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Abstract

This article presents large deflection data for prismatic (unvarying
cross section across length) and non-prismatic (tapered, i.e. varying
cross section across length) cantilever beams subjected to concentrated
tip loads using the finite element method for different taper ratios. The
approximate nonlinear solution is derived from the perspective of a
polynomial function. The tapered beams that correlate to the non-
prismatic cantilever beams have different widths, depths, and
diameters. Using the aforementioned large displacement data that have
been analysed, a very simple approach is used to evaluate the large
amplitude first mode frequency for the cantilever beam with (non-
prismatic) tapered and without (prismatic) tapered. The current
approach can be used effectively to find accurate results with far less
computer capacity as compared to other methods available in the
literature. The difference between the current findings and the
bibliographic data is shown. The major goal of this work is to contribute
to the simple description of polynomial functions for large amplitude
first mode free vibration frequency problems with and without tapered
beams in terms load parameter(1) versus tip slope (a)and tip
amplitude(a/L). Large amplitude first mode frequency ({2) increases
with tip slope(a). This indicates that the prismatic and non-prismatic
cantilever beams exhibit hardening type nonlinearity. At a particular tip
slope(a), the diameter taper shows higher frequency than other tapered
beams and uniform beams. According to current studies, it can be
restricted to a lower range of tip slope(a)or amplitude(a/L).

Keywords: Large amplitude, uniform (prismatic), Tapered (non-
prismatic), Cantilever beam, Tip slope, Free vibration.

(0)4

Bu makale, farkli koniklik oranlart igin sonlu elemanlar ydéntemini
kullanarak konsantre ug yiiklerine maruz kalan prizmatik (uzunluk
boyunca degismeyen enine kesit) ve prizmatik olmayan (konik, yani
uzunluk boyunca degisen enine kesit) konsol kirisler icin biiytlik sapma
verileri sunmaktadir. Yaklasik dogrusal olmayan ¢oziim, bir polinom
fonksiyonunun perspektifinden tiiretilir. Prizmatik olmayan konsol
kiriglerle iliskili olan konik kirislerin farkli genislikleri, derinlikleri ve
caplart vardir. Yukarida bahsedilen ve analiz edilen biiyiik yer
degistirme verileri kullanilarak, konik (prizmatik) ve konik olmayan
(prizmatik) konik kiris icin biiyiik genlikli birinci mod frekansini
degerlendirmek icin ¢ok basit bir yaklasim kullanilir. Mevcut yaklasim
etkin bir sekilde kullanilabilir. literatiirde mevcut olan diger yontemlere
kiyasla cok daha az bilgisayar kapasitesi ile dogru sonuglart bulmaktir.
Mevcut  bulgular ile bibliyografik veriler arasindaki  fark
gosterilmektedir. Bu ¢alismanin ana amaci, konik kirisli olan ve
olmayan biiytik genlikli birinci mod serbest titresim frekansi
problemleri icin yiik parametresi (1)ile u¢ egimi () ve ug genligi (a/L)
cinsinden  polinom  fonksiyonlarinin  basit tamimina  katkida
bulunmaktir. Biiyiik genlikli birinci mod frekanst (2) u¢ egimi («) ile
artar. Bu, prizmatik ve prizmatik olmayan konsol kirislerin sertlesme
tipi dogrusal olmayanlik sergiledigini gésterir. Belirli bir u¢ egiminde
(@), ¢ap konikligi, diger konik kirislerden ve diizgiin kirislerden daha
yiiksek frekans gosterir.Mevcut calismalara gére, daha diisiik bir ug¢
egimi (a)veya genlik (a/L) araligi ile stnirlandirilabilir.

Anahtar kelimeler: Biiyiikk genlik, Uniforma (prizmatik), Konik
(prizmatik olmayan), Konsol kiris, U¢ egimi, Serbest titresim.

1 Introduction

A particularly prevalent class of structural element that has
been the focus of extensive study is the beam.It can be classified
as prismatic (having a uniform or non-changing cross-section
along the length) or non-prismatic (having a tapering or
variable cross-section along the length), thin or thick, based on
its geometry. Numerous beams are used in many engineering
applications, and numerous studies on the transverse vibration
of uniform isotropic beams have been published in the
literature. However, when analysing usage and service, a non-
uniform tapered (non-prismatic) beam[1] may have a superior
mass and load intensity distribution than a uniform prismatic
beam. This enables the needs of various engineering
disciplines, such as aeronautical engineering, civil engineering,
and other innovative engineering applications, to be met while
taking into account economic and other factors. The natural

*Corresponding author/Yazisilan Yazar

vibration frequencies of such structures must be known in
order to design them to withstand dynamic forces.

Linear vibration theory predicts that the frequency of natural
vibration is amplitude-independent [1]-[3]. Such conclusions
are often not valid when the amplitude of vibration is large, as
one or another is accompanied by an absenceof linearity effect.
A helpful overview of the literature on nonlinear beam
vibrations has been provided by [4]. Large-amplitude
oscillations of uniform beams are conducted with different
support boundary conditions[5]. The geometric nonlinearity
was approximated using a truncated series and the solution
obtained by solving the mode equation by the averaging
method using the assumed modal shape and Langrange
equations[6]. The large-amplitude response of beams with
varying cross-sectional areas was performed using a fourth-
order iterative Runge-Kutta numerical scheme [7]. An
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alternative analytical approach has been proposed to assess the
non-linear vibrational performance of tapered(non-prismatic)
cantilever[8]. Fully constrained tapered (non-prismatic) beams
experiencing large-amplitude free vibrations caused by
nonlinear elastic foundations have been reported [9].

A simple relationship for the linear taper cantilever beam to
determine its first mode linear natural frequency is presented.
[10] depicts the relationship between a beam's linear frequency
expressed as a function of beam stiffness, beam mass, and mass
distribution parameters. A study was successfully proposed to
obtain the large amplitude first mode of the uniform (Figurel)
prismatic cantilever [11] and spring hinge cantilever [12]. In
both works [11],[12] the linear stiffness of [10] was replaced by
nonlinear stiffness.

P
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Figure 1. Prismatic (unvarying cross section along length)
uniform cantilever beam experiencing large amplitudes [11]. L
is length of beam; P is vertical tip load; a is tip lateral
deflection; a is tip slope.

This article presents a study to provide the large-amplitude
first mode frequency for the non-prismatic(tapered beam)
cantilever (Figure 2(a), (b), (¢) in a simple approach, following
the previously published [11],[12] approach with modification(
nonliner stiffness in place of linear stiffness) of the
methodology of [10]. Nonlinear stiffness is related to tip
amplitude (a/L), tip slope («), and load parameter (4). In the
literature, the nonlinear stiffness of uniform beams can be
found using the relationship between tip amplitude, tip slope,
and load parameters available in article [11],[13]. However,for
tapered beams, these above relationships are not available in
the literature. To evaluate nonlinear stiffness,
nonlinear(geometric)static  parametric studies through
FEM[14]modeling have been carried out to derive a set of
polynomial functions with different taper ratios for the
different tapered types cantilever beams in terms of the load
parameters (1 = PL?/EI)and tip amplitudes(a/L), and load
parameters and tip slopes(a). These polynomial functions are
obtained for the prismatic and non-prismatic (tapered)
cantilever beam with tip concentrated load. Based on the
outcomes of the load-deflection data, the first mode nonlinear
frequency is estimated by the use of the easy relation modified
[11] of the tip slope in a range. Compared to the result in
[7], this result shows the effectiveness of the proposed simple
method. The aforementioned approach is the original aspect of
the present study and contribution to the literature.

The present study is of practical interest as it applies to an ideal
aeroplane wing with a tip tank or engine, gas turbine fans, and
wind turbine blades, etc.
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Figure 2. Non-prismatic (tapered) cantilever beam [10]
experiencing large amplitudes: (a): Tapered in breadth,
constant in depth. (b):Tapered in depth, constant in breadth
(c):Tapered in diameter.

2 Polynomial functions for different taper
ratios for large displacement under tip load
of a tapered (non-prismatic) cantilever
using FEM

A tapered cantilever beam (linear tapered in breadth (B) taper,
depth constant; linear tapered in depth (H), breadth constant
and linear tapered in diameter (D)) of length L undergoing large
amplitude with tip concentrated load(P) is shown in Figure
2(a), (b), and (c). The approximate nonlinear solutions in the
form of polynomial functions are obtained using finite element
software[14]. For analysis, 2 node( 6 dof per node) prismatic
3D general beam elements (NKTP=39) are used for analysis.
The formulation includes stretching and bending and accounts
for geometric nonlinear(large displacement, large strain)
behavior. The beam is based on the Kirchhoff assumption, so no
transverse shear deflection effect is considered. Figure 3(a)
shows the finite element model for a cantilever beam with
elements and nodes( total elements=20 and nodes=21).
Figure 3(b) shows the prismatic (uniform) cantilever beam.
Figure 3(c) shows the varying cross-section B;/Bpy(breadth
taper)=0.2. Figure 3(d) depicts a varying cross-section
H./Hg(depth taper)=0.2. Figure 3(e) shows the varying cross-
section D, /Dg(diameter taper)=0.2. For clarity of modeling, the
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author only shows the varying cross-section for a root to tip
ratio of 0.2. However, all ratios from 0.2 to 0.8 are modelled by
writing a NISA programming code (BMSEC), and section
properties are supplied to the software in the property card of
the beam.

Fixed

(a): Cantilever beam showing elements, nodes, boundary
conditions and loads.

.

(b): Prismatic (uniform ) cantilever beam.

(c): Non-prismatic cantilever beam: Breadth tapered and
depth constant.

(d): Non-prismatic cantilever beam: depth tapered and
breadth constant.

(e): Non-prismatic cantilever beam: diameter tapered.

Figure 3(a): Finite element model for cantilever beam showing
element and node (total element= 20 and nodes=21).

(b): Prismatic (uniform ) cantilever beam, (c): Varying cross-
section (breadth taper) B;/Bg =0.2, (d): Varying cross-section
(depth taper) H,/Hg =0.2, (e): Varying cross-section (diameter

taper)D;/Dg =0.2.

In this work, author has followed the concept of [10] and
applied it to a tapered cantilever subject to large displacement
to find the frequency of the first mode. Nonlinear stiffness is
used here instead of linear stiffness. Nonlinear stiffness is
related to tip amplitude (a/L), tip slope (), and load parameter
(4). In the literature, the nonlinear stiffness of uniform beams
can be found using the relationship between tip amplitude, tip
slope, and load parameters available in article [13],[11].
However, for tapered beams, these above relationships are not
available in the literature. To evaluate nonlinear stiffness,
geometric nonlinear analysis parametric studies have been
performed using FEM program (NISA-II) for prismatic
(uniform) and non-prismatic cantilever (different taper ratios
and different taper types) beams. Based on parametric studies,
the relationship between amplitude (a/L) with load parameter
(1) and tip slope (a) with load parameter (1) is proposed in
terms of polynomial functions. To find the aforementioned
polynomials, first a tip load (P) is applied to a given taper ratio
and taper type beam with assumed geometry (length, breadth,
depth, diameter in case of circular cross section). The tip lateral
deflections (a) and tip slope (@) are estimated for the applied
load from the converged nonlinear solution. The load
parameter (A = PL?/EI) versus tip amplitude (a/L) and load
parameter (A = PL2/EI) versus tip slope (a) are plotted. The
relations obtained from these plots are expressed in terms of
polynomials by curve fitting the data.

For a given load parameter, tip amplitude is estimated using the
proposed polynomial functions for a tip slope, and different
taper ratios and taper types of cantilever beam. In addition, the
load parameters and amplitudes are used to calculate the
nonlinear stiffness (P/a) is for a given tip slope and different
taper ratios and taper types of cantilever beam. Finally, using
nonlinear stiffness, beam mass and mass distribution
parameter for different taper [10], first mode (fundamental)
nonlinear large amplitude frequency is evaluated.

The polynomial functions in terms of tip amplitude (a/L), tip
slope (a) and load parameter (A) as illustrated in Figurel,
Figure 2 and Figure3 are presented for various taper ratios (&)
as follows.
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2.1 Prismatic (without taper) uniform beam a
—=-1.13X10"3 + 0.4001 — 0.05842 (19)
£=0.0; L
a a=-157X10"3 + 0.6471 — 0.0804> (20)
= —2.79 X 10* 4+ 0.5091 — 0.039612 &8
£=04;
a = —3.44X10*+ 0.3411 — 0.0324? (2) a
—=-215X1073 + 0.5471 — 0.1364? (21
2.2 Non-prismatic with breadth taper and depth is L
constant a=-347X1073 + 0.9961 — 0.2192 (22)
£€=0.2;
£=0.6;
a
—=-8.67X1075+ 0.3361 — 0.01812 3) a
L = —2.73X1073 4+ 0.8311 — 0.37312 (23)
a=-1.07X10"* 4+ 0.5731 — 0.02322 4
a=-6.69X1073 + 1.8741 — 0.81642 (24)
£=04;
£=0.8;
a
—=-1.06X10"* 4 0.3581 — 0.02342 (5) a
L i —1.82X107* + 1.1401 — 1.190A2 (25)
a =-135X10"* + 0.5591 — 0.02942 (6)
a=-157X10"3 + 4.3081 — 4.1394? (26)
€=0.6;
Where, A is the dimensionless load parameter(=PL?/EI); P is
a . ; o : .
& _134X10~* + 0.3851 — 0.02912 % the tip ltéag;the length of the beam is L; beam moment of inertia
L is Ix(= ’;2 ), for a rectangular section beam with breadth(B)
_ - 3
@ =-180X107"+0.6214 - 0.0394* (8) tapering linearly ( depth is constant);(= %)for a rectangular
£=0.8; section beam with d4epth (H) tapering linearly (breadth is
a constant); and (= "6—]1“) for a circular cross section beam of
- —1.82X107* + 0.42224 — 0.0404? 9) tapering diameter (D) linearly) atroot; E I (= elastic modulus);
¢ is the taper ratio(= 1- TR). TR is defined as the ratio of
a=-2.63X10"*+0.7181 — 0.05712 (10) B;/Bg(breadth taper), H,/Hg(depth taper), and D,/
) . . . Dg(diameter taper).The R and t mentioned as subscripts
2.3  Non-prismatic with depth taper and breadth is indicate the size of root and tip of a non-prismatic (tapered)
constant beam.
6=0.2; 3 Cantilever first mode frequency of prismatic
a o .
o= 447X 1075 + 0.3991 — 0.052812 (11) and non-prismatic (tapered) beam
3.1 Equation for frequency (linear)
- _ -5 _ 2
@ =-6.017X10" + 0.6321 — 0.0704 (12) The first mode frequency equation for a tapered cantilever for
e=04: a small tip deflection can be expressed as [10].
a P
—=-712X10"*+ 0.4881 — 0.09584> (13) _ = |K (27)
L fiin=C W
a=-1.06X10"3 + 0.8411 — 0.14342 (14)
Where,
&=0.6; fLin 1s the linear first mode frequency in Hertz;
% =-1.173X 10—3 +0.6411 — 019812 (15) 1? (=P/a)=stiffness (linear) in N/m,
M=m f01(1 — & + g§)"beam mass in Kg;
a=-2.199X 1073 + 1.2661 — 0.36142 (16)
m (= mass per unit length);
£=0.8; ¢ is non-dimensional co-ordinate;
a _ n =1 for rectangular cross section beam with linearly breadth
2o _ 5 _ 2
I 2.161X107> 4+ 0.9074 — 0.1671 17 (B) and depth (H) tapering and
@ = —5.915X 10~5 + 2.3781 — 0.43712 (18) n=2 for a circular cross section beam with tapering diameter

2.4 Non-prismatic with diameter taper
€=0.2;

linearly.
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The mass values for different taper ratio and for different taper
type considered in the present investigation are presented in
Table 1.

Tablel. Determination of beam mass( M )for different taper

ratios.
£ 0 0.2 0.4 0.6 0.8
Taper Type
Breadth (n=1) 1 0.9 0.8 0.7 0.6
Depth(n=1) 1 0.9 0.8 0.7 0.6
Diameter (n = 2) 1 0.825 0.653 0.520 0.413

C = mass distribution parameter. To determine the C value, the
polynomials corresponding to the linear tapered in diameter,
the linear tapered in width (depth constant), and the linear
tapered in depth (width constant) are shown in [10]. The C
value has been evaluated and is shown in Table 2.

Table 2. Values of € for determination of frequency
corresponding to different taper ratios and taper types.

e »
Taper 0 0.2 0.4 0.6 0.8
Type
Breadth  0.3233 0.3361 0.3570 0.3851 0.4415
Depth 0.3233 0.3414 0.3709 0.4147 0.5183
Diameter  0.3233 0.3454 0411 0.524  0.680

3.2

When a cantilever is subjected to large amplitude vibrations,
the first mode nonlinear frequency is estimated by making use
of the nonlinear rigidity or stiffness [11]-[12] instead of the
linear stiffness in equation (27).

Equation of frequency (Large amplitude)

= C (28)

I
§||z
z

Where, Kyp=nonlinear stiffness.
elucidated in the following section.

The approximations is

4 Results and discussions

For the range of tip slope(a=0.4 to 40 degree), the large
amplitude first mode frequency of a prismatic (or uniform) and
non-prismatic tapered (taper in width, depth constant; taper in
depth, width constant; and taper in diameter) cantilever have
been calculated using C (i.e. mass distribution parameter
(Table 2). Here, first utilising Egs. (1) to (26) with the tip load
(P) of the prismatic and non-prismatic tapered cantilever, tip
amplitude (a/L) and end slope (a) are calculated. And
nonlinear stiffness (P/a) is estimated.To validate the present
derived polynomial through FEA, the prismatic (or uniform)
cantilever first mode nonlinear large amplitude dimensionless
frequencies obtained from derived polynomial functions
(Egs.(1) to (2)) and using Eq.(28), are compared with the
reference [11]. This validates the proposed polynomial
approximation.

The large amplitude frequency (fx.) of the first mode is
calculated for the varied end slope. The dimensionless

frequency isQ = C\/g wL? . Where, » (=2 nfy,) is the radian

frequency. The comparison(Table 3) shows a 1.21% difference
for a 40 degree tip slope.

Table 3. First mode large amplitude frequencies for a
prismatic(uniform) cantilever.

o 0 (Present) 0 [11] Difference
0.40 3.521 3.516 0.14
100 3.541 3.537 0.16
200 3.606 3.596 0.29
300 3.681 3.638 1.16
400 3.769 3.815 1.21

The procedure as explained above followed to find
dimensionless frequency of non-prismatic(various tapered)
cantilever. And the first mode non-liner frequency {2 of
cantilever (breadth taper, depth taper and diameter taper) are
compared (Tables 4, 5 and 6) with those of [7].

Table 4. Large amplitude first mode frequencies (£2) for a non-prismatic cantilever ( breadth taper, depth is constant)
Eln =3364830.0 N-m?, m=152.88 Kg/ m.

£ 0.2 0.4 0.6 0.8
o Q Diff Q Diff Q Diff Q Diff
l % % % %
0.40 3.838 1.96 4.205 2.5 4.705 2.51 5.453 1.0
3.763" 4.097" 4.585" 5.398"
100 3.874 2.6 4.238 31 4.715 2.56 5.585 3.2
3.770" 4.105" 4.594" 5.407"
200 3914 3.1 4.283 3.6 4.769 3.1 5.653 3.8
3.792" 4.128" 4.619" 5.436"
300 3.957 3.2 4.332 3.8 4.829 3.4 5.730 4.2
3.829" 4.168" 4.663" 5.485"
400 4.023 35 4.406 4.1 4904 3.6 5.815 4.4
3.883" 4.225 4.725 5.555"

*: Bottom values are of [7].
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Table 5. Large amplitude first mode frequencies (2)for a non-prismatic cantilever(depth taper, breadth is constant) Elp
=12926324.N-m2,m =152.88 Kg / m.

£ 0.2 0.4 0.6 0.8
) Q Diff Q Diff Q Diff Q Diff
l % % % %
0.40 3.621 0.35 3.871 2.2 3.991 1.4 4.408 2.6
3.608" 3.737" 3.934" 4.292"
100 3.653 1.0 3.872 3.3 4.043 2.5 4.443 3.2
3.615" 3.744" 3.941" 4.299"
200 3.729 2.5 3.909 3.7 4.099 3.3 4.477 3.5
3.636" 3.764" 3.961" 4.317"
300 3.820 39 4.020 5.5 4.225 5.4 4.636 6.2
3.671" 3.799" 3.994" 4.348"
400 3.929 5.3 4.161 7.5 4.391 7.9 4.789 8.2
3.721° 3.848" 4.042" 4.392"

*: Bottom values are of [7].

Table 6. Large amplitude first mode frequencies ({2) for a non-prismatic cantilever( diameter taper) Elz = 15212946. N-m?, m=

235.34Kg / m.
£ 0.2 0.4 0.6 08
o Q Diff Q Diff Q Diff Q Diff
l % % % %
0.40 3.86 0.12 4.328 0.2 5.025 03 6.229 05
3.855" 4.319° 5.009° 6.196"
100 3.872 0.28 4.477 3.37 5.225 3.98 6.386 33
3.862° 4.326" 5.017° 6.203°
200 3.953 1.77 4.574 4.91 5314 5.15 6.547 5.0
3.884° 4.349" 5.040° 6.225"
300 4.056 3.34 4.713 6.91 5.466 7.08 6.748 7.2
3.921° 4.387° 5.079° 6.261°
400 4.185 5.04 4.876 8.90 5.677 9.54 7.012 9.9
3.974" 4.442" 5.135 6.314"

*: Bottom values are of[7].

Table4. shows the present dimensionless frequencies(f2)
results obtained using derived polynomial (Egs.(3) to (10)) for
different taper ratios fornon-prismatic cantilever beams
(breadth taper, depth is constant).

It is found that at a taper ratio of 0.8, the difference of present
dimensionless frequencies and published data[7] is 4.4% at a
40 degree tip slope. If the tip slope is less than 40 degrees, the
difference is less than 4.4%.

Table 5. shows the present dimensionless frequencies(2) for
different taper ratios for non-prismatic cantilever beam (depth
taper, breadth is constant)obtained wusing derived
polynomial(Egs. (11) to (18)).

It is found that at a taper ratio of 0.8, the difference between
present dimensionless frequencies and published data[7] is
8.2% at a 40degree tip slope. If the taper ratio and tip slope are
less, the difference is less than 8.2%.

Table 6. shows the present dimensionless large amplitude
frequencies(£2) results obtained using derived polynomial
(Egs.(19) to (26)) for different taper ratios fornon-prismatic
cantilever beams(diameter taper).

It is found that at a taper ratio of 0.8, the difference between
present dimensionless frequencies and published data [7] is
9.9% at a 40 degree tip slope. If the taper ratio and tip slope are
lower, the difference is less than 9.9%.

In the range of lower tip slopes () up to 40 degrees, the current
results compare well with those in [7]. The difference in current
results compared to [7] is due to the different analysis of the
problem studied. The large amplitude first mode frequency ({2)

is observed to increase with an increase in (). This indicates
that the prismatic and non-prismatic beams with fixed at one
end (cantilever) exhibit hardening type nonlinearity. In
addition, this hardening effect increases with increasing taper.
It has beenfound that as the taper ratio increases, the firstmode
frequency of a particular tip slope also increases.

5 Conclusions

The main purpose of this work is to contribute to a simple
representation of large amplitude free vibration problems of
prismatic (uniform) and non-prismatic (various tapered)
beams. A finite element computer program [14] was used to get
approximate nonlinear solutions for polynomial functions of
prismatic (uniform) and non-prismatic (width taper, depth
taper, diameter taper) cantilevers. Large deflection data sets
(a/L and «) with tip concentrated loads of various taper ratios
are obtained.

The first mode frequency is evaluated for large-amplitude
prismatic and non-prismatic cantilevers using a very simple
approach (Section 3), based on the above data (discussed in the
previous paragraph).

The current dimensionless frequencies of prismatic (uniform)
cantilevers obtained from the polynomial functions (Egs.(1) to
(2)) are compared with the published data with a 1.21%
(Table 3) difference at a tip slope of 40 degrees.

For non-prismatic cantilever beams (breadth taper, depth is
constant), at a taper ratio of 0.8, the difference between present
dimensionless frequencies with published data is 4.4% (Table
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4) at a 40 degree tip slope. It is found that if the taper ratio and
tip slope are lower, the difference is less than 4.4%.

For non-prismatic cantilever beams (depth taper, breadth is
constant), at a taper ratio of 0.8, the difference in present
dimensionless frequencies with published data is 8.2%
(Table 5) at a 40 degree tip slope. It is observed that if the taper
ratio and tip slope are lower, the difference is less than 8.2%.

For non-prismatic cantilever beams (diameter taper), it is
found that at a taper ratio of 0.8, the difference between present
dimensionless frequencies and published data is 9.9% (Table 6)
at a 40 degree tip slope. It is seen that if the taper ratio and tip
slope are lower, the difference is less than 9.9%.

It is seen that the large amplitude first mode frequency ({2)
increases with tip slope («). This indicates that the prismatic
and non-prismatic cantilever beams exhibit hardening type
nonlinearity. It has been found that as taper ratio increases, the
first mode frequency also increases at certain tip slopes.
Therefore, this hardening effect increases with increasing
taper. In addition, for a given tip slope (@), the diameter taper
shows a higher frequency than other tapered beams and
uniform beams.

This new simple approach provides correct computations for
all practical designs with significantly less computational
power and satisfactory concordance contrasted to other
techniques [7],[8],thus signifying the adequacyof the simple
proposed method. Therefore, all the proposed polynomials can
produce a very accurate approximation to a nonlinear problem.
However, current analysis may be limited to a lower range of
tip slope and amplitudes.

6 Acknowledgment
The author appreciates Dr. G.V. Rao's remarks on this present

study, who was once the group director for structural
engineering.

7 Author contribution statements

The Chitaranjan PANY has made the literature review,
formation, assessment and examining of obtained results and
the spelling and checking the article in terms of content were
contributed.

8 Ethics committee approval and conflict of
interest statement
"Article prepared does not require approval from the Ethics

Committee". "There is no conflict of interest with any
person/institution in the article prepared".

9 References

[1] Shukla RK. Vibration Analysis of Tapered Beam. Master’s
Thesis, National Institute of Technology, Rourkela, India,
2013.

[2] Yasar P, Semih B. “Free vibration analysis of mixed
supported beam”. Pamukkale University Journal of
Engineering Sciences, 26(1), 1-8, 2020.

[3] Pany C, Parthan S, Mukhopadhyay M. “Free vibration
analysis of orthogonally supported curved panels” Journal
ofSound Vibration, 241(2), 315-318, 2001.

[4] Rosonberg RM. “Non-linear oscillations”.Applied
Mechanics Review, 14(11), 837-841,1961.

[5] Rao BN, Rao GV. “Large amplitude vibrations of clamped-
free and free-free uniform beams”. Journal ofSound
Vibration, 134(2), 353-358, 1989.

[6] Verma MK, KrishnaMurty AV. “Non-linear vibration of
non-uniform beam with concentrated masses”. Journal
ofSound Vibration, 33, 1-12,1974.

[7] Rao BN ,Rao GV. “Large amplitude vibrations of a tapered
cantilever  beam”.  Journal  ofSound  Vibration,
127(1),173-178,1988.

[8] Sun W, SunY, YuY,Zheng S. “Nonlinear vibration analysis
of a type of tapered cantilever beams by using an
analytical approximate method”. Structural Engineering
and Mechanics, 59(1), 1-14, 2016.

[9] Baghani M, Mazaheri H, Salarieh H. “Analysis of large
amplitude free vibrations of clamped tapered beams on a
nonlinear elastic foundation”. Applied Mathematical
Model, 38(3),1176-1186, 2014.

[10] Hoffmann JA, Wertheimer T.“Cantilever beam vibrations”.
Journal ofSound Vibration, 229(5), 1269-1276, 2000.

[11] Pany C, Rao GV. “Calculation of non-linear fundamental
frequency of a cantilever beam using non-linear stiffness”.
Journal ofSound Vibration, 256(4), 787-790, 2002.

[12] Pany C, Rao GV. “Large amplitude free vibrations of a
uniform spring-hinged cantilever beam”. Journal ofSound
Vibration, 271, 1163-1169, 2004.

[13] Bisshopp KE. “Approximations for large deflection of a
cantilever beam”. Quarterly of Applied Mechanics,
30,521-526,1973.

[14] EMRC. Users Manual for NISA II. Michigan, USA,EMRC
Publishers, 1994.

376


https://www.wordhippo.com/what-is/another-word-for/computative.html
http://doi.or.kr/10.PSN/ADPER8900973748
http://doi.or.kr/10.PSN/ADPER6800995445
http://doi.or.kr/10.PSN/ADPER6802586105
http://doi.or.kr/10.PSN/ADPER8900973749
https://www.koreascience.or.kr/journal/KJKHB9.page
https://www.koreascience.or.kr/journal/KJKHB9.page
https://www.koreascience.or.kr/journal/KJKHB9/v59n1.page

