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Abstract  Öz 

Particle Swarm Optimization (PSO) is a swarm intelligence-based 
metaheuristic algorithm inspired by the foraging behaviors of fish or 
birds. Despite the advantages of having a simple and effective working 
structure, PSO also has some disadvantages, such as early convergence, 
getting trapped in local minima, and weak global search capabilities. In 
this study, a novel intensification strategy based on K-Means clustering 
has been proposed to enhance the performance of PSO. The proposed 
method is called Particle Swarm Optimization with a New 
Intensification Strategy based on K-Means (PSO-ISK). In the first step of 
PSO-ISK, particles in PSO are grouped into different clusters. Then, a 
center and the farthest particle from the center are identified for each 
cluster. PSO-ISK proposes a new intensification strategy by improving 
the results of the farthest particle from the center. The performance of 
PSO-ISK is analyzed using 16 different benchmark test functions. The 
obtained results are compared with Standard PSO (SPSO) and 7 
different PSO variants. According to the comparison results, PSO-ISK 
provides a notable performance improvement by outperforming SPSO 
and all seven PSO variants. The comparisons conducted have proven 
that PSO-ISK produces more effective outcomes than other studies, 
which results in a significant contribution to improving performance. 

 Parçacık Sürü Optimizasyonu (PSO), sürü zekâsı temelli metaheuristik 
algoritmadır. PSO, balıkların veya kuşların yiyecek arama 
davranışlarından esinlenilerek modellenmiştir. PSO, sade ve etkili bir 
çalışma yapısına sahip olmasının avantajlarına rağmen, erken 
yakınsama, yerel minimuma takılma ve zayıf küresel arama kapasitesi 
gibi bazı dezavantajları da bulunmaktadır. Bu çalışmada, PSO'nun 
performansını artırmak için K-Ortalamalar kümelemeye dayalı yeni bir 
yoğunlaştırma stratejisi önerilmiştir. Önerilen yönteme,  
K-Ortalamalara Dayalı Yeni Yoğunlaştırma Stratejisi ile Parçacık 
Sürüsü Optimizasyonu (PSO-ISK) adı verilmiştir. PSO-ISK'nın ilk 
adımında, PSO'daki parçacıklar farklı kümelere ayrılmaktadır. Sonraki 
adımda ise, her küme için bir merkez ve merkeze en uzak parçacık 
belirlenmektedir. Bu çalışmanın sonucunda, PSO-ISK, merkeze en uzak 
parçacığın sonuçlarını iyileştirerek yeni bir yoğunlaştırma stratejisi 
önermektedir. PSO-ISK'nın performansı, 16 farklı benchmark test 
fonksiyonu kullanılarak sonuçlar analiz edilmiştir. Elde edilen sonuçlar, 
Standart PSO (SPSO) ve 7 farklı PSO varyantı ile karşılaştırılmıştır. 
Yapılan karşılaştırmalar sonucunda, PSO-ISK'nın diğer çalışmalara 
göre daha etkili sonuçlar elde ettiği ve PSO-ISK'nın performans 
iyileştirmesindeki önemi kanıtlamıştır. 

Keywords: Intensification strategy, K-Means, PSO.  Anahtar kelimeler: K-Ortalamalar, PSO, Yoğunlaştırma stratejisi. 

1 Introduction 

Swarm intelligence (SI) is a research topic that has not lost its 
popularity for decades, simulating the collective behavior of 
primitive organisms living together to solve complex problems. 
Therefore, new algorithms in this specialized literature are still 
proposed by researchers and successfully applied to several 
engineering optimization problems, such as horse herd 
optimization algorithm [1], jellyfish search optimizer [2], 
gradient-based optimizer [3], political optimizer [4], sailfish 
optimizer [5], butterfly optimization algorithm [6], tree-seed 
algorithm [7], social spider algorithm [8]. On the other hand, 
one of the well-known algorithms among the state-of-the-art 
metaheuristics is particle swarm optimization (PSO) [9], which 
is inspired by the collective movement of flocks of birds and 
fish. Although to find global optima, PSO has an efficient 
strategy using the cognitive and social experience of the 
candidate solutions called particles, it can be getting stuck in 
local optimal points due to reduced intensification during 
iterations. To cope with this problem, various modification 
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studies on PSO have been presented up to now [10]-[16]. 
Clustering is the well-studied data mining process of grouping 
similar data objects in an extensive dataset into a number of 
classes. The main advantage of this technique is that it is 
adaptable to changes. The best-known clustering algorithm is 
K-Means which has a simple and effective structure. It aims to 
partition the data objects into predefined 𝑘 sets to minimize the 
within-cluster sum of squares. This study focuses on improving 
the performance of PSO using K-Means. A brief literature 
review on PSO with clustering techniques is given as follows. 

PSO and K-Means have been used together in various studies in 
the literature. One of them was presented by Solaiman et al. 
[17]. They proposed a hybrid method based on K-Means and 
PSO to ensure efficient energy management of wireless sensor 
networks. They reported that their hybrid method was 
superior to conventional protocols. In another study, Gao et al. 
presented a hybrid version of PSO and K-Means algorithms 
[18]. They also used Gaussian distribution and Lévy flight 
strategy to escape from the local optimum. In a recent study, 
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Mahajan et al. presented another hybrid method of K-Means 
with PSO to optimize cluster formation. Then they applied it to 
improve the efficiency of the prediction of environmental 
pollution [19]. Sun et al. evaluated the fabric's tactile comfort 
with a new clustering algorithm of self-adaptive PSO based on 
K-Means [20]. Younus et al. presented a hybrid method of PSO 
and K-Means to accurately retrieve images from large image 
databases [21]. Liu et al. developed a new hybrid algorithm for 
data analysis focusing on PSO and K-Means [22]. In another 
study, Jamali et al. studied the disadvantages of the K-Means 
algorithm, which are its sensitivity to noisy features and its 
dependence on the selection of the initial cluster centers. Then 
they improved the K-Means with PSO and investigated the 
performance of their method on lateralizing the epileptogenic 
hemisphere for temporal lobe epilepsy cases [23]. Tarkhaneh 
et al. proposed a hybrid approach combining four techniques: 
Cuckoo Search, PSO, K-Means algorithms, and levy distribution 
[24]. They used PSO and K-Means for generating more 
efficiency, while levy flight was used to obtain faster 
convergence. This study proposes a novel variant of PSO with 
the K-Means algorithm, which is called Particle Swarm 
Optimization with K-Means. To evolve the exploration 
capability of PSO, a novel hybrid method is created by adapting 
K-Means within PSO. The proposed method is named Particle 
Swarm Optimization with a New Intensification Strategy Based 
on K-Means (PSO-ISK). Here, unlike many previous studies, K-
Means and PSO algorithms are not used in the field of data 
analysis but directly to increase the exploration capability of 
PSO in the field of optimization. The main contributions of this 
study can be summarized as follows: 

• The K-Means algorithm is adapted to use it more 
effectively in the optimization process. 

• A novel intensification strategy for PSO is proposed to 
improve the exploration capability so that PSO can 
overcome stagnation during iterations. 

• To prove the effectiveness of PSO-ISK, experimental 
results are calculated by running 16 test problems that 
are frequently used in the literature. 

• A comprehensive analysis is provided by comparing  
PSO-ISK with the standard PSO algorithm as well as the 
seven PSO variants stated in the literature. 

The content provided in the rest of this paper is organized as 
follows: In Section II, standard PSO and K-Means algorithms are 
briefly summarized. In Section III, PSO-ISK is described in 
detail. In Section IV, the experiments and comparisons are 
presented, and the results are discussed. Finally, Section V 
contains conclusions and future study. 

2 Background 

The PSO algorithm and the K-Means approach are examined in 
this section. Following that, the PSO-ISK algorithm is examined.  

2.1 Particle swarm optimization algorithm  

PSO is one of the most popular SI algorithms, inspired by the 
social behavior of primitive agents such as birds and fish in a 
flock [9]. In the analogy of PSO, a number of agents fly over the 
environment to search for the best food source. For this 
purpose, they use each other's cognitive and social experiences. 
In the PSO algorithm, these agents are called particles, which 
means the candidate solutions and the best food source means 

the global optimum in the search space. In addition, the quality 
of food sources is measured by a fitness function based on the 
decision variables. The particles are randomly generated by 
using Equation-(1) in the initial swarm. 

 𝑥𝑖,𝑗
0 = 𝑙𝑜𝑤𝑒𝑟𝑗

𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑𝑖
𝑗 × (𝑢𝑝𝑝𝑒𝑟𝑗

𝑚𝑎𝑥 − 𝑙𝑜𝑤𝑒𝑟𝑗
𝑚𝑖𝑛) (1) 

where 𝑖 = 1,2, … ,𝑁 and 𝑗 = 1,2,… , 𝐷 and 𝑥𝑖,𝑗
0  indicates the j-th 

parameter of an i-th particle in the initial iteration, 𝑙𝑜𝑤𝑒𝑟𝑗
𝑚𝑖𝑛 

and 𝑢𝑝𝑝𝑒𝑟𝑗
𝑚𝑎𝑥  are the lower limit and upper limit for j-th 

dimension, respectively.  𝑟𝑎𝑛𝑑𝑖
𝑗 is a random number generated 

in the range of [0, 1] for each dimension, 𝑁 is the swarm size, 
and 𝐷 is the dimension of the optimization problem. The 
locations of the particles are kept in memory then the particles 
act according to the two best values: 𝑝𝑏𝑒𝑠𝑡and 𝑔𝑏𝑒𝑠𝑡. The 𝑝𝑏𝑒𝑠𝑡 is 
the personal best value of a particle found up to the current 
iteration. The 𝑔𝑏𝑒𝑠𝑡 is the best value of all particles in the swarm 
found up to the current iteration. Apart from the particles in the 
swarm, the 𝑝𝑏𝑒𝑠𝑡 values for each particle and 𝑔𝑏𝑒𝑠𝑡 particle are 
stored externally in memory. The amount of position update for 
a particle is defined as the velocity, which is calculated using 
Equation-(2). Then the locations of all particles are updated 
with Equation-(3) in each iteration. 

𝑣𝑖,𝑗
𝑡+1 = 𝑤 × 𝑣𝑖,𝑗

𝑡 + 𝑐1 × 𝑟𝑎𝑛𝑑1
𝑡 × (𝑝𝑏𝑒𝑠𝑡𝑖,𝑗

𝑡 − 𝑥𝑖,𝑗
𝑡 ) 

+𝑐2 × 𝑟𝑎𝑛𝑑2
𝑡 × (𝑔𝑏𝑒𝑠𝑡𝑖,𝑗

𝑡 − 𝑥𝑖,𝑗
𝑡 ) 

(2) 

𝑥𝑖,𝑗
𝑡+1 = 𝑥𝑖,𝑗

𝑡 + 𝑣𝑖,𝑗
𝑡+1 (3) 

where, 𝑣𝑖,𝑗
𝑡+1 is the velocity of the 𝑗-th parameter of an i-th 

particle at iteration 𝑡 + 1. The 𝑟𝑎𝑛𝑑1
 and 𝑟𝑎𝑛𝑑2

  parameters are 
random numbers generated in the range of  [0, 1]. The 
coefficients 𝑐1and 𝑐2 are used to reflect the cognitive and social 
information on location updates, respectively. 𝑤 is the inertia 
weight. In this study, inertia weight is calculated by Equation-
(4). 

𝑤 =
(𝑀𝑎𝑥𝑖𝑡𝑒𝑟 − 𝑖𝑡𝑒𝑟)

𝑀𝑎𝑥𝑖𝑡𝑒𝑟
 (4) 

After updating the location for a particle, a greedy selection 
procedure is implemented between the current 𝑝𝑏𝑒𝑠𝑡 and the 
new calculated value. The better one according to the fitness 
function is selected for the new 𝑝𝑏𝑒𝑠𝑡. At the end of each 
iteration, a similar procedure is applied to update 𝑝𝑏𝑒𝑠𝑡. PSO 
iteratively repeats this location update process until a 
predetermined termination condition is satisfied. Finally, the 
𝑔𝑏𝑒𝑠𝑡 value obtained in the last iteration is given as the result of 
the algorithm.  

2.2 The K-Means algorithm 

The K-Means algorithm is a straightforward and efficient 
clustering method that is the most popular unsupervised 
learning algorithm in data mining literature. The term "K-
Means" as a whole was first used by MacQueen in 1967 [25]. On 
the other hand, its idea was previously presented by Steinhaus 
in 1956. K-Means must take the number of clusters as a 
parameter to divide the data into clusters. This is actually a 
disadvantage. On the other hand, the algorithm has a simple 
running characteristic. After the 𝑘-value is determined, the 
algorithm randomly selects the center points. It calculates the 
distance between each data and randomly determines center 
points and assigns the data to a cluster according to the nearest 
center point. Then, a center point is selected again for each 
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cluster, and clustering is done according to the new center 
points. This continues until the system becomes stable. For this 
purpose, the average coordinate values are calculated for each 
cluster in each iteration, and the calculated value becomes the 
new center of that cluster. The random assignment of the initial 
center points in the K-Means algorithm can cause some issues. 
As a result, many approaches for determining initial centers 
have been presented.   

Let 𝑥 = {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑚} be a dataset with 𝑁 dimensions and 
𝑘 represents the vector of center points, where m is the number 
of samples in the dataset. The K-Means algorithm consists of 4 
stages: 

1. Determination of cluster centers: In the first iteration, 
the center points are randomly generated. In the next 
iterations, new center points are determined by 
calculating the centers of the previously classified 
samples, 

2. Classification according to the distances to the given 
center points: The Euclidean distances of the samples 
to each cluster center are calculated using Equation-
(5). Then the sample is assigned to the cluster center 
closest to it, 

𝐷𝑖 = √∑ ∑ (𝑥𝑖𝑑𝑖𝑚 − 𝑘𝑖
𝑑𝑖𝑚)

𝑛

𝑑𝑖𝑚=1

2𝑚

𝑖=1

 (5) 

3. Determination of new centers according to the 
classification made: The coordinates of the center 
points are updated by averaging the assigned 
samples. This can be formulated as Equation-(6), 

                     𝑘𝑖
𝑑𝑖𝑚 = ( ∑ 𝑧𝑖

𝑑𝑖𝑚

𝑛

𝑑𝑖𝑚=1

) / |𝑘𝑖|     𝑧 = {𝑝: 𝑝 ∈ 𝑘𝑖} (6) 

where, |𝑘𝑖| represents the cardinality of 𝑘𝑖. 

4. Repeating steps 2 and 3 until stable: The healthiest 
method for the termination condition of the algorithm 
is to create an optimization criterion. The goal is to 
keep the value of this objective function as low as 
possible. In other words, it is to minimize the sum of 
the intra-cluster distance. For each cluster, the 
distances from the center point of each point in it are 
summed. The algorithm continues to run until these 
values do not change or until little changes occur. 

2.3 Particle swarm optimization with a k-means based 
on intensification strategy 

With a novel intensity-enhancing method, the K-Means 
clustering strategy is adapted to PSO to improve PSO 
performance. The proposed algorithm is named Particle Swarm 
Optimization with a New Intensification Strategy Based on K-
Means (PSO-ISK). The explanation of the PSO-ISK algorithm can 
be given in two stages: intensifying the particle farthest from 
the center and updating the location of the farthest particles. 

2.3.1 Determination of the particle farthest from the 
center 

PSO-ISK is initialized with a randomly generated population, 
just like in the standard PSO algorithm. The particles are then 
clustered by the K-Means algorithm into a predefined number 
of sub-groups according to the dimensions of the optimization 

problem. For each cluster, the particle with the best fitness 
value is selected as the 𝑔𝑏𝑒𝑠𝑡 particle (center) of that cluster, 
while the particle with the worst fitness value in the cluster is 
defined as the farthest particle from the center. For example, 
suppose the number of clusters for a colony with 30 particles is 
3 (𝑘 = 3) in a 2-dimensional search space (𝑥1, 𝑥2).  First, the 
cluster centers are selected for each cluster, which is shown 
with stars in Figure 1(a). Next, the farthest particle to the center 
(marked with a circle) is determined for each cluster. 

2.3.2 Updating the location of the farthest particles  

A location update is performed for the farthest particles 
selected from each cluster. For PSO-ISK, Equation-(7), which is 
the revised version of Equation-(2), calculates the velocity of 
the particle.   

𝑣𝑖,𝑗
𝑡+1 = 𝑤 × 𝑣𝑖,𝑗

𝑡 + 𝑐1 × 𝑟𝑎𝑛𝑑1
𝑡 × (𝑝𝑏𝑒𝑠𝑡𝑖,𝑗

𝑡 − 𝑓𝑎𝑟𝑡𝑒𝑠𝑡(𝑐)𝑖,𝑗
𝑡 ) 

+ 𝑐2 × 𝑟𝑎𝑛𝑑2
𝑡 × (𝑐𝑒𝑛𝑡𝑒𝑟(𝑐)𝑖,𝑗

𝑡 − 𝑓𝑎𝑟𝑡𝑒𝑠𝑡(𝑐)𝑖,𝑗
𝑡 ) 

(7) 

where, 𝑐𝑒𝑛𝑡𝑒𝑟(𝑐)𝑖,𝑗
𝑡  represents the center of the cluster in the 

current iteration and  𝑐 = 1,2, … , 𝑘 and 𝑐 is the cluster-index of 
the farthest particle to be updated, and 𝑘 is the total number of 
clusters. 𝑓𝑎𝑟𝑡𝑒𝑠𝑡(𝑐)𝑖,𝑗

𝑡  is the cluster's furthest particle in the 

current iteration. 𝑣𝑖,𝑗
𝑡+1 denotes the velocity of an i-th particle's 

𝑗-th parameter at iteration 𝑡 + 1. Random numbers in the range 
[0,1] are created using the 𝑟𝑎𝑛𝑑1

 and 𝑟𝑎𝑛𝑑2
  parameters. The 𝑐1 

and 𝑐2 coefficients represent cognitive and social information 
on location updates, respectively. 𝑤 is the inertia weight. After 
making the velocity updates, new fitness values of the particles 
are calculated, and if necessary, 𝑝𝑏𝑒𝑠𝑡and 𝑔𝑏𝑒𝑠𝑡. updates are 
performed, and the same procedure is continued until the stop 
criteria are provided. In Equation-(7), the parameter values 𝑐1  
and 𝑐2 are equal to 2. Because comparison findings are obtained 
from other papers. These algorithms are LFPSO [10], CLPSO 
[12], HPSO-TVAC [13], FIPSO [14], SPSO-40 [15], LPSO [15], and 
DMS-PSO [16]. Because the parameters 𝑐1 and 𝑐2 are equal to 2 
in the aforementioned algorithms, the parameters 𝑐1  and 𝑐2 are 
equal to 2 in this study for comparison under the same 
conditions [10]-[16]. 

Consequently, the intensity of the swarm is improved by 
updating the quality of the farthest particle through 
convergence to the best solution in the region. In Figure 1(b), 
the updated locations of the farthest particles are simulated for 
three clusters. 

 

Figure 1(a): The centers and the farthest particles for each 
cluster. (b): The updated locations for the farthest particles. 

The implementation of this step in each iteration ensures that 
the intensity is distributed across different regions in the 
search space. In addition, it does not cause premature 
convergence due to the small number of determined clusters. 
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To ensure the total number of function evaluations is equal to 
that in standard PSO, (𝑁 − 𝑘) particles are generated in the 
PSO-ISK algorithm since 𝑘 extra functions are evaluated in each 
iteration in the algorithm. Figure 2 illustrates the flowchart for 
the PSO-ISK algorithm. Figure 3 shows the procedure strategies 
that detail the PSO-ISK algorithm's step-by-step execution. The 
execution of the PSO-ISK algorithm is shown in pseudo-code in 
Figure 4. 

 

Figure 2. Flowchart of the PSO-ISK algorithm. 

Step 1. Initialization 

In the first step, an initial population is generated randomly. 
Each individual is considered a potential solution for the 
problem. 

Step 2. Fitness function  

In this iteration, the particles are moved to the new locations 
inside the search space using the positions and velocities 
that are calculated in the first iteration. The velocities of all 
particles are then calculated to move the particles in the next 
iteration. Moreover, the fitness values of all particles are 
calculated. 

Step 3. Selection and elitism 

In this iteration, the particles continue moving toward the 
optimal solution. At the beginning, the particles are moved 
to their new positions, and their fitness values are 
calculated. As shown, the first particle became much closer 
to the optimal solution than the other particles. As shown in 
this iteration, the velocities of all particles are not zero; in 
other words, the particles will be moved in the next iteration. 

Step 4. Determination of the particle farthest from the center 

Separate the particles into clusters with K-Means. Then 
identify the particle with the best fitness as the center and 
the one with the worst fitness as the farthest point in each 
cluster. 

Step 5. Updating the location of the farthest particles 

Update the location of the selected farthest particles in each 
cluster by using Equation-(5). 

Step 6. Termination 

Terminate the running if the condition is satisfied and 
output the 𝑔𝑏𝑒𝑠𝑡 obtained in the last iteration; otherwise, go 
to Step 2. 

Figure 3. The overview of the PSO-ISK algorithm. 

 

1- Assign the parameter values for the PSO-ISK algorithm 

2- Input the following parameters: swarm size (SS), 

𝑚𝑎𝑥𝑖𝑡𝑒𝑟 , 𝑥𝑚𝑎𝑥 , 𝑥𝑚𝑖𝑛, and 𝑘(𝑑𝑖𝑚) = {𝑘1, 𝑘2, … , 𝑘𝑁} 

3- Initialize the following parameters: 𝑤𝑚𝑎𝑥, 𝑤, 𝑣𝑚𝑎𝑥 , 

𝑣𝑚𝑖𝑛, 𝑐(𝑖) = {𝑐1, 𝑐2, … , 𝑐𝑁} 

4- for1 each particle 𝑝𝑖 in 𝑆𝑆, do the following: 

5- Initialize the particle's position (𝑥𝑖) randomly 

6- Initialize the particle's velocity (𝑣𝑖) randomly 

7- Calculate the first position (𝑓(𝑥𝑖)) using Equation-(1) 

8- Set the particle's best position (𝑝𝑖,𝑏𝑒𝑠𝑡) to the current 

position 

9- if1 𝑓(𝑝𝑖,𝑏𝑒𝑠𝑡) <  𝑓(𝑔𝑏𝑒𝑠𝑡), then set 𝑔𝑏𝑒𝑠𝑡  =  𝑝𝑖,𝑏𝑒𝑠𝑡  

10- endif1 

11- for2 𝑖𝑡𝑒𝑟 = (1 to 𝑚𝑎𝑥𝑖𝑡𝑒𝑟), do the following: 

12- for3 each particle 𝑝𝑖 in SS, do the following: 

13- Calculate 𝑣𝑖 using Equation-(2) 

14- Calculate the new position (𝑓(𝑥𝑖)) by Equation-(3) 

15- if2 𝑓(𝑥𝑖) < 𝑓(𝑝𝑖,𝑏𝑒𝑠𝑡), then set 𝑝𝑖,𝑏𝑒𝑠𝑡 = 𝑥𝑖 

16- elseif2 𝑓(𝑝𝑖,𝑏𝑒𝑠𝑡) < 𝑓(𝑔𝑏𝑒𝑠𝑡), then set 𝑔𝑏𝑒𝑠𝑡 = 𝑝𝑖,𝑏𝑒𝑠𝑡 

17- endif2 

18- Choose a particle for the cluster centers 

19- for4 each particle 𝑑𝑖𝑚, do the following: 

20- Using Equation-(5), calculate the distance between 

each particle and the cluster centers (𝑥𝑖) 

21- Based on the Euclidean similarity measure, assign the 

particle to the closest central group 𝑐(𝑖) = {𝑐1, 𝑐2, … ,

𝑐𝑁} 

22- Apply the K-Means algorithm to each group 

23- Choose the new cluster center with Equation-(6). 

24- endfor4 

25- Update the position of the farthest particle by 

Equation-(7). 

26- endfor3 

27- endfor2 

28- Update 𝑤 using Equation-(4). 

29- endfor1 

 

 

Figure 4. The pseudo-code of the PSO-ISK algorithm. 
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3 The proposed approach 

In this section, the benchmark test functions used in this study 
are first explained. Next, it is detailed how the value chosen to 
be used in the PSO-ISK algorithm is determined. Then the 
numerical results and discussions are given in detail. In this 
study, the PSO-ISK algorithm is tested by running on 16 
benchmark test functions. To prove the accuracy of the results 
obtained with PSO-ISK and compare its performance, the 
comparisons and analyses were given in two experiments. In 
the first stage, the comparison of PSO-ISK with standard PSO is 
presented. In the second stage, a comparison with seven 
variants of PSO is given. PSO-ISK is developed in MATLAB 
R2017a. All implementations are run on a PC with an Intel Core 
(TM) i5-5200U processor and 8 GB of DDR3-1600 MHz (dual 
channel). The standard PSO algorithm proposed by Omran [26] 
is used for all experiments in this study since the basic PSO has 
some known weaknesses in the literature.  

3.1 Benchmark test functions 

PSO-ISK is applied to 16 benchmark test functions with 
different characteristics which consist of Unimodal Separable 
(US), Multimodal Separable (MS), Unimodal Non-Separable 
(UN), and Multimodal Non-Separable (MN). The mathematical 
definitions and details of the test problems are given in Table 1 
[27]. The unimodal functions are used to test the capability of 
the exploitation process of an algorithm since these do not 
include local optima. On the other hand, the multimodal 
functions are used to evaluate the capability of the exploration 
process of an algorithm since these include multiple local 
optimal points at which it causes getting stuck. 

3.2 Determining the optimal cluster number 

The number of clusters is a user-defined control parameter of 
K-Means, and it is directly related to the performance of the 
algorithm. To see the effect of the different numbers of clusters, 
Firstly, PSO-ISK is applied on the benchmark test functions for 
six pre-runs to determine the optimal value of k-value (𝑘) with 
values of 2, 3, 4, 5, 7, and 10 under the same conditions. In this 
study, PSO-ISK is run for 200000 FEs, the swarm size (SS). are 
30 and 60, 𝑐1  and 𝑐2 are equal to 2, 𝑟𝑎𝑛𝑑1

 and 𝑟𝑎𝑛𝑑2
 are random 

numbers between 0 and 1 [0,1]. Table 2 presents the statistical 
results statement for all test functions, including the mean and 
standard deviation (Std.Dv) obtained from 30 independent 
runs. The best results have been highlighted in bold type within 
the tables. Additionally, to the phrase, Table-2 shows the results 
based on the 𝑘 and SS. Table 2 analyzes high-low cluster 
densities and small-large SS. 

The rank-based comparisons for the 𝑘-values are provided in 
Table 3. The order numbers in Table-3 indicate how several 
times the result is achieved, and the findings are displayed in 
Table 3 by SS, 𝑘-value, and (𝑘). For instance, Table-3 shows 13 
results for 𝑘 =  10 and order number = 1. As a result, when 
𝑘 = 10, the optimal value is discovered 13 times. In other 
example, Table-3 displays 6 outcomes for 𝑘 =  3 and order 
number = 5.  As a result, when 𝑘 = 3, the 5th rank result is 
discovered 6 times. It can be seen from Table-2 and Table-3 that 
the results of running with 𝑘 = 10 obtained the best ranking for 
thirteen test functions (F1, F2, F3, F4, F5, F6, F7, F8, F11, F12, 
F14, F15, and F16). It also ranks as the second-best in the F13 
test function. However, the run with 𝑘 = 7 can achieve the best 
rank for nine test functions (F3, F10, F11, and F12). The other 
runs with 𝑘 =  3, 𝑘 = 4, and 𝑘 = 5 each have only seven first 
ranks. In a population with a SS of 30, 𝑘 is not considered to be 

bigger than 10. Each cluster includes about two particles when 
the swarm size is 30 and the number of clusters is 11 (𝑘 = 11). 
In other words, the strategy is incompatible when fewer than 
three particles remain in the cluster. Consequently, the swarm 
size is set to 60 in order to increase the number of clusters. 
Table-2 and Table-3 show that the results of 𝑘 =  20, 𝑘 = 12, 
and 𝑘 =  15 yielded the worst rankings for 13 test functions. 
These results show that PSO-ISK can achieve more successful 
results in a shorter time, mostly when the number of clusters is 
10 (𝑘 =  10). Therefore, the 𝑘 value is chosen as ten in all 
experiments given in this study.  

3.3 The comparison of PSO-ISK and SPSO2007 

The standard PSO 2007 (SPSO) [26] and proposed PSO-ISK 
algorithms run 30 times with FEs under the same conditions for 
16 benchmark test functions. All functions are operated for 2, 3, 
4, and 5 dimensions in the independent runs. SPSO is run for 
this study, and its results are compared with those of PSO-ISK. 
The mean values of the obtained results, standard deviations 
(Std.Dv), and the best-obtained results in multiple runs are 
given in Table 4, and the best values for each test function are 
shown in bold. Considering the outputs in Table 4, the PSO-ISK 
algorithm generally achieves better values compared to the 
SPSO algorithm for all dimensions. This inference can also be 
seen in Table 5, which shows the numerical results of the 
superiority of PSO-ISK over SPSO. Table 5 lists the total number 
of test functions for each dimension where PSO-ISK is better, 
equal, or worse than SPSO according to the mean values. While 
PSO-ISK lags behind SPSO in only 1 or 2 test functions, for the 
rest of the 16 test functions, it appears to be able to achieve 
equivalent or better results. Therefore, it can be noted that PSO-
ISK has remarkable robustness. 

3.4 The comparison of PSO-ISK and PSO variants 

In this experiment, the success of the PSO-ISK approach is 
evaluated with the results taken directly [10]-[28]. Thus, the 
PSO-ISK algorithm could be compared with the seven PSO 
variants mentioned in different studies. The details of the PSO 
variants whose results are used in this study can be accessed 
from the related publications, and the PSO-ISK is compared 
with the results obtained from the literature. These algorithms 
are LFPSO [10], CLPSO [12], HPSO-TVAC [13], FIPSO [14], 
SPSO-40 [15], LPSO [15], and DMS-PSO [16]. To make a fair 
comparison, all PSO variants have the same values for the 
control parameters. The SS for all algorithms is determined to 
be 40, and the dimension of the problems are taken to be 30 as 
in previous studies. The values in Table 6 indicate the statistical 
results of 25 independent runs of all algorithms for eight test 
functions. The termination condition is 200000 FEs. Table 6 
also includes the rank value of the related algorithm with mean 
and standard deviation (Std.Dv). The rank value indicates the 
degree of the obtained result by an algorithm, from best (1) to 
worst (8) among the eight PSO-variants. Table 7 also ranks the 
algorithms collectively according to the average of their rank 
values in all test problems. According to Table 7, PSO-ISK is the 
most successful algorithm for all functions except Rastrigin and 
Griewank. In other words, PSO-ISK can achieve the best values 
for Ackley, Penaltlized1, Penaltlized2, Schwefel2.22, Sphere, 
and Rosenbrock. The results show that the PSO-ISK 
modification for the PSO algorithm provides a highly effective 
improvement. Based on Table-7, PSO-ISK takes first place with 
a mean rank of 2.125, while LFPSO takes second place among 8 
variants with a mean rank of 2.875. 
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 Table 1. Test functions. 

 

No. Function Dimention Characteristic Formulation 

F1 Ackley [−32, 32] MN 𝑓1(�⃗�) = −20𝑒𝑥𝑝 

{
 

 
−0.2√

1

𝐷
∑𝑥𝑖

2

𝐷

𝑖=1
}
 

 
− 𝑒𝑥𝑝 {

1

𝐷
∑  

𝐷

𝑖=1

𝑐𝑜𝑠(2𝜋𝑥𝑖)} + 20 + 𝑒 

 

F2 

 

Penalized1 

 

[−50, 50] 

 

MN 𝑓2(�⃗�) =
𝜋

𝐷
{10𝑠𝑖𝑛2 (𝜋𝑦1) +∑  

𝐷−1

𝑖=1

(𝑦𝑖 − 1)
2[1 + 10𝑠𝑖𝑛2 (𝜋𝑦𝑖+1)] + (𝑦𝐷 − 1)

2}

+∑  

𝐷

𝑖=1

𝑢(𝑥𝑖 , 10, 100, 4) 

𝑦𝑖 = 1 +
1

4
(𝑥𝑖 + 1)𝑢𝑥𝑖,𝑎,𝑘,𝑚 = {

𝑘(𝑥𝑖 − 𝑎)
𝑚    𝑥𝑖 > 𝑎

0 − 𝑎 ⩽ 𝑥𝑖 ⩽ 𝑎

𝑘(𝑥𝑖 − 𝑎)
𝑚    𝑥𝑖 < −𝑎

 

F3 Penalized2 [−50, 50] MN 𝑓3(�⃗�) =
1

10
{sin2 (𝜋𝑥1) +∑  

𝐷−1

𝑖=1

(𝑥𝑖 − 1)
2[1 + sin2 (3𝜋𝑥𝑖+1)]

+ (𝑥𝑛 − 1)
2[1 + sin2 (2𝜋𝑥𝑖+1)]} +∑  

𝐷

𝑖=1

𝑢(𝑥𝑖 , 5,100,4) 

F4 Schwefel2.22 [-10, 10] UN 𝑓4(�⃗�) = ∑ 

𝐷

𝑖=1

|𝑥𝑖| +∏  

𝐷

𝑖=1

|𝑥𝑖| 

F5 Sphere  [−100, 100] US 𝑓5(�⃗�) = ∑  

𝐷

𝑖=1

𝑥𝑖
2 

F6 Step [−100, 100] US 𝑓6(�⃗�) = ∑  

𝐷

𝑖=1

(⌊𝑥𝑖 + 0.5⌋)
2 

F7 Sum Square [−100, 100] US 𝑓7(�⃗�) = ∑  

𝐷

𝑖=1

𝑖𝑥𝑖
2 

F8 Rastrigin 
[-5.12, 
5.12] 

MS 𝑓8(�⃗�) = ∑  

𝐷

𝑖=1

[𝑥𝑖
2 − 10cos (2𝜋𝑥𝑖) + 10] 

F9 Rosenbrock [−30, 30] UN 𝑓9(�⃗�) = ∑  

𝐷−1

𝑖=1

[100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)

2] 

F10 Griewank [-600, 600] MN 𝑓10(�⃗�) =
1

4000
∑  

𝐷

𝑖=1

𝑥𝑖
2 −∏cos

𝐷

𝑖=1

(
𝑥𝑖

√𝑖
) + 1 

F11 Levy [−10, 10] MN 
𝑓11(�⃗�) = ∑  

𝐷−1

𝑖=1

(𝑥𝑖 − 1)
2[1 + sin2 (3𝜋𝑥𝑖+1)] + sin

2 (3𝜋𝑥1)

+ |𝑥𝐷 − 1|[1 + sin
2 (3𝜋𝑥𝐷)] 

F12 Schwefel2.21 [−100, 100] UN 𝑓12(�⃗�) = 𝑚𝑎𝑥𝑖{|𝑥𝑖|, 1 ⩽ 𝑖 ⩽ 𝐷} 

F13 Schwefel2.26 [−500, 500] UN 𝑓13(�⃗�) = 418.98288727243369 × 𝐷 −∑  

𝐷

𝑖=1

𝑥𝑖sin (√|𝑥𝑖|) 

F14 Alpine [-10, 10] MS 𝑓14(�⃗�) = ∑  

𝑛

𝑖=1

|𝑥𝑖 ⋅ sin (𝑥𝑖) + 0.1 ⋅ 𝑥𝑖| 

F15 Weierstrass [−0.5, 0.5] MN 𝑓15(�⃗�) = ∑  

𝐷

𝑖=1

(∑  

𝑘𝑚𝑎𝑥

𝑘=0

[𝑎𝑘 cos(2𝜋𝑏𝑘(𝑥𝑖 + 0.5))]) − 𝐷 ∑  

𝑘𝑚𝑎𝑥

𝑘=0

[𝑎𝑘cos (2𝜋𝑏𝑘0.5)] 

𝑎 = 0.5, 𝑏 = 3,𝑘𝑚𝑎𝑥 = 20 

F16 Elliptic [−100, 100] UN 𝑓16(�⃗�) = ∑  

𝐷

𝑖=1

(106)
𝑖−1
𝐷−1𝑥𝑖

2 

https://www.sfu.ca/~ssurjano/spheref.html
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Table 2. Performance analysis of cluster numbers and swarm sizes. 

 

No.  
𝑘 =  2 𝑘 =  3 𝑘 =  4 𝑘 =  5 𝑘 =  7 𝑘 =  10 𝑘 =  12 𝑘 =  15 𝑘 =  20 

𝑆𝑆 =  30 𝑆𝑆 =  30 𝑆𝑆 =  30 𝑆𝑆 =  30 𝑆𝑆 =  30 𝑆𝑆 =  30 𝑆𝑆 =  60 𝑆𝑆 =  60 𝑆𝑆 =  60 

F1 Mean 8.8818E-16 8.8818E-16 8.8818E-16 8.8818E-16 8.8818E-16 8.8818E-16 8.8818E-16 8.8818E-16 8.8818E-16 

Std.Dv 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

Best 8.8818E-16 8.8818E-16 8.8818E-16 8.8818E-16 8.8818E-16 8.8818E-16 8.8818E-16 8.8818E-16 8.8818E-16 

F2 Mean 2.3558E-31 2.3558E-31 2.3558E-31 2.3558E-31 2.3558E-31 2.3558E-31 2.3558E-31 2.3558E-31 2.3558E-31 

Std.Dv 4.4539E-47 4.4539E-47 4.4539E-47 4.4539E-47 4.4539E-47 4.4539E-47 4.4539E-47 4.4539E-47 4.4539E-47 

Best 2.3558E-31 2.3558E-31 2.3558E-31 2.3558E-31 2.3558E-31 2.3558E-31 2.3558E-31 2.3558E-31 2.3558E-31 

F3 Mean 1.4998E-33 1.4998E-33 1.4998E-33 1.4998E-33 1.4998E-33 1.4998E-33 1.4998E-33 1.4998E-33 1.4998E-33 

Std.Dv 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

Best 1.4998E-33 1.4998E-33 1.4998E-33 1.4998E-33 1.4998E-33 1.4998E-33 1.4998E-33 1.4998E-33 1.4998E-33 

F4 Mean 2.7281E-27 4.8439E-28 5.5544E-29 5.6389E-30 4.9807E-32 1.9941E-45 6.5348E-18 6.5758E-20 6.1567E-17 

Std.Dv 3.2769E-27 6.7514E-28 7.0531E-29 1.3038E-29 1.8419E-31 4.3484E-45 6.1422E-15 3.1234E-12 5.1640E-19 

Best 2.8495E-29 3.7504E-30 1.7019E-30 9.5295E-32 1.0091E-34 1.2954E-50 1.4852E-20 1.2561E-15 5.5122E-22 

F5 Mean 9.3904E-52 2.5201E-53 7.9243E-55 6.8418E-57 8.1015E-62 1.9582E-85 6. 2452E-33 5.9028E-32 7.9243E-30 

Std.Dv 1.5492E-51 4.0619E-53 2.6339E-54 1.7647E-56 3.0271E-61 1.0726E-84 2.1426E-29 5.6289E-33 3.2515E-34 

Best 1.6759E-55 1.3062E-57 3.1839E-59 1.7495E-61 3.7070E-67 1.3331E-97 5.52254E-29 9.2241E-32 3.1041E-29 

F6 Mean 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

Std.Dv 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

Best 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

F7 Mean 1.6011E-53 8.3317E-55 9.0289E-57 3.2120E-57 2.6249E-63 2.2827E-91 7.0289E-50 8.1089E-51 9.1385E-52 

Std.Dv 3.1071E-53 2.6006E-54 2.5998E-56 1.6543E-56 8.7422E-63 4.9407E-91 2.5254E-54 2.5918E-54 2.1418E-55 

Best 9.3682E-57 5.9574E-59 1.2242E-60 1.0902E-62 4.9563E-69 6.0112E-101 1.2356E-50 1.2572E-50 1.9247E-50 

F8 Mean 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

Std.Dv 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

Best 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

F9 Mean 1.8181E-11 5.9853E-11 1.5745E-13 6.9601E-14 1.1672E-14 1.2733E-12 2.5498E-05 2.1045E-07 1.5556E-08 

Std.Dv 3.2351E-11 3.0607E-10 3.5254E-13 1.9890E-13 3.9630E-14 6.2326E-12 2.5554E-03 3.5254E-10 3.1235E-11 

Best 9.7255E-15 3.1785E-17 3.8755E-17 6.4705E-21 7.3066E-22 1.3449E-25 1.2451E-06 3.8755E-07 3.7415E-12 

F10 Mean 3.6476E-04 1.3000E-03 1.7000E-03 5.5004E-04 1.8000E-03 3.3000E-03 6.1332E-02 8.7301E-01 2.2891E-02 

Std.Dv 1.4000E-03 2.8000E-03 3.1000E-03 1.9000E-03 3.4000E-03 4.7000E-03 3.2498E-02 3.3678E-03 3.1450E-03 

Best 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

F11 Mean 1.3498E-31 1.3498E-31 1.3498E-31 1.3498E-31 1.3498E-31 1.3498E-31 1.3498E-31 1.3498E-31 1.3498E-31 

Std.Dv 6.6809E-47 6.6809E-47 6.6809E-47 6.6809E-47 6.6809E-47 6.6809E-47 6.6809E-47 6.6809E-47 6.6809E-47 

Best 1.3498E-31 1.3498E-31 1.3498E-31 1.3498E-31 1.3498E-31 1.3498E-31 1.3498E-31 1.3498E-31 1.3498E-31 

F12 Mean 3.4162E-26 3.1238E-27 8.3526E-28 8.2447E-29 2.0339E-31 7.3070E-45 6.3526E-24 7.1236E-23 2.3871E-21 

Std.Dv 5.2158E-26 4.5494E-27 1.0814E-27 1.6046E-28 6.2809E-31 2.5848E-44 5.6803E-17 2.5634E-19 5.7874E-17 

Best 1.3391E-27 1.1122E-29 2.5563E-29 1.9409E-31 2.2001E-33 1.4726E-48 3.5453E-19 1.5122E-19 7.5576E-29 

F13 Mean -8.778E+02 -1.003E+03 -1.143E+03 -1.157E+03 -1.507E+03 -1.235E+03 -2.563E+03 -1.128E+03 -1.843E+03 

Std.Dv 2.3739E+02 2.5771E+02 3.4093E+02 4.4529E+02 2.7453E+02 4.8710E+02 2.4577E+02 3.4745E+02 2.4093E+02 

Best -1.484E+03 -1.510E+03 -1.771E+03 -1.667E+03 -2.249E+03 -1.918E+03 -1.771E+03 -1.576E+03 -1.771E+03 

F14 Mean 3.7954E-07 9.3134E-08 2.5944E-07 5.6892E-07 1.1472E-16 8.9730E-25 7.5944E-07 1.5563E-07 3.5944E-07 

Std.Dv 1.5075E-06 5.0161E-07 1.1170E-06 1.8935E-06 6.2836E-16 4.7045E-24 4.1170E-06 2.1935E-06 4.6808E-06 

Best 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

F15 Mean 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

Std.Dv 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

Best 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

F16 Mean 2.3569E-46 1.6864E-48 1.0218E-49 1.8531E-52 1.7582E-57 9.4375E-81 1.0283E-42 1.1618E-43 1.1159E-41 

Std.Dv 8.9929E-46 5.4810E-48 4.7154E-49 5.6808E-52 4.7069E-57 5.1651E-80 5.8854E-49 5.5169E-49 5.8074E-49 

Best 6.2330E-51 5.6229E-53 1.8914E-55 1.8607E-56 6.9800E-63 1.8083E-94 1.8935E-55 1.9880E-55 1.8563E-55 
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Table 3. The comparisons of the ranks of the results with respect to 𝑘 values. 

𝑆𝑆 𝑘  

 Order Numbers           

1 2 3 4 5 6 7 8 9 

30 2 8 0 0 0 2 6 0 0 0 

30 3 7 0 2 0 6 1 0 0 0 
30 4 7 0 1 8 0 0 0 0 0 
30 5 7 2 6 0 0 1 0 0 0 
30 7 9 6 0 0 1 0 0 0 0 
30 10 13 1 0 1 0 1 0 0 0 
60 12 7 0 0 0 0 0 4 3 2 
60 15 7 0 0 0 0 0 3 4 2 
60 20 7 0 0 0 0 0 2 2 5 

Table 4. Experimental results of PSO-ISK and SPSO. 

No. 
       𝐷 = 2     𝐷 = 3                 𝐷 = 4               𝐷 = 5 

 PSO-ISK SPSO PSO-ISK SPSO PSO-ISK SPSO PSO-ISK SPSO 

F1 Mean 8.8818E-16 8.8818E-16 8.8818E-16 8.8818E-16 8.8818E-16 1.0066E-15 8.8818E-16 1.3619E-15 

Std.Dv 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 6.4863E-16 0.000E+00 1.2283E-15 

Best 8.8818E-16 8.8818E-16 8.8818E-16 8.8818E-16 8.8818E-16 8.8818E-16 8.8818E-16 8.8818E-16 

F2 Mean 2.3558E-31 2.3558E-31 1.5705E-31 1.5705E-31 1.1779E-31 1.1779E-31 9.4233E-32 9.4233E-32 

Std.Dv 4.4539E-47 4.4539E-47 6.6809E-47 6.6809E-47 2.2270E-47 2.2270E-47 3.3404E-47 3.3404E-47 

Best 2.3558E-31 2.3558E-31 1.5705E-31 1.5705E-31 1.1779E-31 1.1779E-31 9.4233E-32 9.4233E-32 

F3 Mean 1.4998E-33 1.4998E-33 1.4998E-33 1.4998E-33 1.4998E-33 1.4998E-33 1.4998E-33 1.4998E-33 

Std.Dv 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

Best 1.4998E-33 1.4998E-33 1.4998E-33 1.4998E-33 1.4998E-33 1.4998E-33 1.4998E-33 1.4998E-33 

F4 Mean 4.3749E-24 4.3766E-23 2.7739E-32 2.2949E-30 1.9604E-39 4.4524E-37 6.9479E-45 1.6874E-42 

Std.Dv 6.3687E-24 6.1939E-23 4.8375E-32 1.9356E-30 2.1818E-39 3.3483E-37 9.1952E-45 5.0311E-42 

Best 1.0547E-25 2.1405E-24 2.2733E-33 2.0168E-31 1.8073E-40 2.3476E-38 3.8004E-46 6.9861E-44 

F5 Mean 4.2508E-45 5.6123E-43 6.8775E-62 3.5694E-58 2.1270E-75 6.2298E-71 3.5208E-87 4.5479E-82 

Std.Dv 1.1077E-44 1.2871E-42 1.4487E-61 6.6597E-58 8.7209E-75 1.9580E-70 8.5092E-87 9.9633E-82 

Best 2.7873E-48 1.8630E-46 2.7389E-64 1.5468E-60 2.9610E-78 9.4018E-73 4.4471E-89 5.9303E-85 

F6 Mean 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

Std.Dv 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

Best 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

F7 Mean 1.2001E-46 3.4455E-45 8.0768E-64 1.2565E-59 2.5996E-77 1.1334E-72 1.4407E-88 1.8118E-83 

Std.Dv 4.0789E-46 6.7876E-45 1.5188E-63 2.9314E-59 5.7645E-77 3.2176E-72 3.2367E-88 3.9677E-83 

Best 5.2497E-50 2.4111E-48 5.3344E-66 4.0227E-62 6.8847E-80 1.9770E-76 3.6587E-91 1.4291E-85 

F8 Mean 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 3.3200E-02 0.000E+00 6.6300E-02 

Std.Dv 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 1.8170E-01 0.000E+00 3.6330E-01 

Best 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

F9 Mean 2.4272E-14 3.2465E-15 3.6807E-05 1.3008E-05 1.2000E-03 9.5862E-04 3.9750E-01 3.7000E-03 

Std.Dv 1.0694E-13 9.7337E-15 7.0469E-05 2.2182E-05 6.1715E-04 3.8606E-04 1.2031E+00 4.8000E-03 

Best 1.3079E-18 3.0321E-19 3.1007E-08 2.6281E-09 7.7701E-05 1.3200E-06 1.1000E-03 1.4000E-03 

F10 Mean 1.6198E-05 2.4889E-04 3.1000E-03 4.0000E-03 8.4000E-03 1.1600E-02 1.0100E-02 2.0900E-02 

Std.Dv 1.1000E-03 1.3000E-03 3.9000E-03 4.3000E-03 5.9000E-03 9.7000E-03 3.3000E-03 1.4400E-02 

Best 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

F11 Mean 1.3498E-31 1.3498E-31 1.3498E-31 1.3498E-31 1.3498E-31 1.3498E-31 1.3498E-31 1.3498E-31 

Std.Dv 6.6809E-47 6.6809E-47 6.6809E-47 6.6809E-47 6.6809E-47 6.6809E-47 6.6809E-47 6.6809E-47 

Best 1.3498E-31 1.3498E-31 1.3498E-31 1.3498E-31 1.3498E-31 1.3498E-31 1.3498E-31 1.3498E-31 

F12 Mean 4.3788E-23 3.3364E-22 5.3633E-31 4.7849E-29 1.0159E-36 1.8177E-34 5.5303E-41 1.1451E-38 

Std.Dv 6.6221E-23 2.9324E-22 5.3548E-31 5.2987E-29 1.6594E-36 2.5375E-34 5.4592E-41 1.0219E-38 

Best 2.5663E-24 6.1440E-24 5.6450E-32 4.0340E-30 9.0958E-38 4.1100E-36 5.8581E-42 1.1972E-39 

F13 Mean -1.3834E+03 3.9479E+00 -1.4008E+03 1.9740E+01 -1.3527E+03 3.9479E+01 -1.3012E+03 8.2964E+01 

Std.Dv 2.0234E+01 2.1624E+01 3.0851E+01 4.4894E+01 5.0740E+01 5.6787E+01 9.6430E+01 9.9169E+01 

Best -2.1097E+03 -2.2737E-13 -1.9583E+03 -4.5475E-13 -2.1391E+03 -4.5475E-13 -2.3650E+03 -4.5475E-13 

F14 Mean 2.0354E-17 1.5153E-07 1.7006E-06 1.8626E-05 1.3670E-06 1.1241E-33 2.0354E-17 2.0354E-17 

Std.Dv 1.1148E-16 6.3352E-07 9.2609E-06 5.8837E-05 7.4689E-06 5.7849E-33 1.1148E-16 1.1148E-16 

Best 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 5.3649E-55 5.3649E-55 

F15 Mean 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

Std.Dv 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

Best 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

F16 Mean 2.2583E-06 1.4711E-37 3.2974E-58 2.0298E-53 2.3592E-72 1.5357E-66 0.000E+00 3.2340E-77 

Std.Dv 8.7048E-06 4.5894E-37 6.0140E-58 3.3541E-53 1.0278E-71 3.6323E-66 0.000E+00 1.0896E-76 

Best 0.000E+00 7.4520E-41 7.5932E-61 5.4273E-56 3.1786E-75 1.5154E-68 0.000E+00 3.9712E-80 
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Table 5. Numerical comparisons of the results of PSO-ISK against SPSO for mean values. 

 𝐷 = 2 𝐷 = 3 𝐷 = 4 𝐷 = 5 

Better 7 8 9 9 
Equal 7 7 5 6 
Worse 2 1 2 1 

Table 6. Comparative results of the PSO-ISK with PSO-variants. 

Table 7. The comparisons of the ranks of the results. 

 PSO-ISK CLPSO HPSO-TVAC FIPSO SPSO-40 LPSO DMS-PSO LFPSO 

Mean Rank 2.125 5.125 4.125 5.875 5.5 5.375 5 2.875 

Final Rank 1 5 3 8 7 6 4 2 

 

4 Conclusion 

Although PSO is one of the most efficient SI algorithms, it has 
the problem of getting stuck at local minimums due to early 
convergence and weak global search capability. In this study, 
the K-Means clustering method is inserted into the operating 
routine of PSO. The proposed method is named Particle Swarm 
Optimization with a New Intensification Strategy Based on K-
Means (PSO-ISK). PSO-ISK aims to improve the intensification 
of the swarm by dividing the particles into several clusters. The 
total quality of the swarm is increased by improving the 
weakest particles in each cluster. The comparison between the 
SPSO2007 and PSO-ISK is conducted on 16 benchmark test 
functions with 2, 3, 4, and 5 dimensions. For all dimensions and  

 

almost all benchmark test functions, PSO-ISK obtained better 
results than SPSO. Furthermore, the performance of the PSO-
ISK algorithm was analyzed by comparing seven PSO variants. 
The experimental results proved that PSO-ISK is more robust in 
most of the test functions, and it generally achieves better 
results. Until now, no such strategy has been proposed to 
improve PSO-ISK will be adapted in the future with 
metaheuristics based on swarm intelligence such as GWO and 
KHO. Because enhancing performance by improving the worst 
results is one of the most important components of achieving 
success. 

Algorithm  F1 F2 F3 F4 F5 F8 F9 F10 

PSO-ISK Mean 7.57E-15 1.57E-32 1.50E-33 2.87E-55 1.39E-98 3.99E+01 9.28E+00 2.66E-03 

Std.Dv 1.18E-15 5.59E-48 0.00E+00 3.26E-55 2.00E-98 1.55E+01 6.66E+00 4.02E-03 

Rank 1 1 1 1 1 6 1 5 

CLPSO Mean 3.66E-07 6.45E-14 1.25E-12 2.51E-08 1.58E-12 9.09E-05 1.14E+01 9.02E-09 

Std.Dv 7.57E-08 3.70E-14 9.45E-13 5.84E-09 7.70E-13 1.25E-04 9.85E+00 8.57E-09 

Rank 7 7 6 7 8 1 2 3 

HPSO-TVAC Mean 7.29E-14 2.71E-29 2.79E-28 9.03E-20 2.83E-33 9.43E+00 2.39E+01 9.75E-03 

Std.Dv 3.00E-14 1.88E-29 2.18E-28 9.58E-20 3.19E-33 3.48E+00 2.65E+01 8.33E-03 

Rank 4 4 3 3 3 3 5 8 

FIPSO Mean 2.33E-07 1.96E-15 2.70E-14 2.76E-08 2.42E-13 6.51E+01 2.51E+01 9.01E-12 

Std.Dv 7.19E-08 1.11E-15 1.57E-14 9.04E-09 1.73E-13 1.34E+01 5.10E-01 1.84E-11 

Rank 6 6 4 8 7 8 6 2 

SPSO-40 Mean 3.73E-02 7.47E-02 1.76E-03 1.74E-53 2.29E-96 4.10E+01 1.35E+01 7.48E-03 

Std.Dv 1.90E-01 3.11E+00 4.11E-03 1.58E-53 9.48E-96 1.11E+01 1.46E+01 1.25E-02 

Rank 8 8 7 2 2 7 3 7 

LPSO Mean 8.20E-08 8.10E-16 3.26E-13 1.70E-10 3.34E-14 3.51E+01 2.81E+01 1.53E-03 

Std.Dv 6.73E-08 1.07E-15 3.70E-13 1.39E-10 5.39E-14 6.89E+00 2.18E+01 4.32E-03 

Rank 5 5 5 6 6 5 7 4 

DMS-PSO Mean 1.84E-14 2.51E-30 2.64E-03 1.57E-18 2.65E-31 2.72E+01 4.16E+01 6.21E-03 

Std.Dv 4.35E-15 1.02E-29 4.79E-03 3.79E-18 6.25E-31 6.02E+00 3.03E+01 8.14E-03 

Rank 3 3 8 4 4 4 8 6 

LFPSO Mean 1.68E-14 4.67E-31 1.51E-28 2.64E-17 4.69E-31 4.54E+00 2.38E+01 8.14E-17 

Std.Dv 4.84E-15 9.01E-31 8.00E-28 6.92E-17 2.50E-30 1.03E+01 3.17E-01 4.46E-16 

Rank 2 2 2 5 5 2 4 1 
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