-prismatic with diameter taper 

 = 0.2; 

𝑎

𝐿
= −1.13 X 10−3 + 0.400𝜆 − 0.058𝜆2 (19) 

𝛼 = −1.57 X 10−3 + 0.647𝜆 − 0.080𝜆2 (20) 

 = 0.4; 

𝑎

𝐿
= −2.15 X 10−3 + 0.547𝜆 − 0.136𝜆2 (21) 

𝛼 = −3.47 X 10−3 + 0.996𝜆 − 0.219𝜆2 (22) 

 = 0.6; 

𝑎

𝐿
= −2.73 X 10−3 + 0.831𝜆 − 0.373𝜆2 (23) 

𝛼 = −6.69 X 10−3 + 1.874𝜆 − 0.816𝜆2 (24) 

 = 0.8; 

𝑎

𝐿
= −1.82 X 10−4 + 1.140𝜆 − 1.190𝜆2 (25) 

𝛼 = −1.57 X 10−3 + 4.308𝜆 − 4.139𝜆2 (26) 

Where, 𝜆 is the dimensionless load parameter(=𝑃𝐿2/𝐸𝐼𝑅); P is 
the tip load; the length of the beam is L; beam moment of inertia 

is 𝐼𝑅(=
𝐵𝑅𝐻3

12
), for a rectangular section beam with breadth(B) 

tapering linearly ( depth is constant);(=
𝐵𝐻𝑅

3

12
)for a rectangular 

section beam with depth (H) tapering linearly (breadth is 

constant); and (=
𝜋𝐷𝑅

4

64
) for a circular cross section beam of 

tapering diameter  (D) linearly) at root; 𝐸𝐼𝑅 (= elastic modulus); 
 is the taper ratio(= 1- TR). TR is defined as the ratio of 
𝐵𝑡/𝐵𝑅(breadth taper), 𝐻𝑡/𝐻𝑅(depth taper), and 𝐷𝑡/
𝐷𝑅(diameter taper).The R and t mentioned as subscripts 
indicate the size of root and tip of a non-prismatic (tapered) 
beam. 

3 Cantilever first mode frequency of prismatic 
and non-prismatic (tapered) beam 

3.1 Equation for frequency (linear) 

The first mode frequency equation for a tapered cantilever for 
a small tip deflection can be expressed as [10]. 

𝑓𝐿𝑖𝑛 = 𝐶̅√
𝐾

𝑀̅
 (27) 

Where, 

𝑓𝐿𝑖𝑛 is the linear first mode frequency in Hertz; 

𝐾 (=P/a)=stiffness (linear) in N/m;  

𝑀̅ = m̅ ∫ (1 −  + ξ)n1

0
beam mass in Kg;  

m̅ (= mass per unit length);  

ξ is non-dimensional co-ordinate; 

n =1 for rectangular cross section beam with linearly breadth 
(B) and depth (H) tapering and  

n=2 for a circular cross section beam with tapering diameter 
linearly.   
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The mass values for different taper ratio and for different taper 
type considered in the present investigation are presented in 
Table 1. 

Table1. Determination of  beam mass( M̅ )for different taper 
ratios. 

 

Taper Type 

0 0.2 0.4 0.6 0.8 

Breadth ( n = 1) 1 0.9 0.8 0.7 0.6 

Depth ( n = 1 ) 1 0.9 0.8 0.7 0.6 

Diameter (n = 2) 1 0.825 0.653 0.520 0.413 

𝐶̅ = mass distribution parameter. To determine the 𝐶̅ value, the 
polynomials corresponding to the linear tapered in diameter, 
the linear tapered in width (depth constant), and the linear 
tapered in depth (width constant) are shown in [10]. The 𝐶̅ 
value has been evaluated and is shown in Table 2. 

Table 2. Values of 𝐶̅ for determination of  frequency 
corresponding to different taper ratios and taper types. 

 

Taper 

Type 

 

0 

 

0.2 

 

0.4 

 

0.6 

 

0.8 

Breadth 0.3233 0.3361 0.3570 0.3851 0.4415 

Depth 0.3233 0.3414 0.3709 0.4147 0.5183 

Diameter 0.3233 0.3454 0.411 0.524 0.680 

3.2 Equation of frequency (Large amplitude) 

When a cantilever is subjected to large amplitude vibrations, 
the first mode nonlinear frequency is estimated by making use 
of the nonlinear rigidity or stiffness [11]-[12] instead of the 
linear stiffness in equation (27). 

𝑓𝑁𝐿 = C̅√
K̅NL

𝑀̅
 (28) 

Where, K̅NL=nonlinear stiffness. The approximations is 
elucidated in the following section. 

4 Results and discussions 

For the range of tip slope(𝛼=0.4 to 40 degree), the large 
amplitude first mode frequency of a prismatic (or uniform) and 
non-prismatic tapered (taper in width, depth constant; taper in 
depth, width constant; and taper in diameter) cantilever have 
been calculated using 𝐶̅ (i.e. mass distribution parameter 
(Table 2). Here, first utilising Eqs. (1) to (26) with the tip load 
(P) of the prismatic and non-prismatic tapered cantilever, tip 
amplitude (a/L) and end slope (𝛼) are calculated. And 
nonlinear stiffness (P/a) is estimated.To validate the present 
derived polynomial through FEA, the prismatic (or uniform) 
cantilever first mode nonlinear large amplitude dimensionless 
frequencies obtained from derived polynomial functions  
(Eqs.(1) to (2)) and using Eq.(28), are compared with the 
reference [11]. This validates the proposed polynomial 
approximation. 

The large amplitude frequency (fNL) of the first mode is 
calculated for the varied end slope. The dimensionless 

frequency isΩ = C̅√
m

EI
ωL2 . Where,  (=2 𝑓𝑁𝐿) is the radian 

frequency. The comparison(Table 3) shows a 1.21% difference 
for a 40 degree tip slope. 

Table 3. First mode large amplitude frequencies for a 
prismatic(uniform) cantilever. 

 𝛺 ( Present) 𝛺 [11] Difference 

0.40 3.521 3.516 0.14 
100 3.541 3.537 0.16 
200 3.606 3.596 0.29 
300 3.681 3.638 1.16 
400 3.769 3.815 1.21 

The procedure as explained above followed to find 
dimensionless frequency of non-prismatic(various tapered) 
cantilever. And the first mode non-liner frequency 𝛺 of  
cantilever (breadth taper, depth taper and diameter taper) are 
compared (Tables 4, 5 and 6) with those of [7]. 

 

Table 4. Large amplitude first mode frequencies (𝛺) for a non-prismatic cantilever ( breadth taper, depth is constant) 
𝐸𝐼𝑅 = 3364830.0 N-m2, m̅=152.88 Kg/ m. 

 → 0.2 0.4 0.6 0.8 

  Diff   Diff  Diff  Diff  

↓  %  %  %  % 
0.40 3.838 1.96 4.205 2.5 4.705 2.51 5.453 1.0 

 3.763*  4.097*  4.585*  5.398*  

100 3.874 2.6 4.238 3.1 4.715 2.56 5.585 3.2 

 3.770*   4.105*   4.594*   5.407*  
200 3.914 3.1 4.283 3.6 4.769 3.1 5.653 3.8 

 3.792*   4.128*   4.619*   5.436*  
300 3.957 3.2 4.332 3.8 4.829 3.4 5.730 4.2 

 3.829*   4.168*   4.663*   5.485*  

400 4.023 3.5 4.406 4.1 4.904 3.6 5.815 4.4 
 3.883*   4.225*   4.725*   5.555*  

*: Bottom values are of [7]. 
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Table 5. Large amplitude first mode frequencies (𝛺)for a non-prismatic cantilever(depth taper, breadth is constant) 𝐸𝐼𝑅  
=12926324.N-m2,m̅ =152.88 Kg / m. 

 → 0.2 0.4 0.6 0.8 

  Diff   Diff  Diff  Diff  

↓  %  %  %  % 
0.40 3.621 0.35 3.871 2.2 3.991 1.4 4.408 2.6 

  3.608*   3.737*   3.934*   4.292*  

100 3.653 1.0 3.872 3.3 4.043 2.5 4.443 3.2 

 3.615*   3.744*   3.941*   4.299*  
200 3.729 2.5 3.909 3.7 4.099 3.3 4.477 3.5 

 3.636*   3.764*   3.961*   4.317*  
300 3.820 3.9 4.020 5.5 4.225 5.4 4.636 6.2 

3.671*  3.799*  3.994*  4.348*  

400 3.929 5.3 4.161 7.5 4.391 7.9 4.789 8.2 
 3.721*   3.848*   4.042*   4.392*  

*: Bottom values are of [7]. 

Table 6. Large amplitude first mode frequencies (𝛺) for a non-prismatic cantilever( diameter taper) 𝐸𝐼𝑅  = 15212946. N-m2, m̅= 
235.34 Kg / m. 

 → 0.2 0.4 0.6 0.8 

  Diff   Diff  Diff  Diff  

↓  %  %  %  % 
0.40 3.86 0.12 4.328 0.2 5.025 0.3 6.229 0.5 

 3.855*  4.319*   5.009*   6.196*  

100 3.872 0.28 4.477 3.37 5.225 3.98 6.386 3.3 

 3.862*   4.326*   5.017*   6.203*  
200 3.953 1.77 4.574 4.91 5.314 5.15 6.547 5.0 

 3.884*   4.349*   5.040*   6.225*  
300 4.056 3.34 4.713 6.91 5.466 7.08 6.748 7.2 

 3.921*   4.387*   5.079*   6.261*  

400 4.185 5.04 4.876 8.90 5.677 9.54 7.012 9.9 
 3.974*   4.442*   5.135*   6.314*  

*: Bottom values are of[7]. 
 

Table4. shows the present dimensionless frequencies(𝛺) 
results obtained using derived polynomial (Eqs.(3) to (10)) for 
different taper ratios fornon-prismatic cantilever beams 
(breadth taper, depth is constant).  

It is found that at a taper ratio of 0.8, the difference of present 
dimensionless frequencies and published data[7] is 4.4% at a 
40 degree tip slope. If the tip slope is less than 40 degrees, the 
difference is less than 4.4%. 

Table 5. shows the present dimensionless frequencies(𝛺) for 
different taper ratios for non-prismatic cantilever beam (depth 
taper, breadth is constant)obtained using derived 
polynomial(Eqs. (11) to (18)). 

It is found that at a taper ratio of 0.8, the difference between 
present dimensionless frequencies and published data[7] is 
8.2% at a 40degree tip slope. If the taper ratio and tip slope are 
less, the difference is less than 8.2%. 

Table 6. shows the present dimensionless large amplitude 
frequencies(𝛺) results obtained using derived polynomial 
(Eqs.(19) to (26)) for different taper ratios fornon-prismatic 
cantilever beams(diameter taper).  

It is found that at a taper ratio of 0.8, the difference between 
present dimensionless frequencies and published data [7] is 
9.9% at a 40 degree tip slope. If the taper ratio and tip slope are 
lower, the difference is less than 9.9%. 

In the range of lower tip slopes (𝛼) up to 40 degrees, the current 
results compare well with those in [7]. The difference in current 
results compared to [7] is due to the different analysis of the 
problem studied. The large amplitude first mode frequency (𝛺) 

is observed to increase with an increase in (𝛼). This indicates 
that the prismatic and non-prismatic beams with fixed at one 
end (cantilever) exhibit hardening type nonlinearity. In 
addition, this hardening effect increases with increasing taper. 
It has beenfound that as the taper ratio increases, the firstmode 
frequency of a particular tip slope also increases. 

5 Conclusions 

The main purpose of this work is to contribute to a simple 
representation of large amplitude free vibration problems of 
prismatic (uniform) and non-prismatic (various tapered) 
beams. A finite element computer program [14] was used to get 
approximate nonlinear solutions for polynomial functions of 
prismatic (uniform) and non-prismatic (width taper, depth 
taper, diameter taper) cantilevers. Large deflection data sets 
(a/L and 𝛼) with tip concentrated loads of various taper ratios 
are obtained. 

The first mode frequency is evaluated for large-amplitude 
prismatic and non-prismatic cantilevers using a very simple 
approach (Section 3), based on the above data (discussed in the 
previous paragraph).  

The current dimensionless frequencies of prismatic (uniform) 
cantilevers obtained from the polynomial functions (Eqs.(1) to 
(2)) are compared with the published data with a 1.21%  
(Table 3) difference at a tip slope of 40 degrees. 

For non-prismatic cantilever beams (breadth taper, depth is 
constant), at a taper ratio of 0.8, the difference between present 
dimensionless frequencies with published data is 4.4% (Table 
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4) at a 40 degree tip slope. It is found that if the taper ratio and 
tip slope are lower, the difference is less than 4.4%. 

For non-prismatic cantilever beams (depth taper, breadth is 
constant), at a taper ratio of 0.8, the difference in present 
dimensionless frequencies with published data is 8.2% 
(Table 5) at a 40 degree tip slope. It is observed that if the taper 
ratio and tip slope are lower, the difference is less than 8.2%. 

For non-prismatic cantilever beams (diameter taper), it is 
found that at a taper ratio of 0.8, the difference between present 
dimensionless frequencies and published data is 9.9% (Table 6) 
at a 40 degree tip slope. It is seen that if the taper ratio and tip 
slope are lower, the difference is less than 9.9%. 

It is seen that the large amplitude first mode frequency (𝛺) 
increases with tip slope (𝛼). This indicates that the prismatic 
and non-prismatic cantilever beams exhibit hardening type 
nonlinearity. It has been found that as taper ratio increases, the 
first mode frequency also increases at certain tip slopes. 
Therefore, this hardening effect increases with increasing 
taper. In addition, for a given tip slope (𝛼), the diameter taper 
shows a higher frequency than other tapered beams and 
uniform beams.  

This new simple approach provides correct computations for 
all practical designs with significantly less computational 
power and satisfactory concordance contrasted to other 
techniques [7],[8],thus signifying the adequacyof the simple 
proposed method. Therefore, all the proposed polynomials can 
produce a very accurate approximation to a nonlinear problem. 
However, current analysis may be limited to a lower range of 
tip slope and amplitudes. 
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