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Abstract  Öz 

It is well known that the models supporting the Modern Portfolio Theory 
(MPT) and the Efficient Market Hypothesis (EMH) are constructed in 
the framework of random walk theory. However, a large and growing 
literature criticizes those models. The Fractal Market Hypothesis (FMH) 
was proposed as an alternative hypothesis to EMH. The motivation of 
this study is Peters’ [45,46] works that examine the portfolio selection 
case based on the non-normality framework. The aim of the study is to 
propose a new approach to theoretical framework of portfolio selection 
in terms of FMH. Daily observations of 92 stocks traded in London Stock 
Exchange are used to investigate the fractal behavior. Thus, the Hurst 
exponents as a means of indicator of a fractal structure are calculated 
for simulated portfolios. Results of the analysis show that the validity of 
MPT and EMH is questionable in London Stock Exchange. To examine 
the relationship between Hurst exponents (as a measure of risk) and 
returns, scattered diagrams are constructed for 5000 simulated 
portfolios. Existence of a pattern with a frontier is detected that may 
enable investors to optimize their portfolios. Further, The Hurst 
exponents of efficient frontier portfolios of Markowitz are calculated in 
order to investigate whether there is any linkage with the frontier of 
simulated portfolios. The results show that major deviations occur 
between these two frontiers. To understand these deviations, the 
Lyapunov exponents are suggested for detailed information. As a 
conclusion, it is recommended that investors should calculate an 
optimal solution with regards to the Hurst and Lyapunov exponents to 
maximize their returns. 

 Modern Portföy Teorisini (MPT) ve Etkin Piyasa Hipotezini (EMH) 
destekleyen modellerin rastgele yürüyüş teorisi çerçevesinde 
kurgulandığı bilinmektedir. Ancak, bu modelleri eleştiren geniş ve 
büyüyen bir literatür, Fraktal Piyasa Hipotezi (FMH) ile EMH'nin 
geçerliğini sorgulamaktadır. Bu çalışmanın motivasyonu, Peters'ın 
[45,46] portföy seçimini normal dağılıma uymayan çerçevede inceleyen 
çalışmalarına dayanmaktadır. Çalışmanın amacı, portföy seçiminin 
teorik çerçevesine FMH açısından yeni bir yaklaşım önermektir. 
Çalışmada, fraktal davranışı araştırmak için Londra Menkul Kıymetler 
Borsası'nda işlem gören 92 hisse senedinin günlük gözlemleri 
kullanılmıştır. Analizlerde, öncelikle simüle edilmiş portföyler için 
fraktal yapının bir göstergesi olarak Hurst üsleri hesaplanmıştır. 
Bulgular, Londra Menkul Kıymetler Borsası'nda MPT ve EMH'nin 
geçerliliğinin sorgulanabilir olduğunu göstermektedir. Getiriler ve bir 
risk ölçüsü olarak Hurst üsleri arasındaki ilişkiyi incelemek için 5000 
simüle edilmiş portföy oluşturulmuştur. Daha sonra, simüle adilmiş 
portföyler üzerinde yatırımcıların getirilerini optimize etmelerini 
sağlayabilecek bir etkin sınırın varlığı tespit edilmiştir. Sonuçları 
detaylı incelemek amacıyla, simüle edilmiş etkin sınır ile Markowitz'in 
etkin sınır portföylerinin Hurst üsleri hesaplanmıştır ve 
karşılaştırmalar yapılmıştır. Sonuçta, bu iki etkin sınır arasında büyük 
sapmaların meydana geldiğini tespit edilmiştir. Son olarak, sapmaların 
davranışlarını anlamak için Lyapunov üsleri kullanılmıştır. Araştırma 
sonucunda, yatırımcıların getirilerini maksimize etmek için Hurst ve 
Lyapunov üslerine göre optimal bir çözüm hesaplamaları önerilmiştir. 

Keywords: Portfolio selection, Efficient frontier, Fractal market 
hypothesis, The hurst exponent, The lyapunov exponent. 

 Anahtar kelimeler: Portföy seçimi, Etkin sınır, Fraktal piyasa 
hipotezi, Hurst üsteli, Lyapunov üsteli. 

1 Introduction 

Financial analysts’ interest in finding the relationship between 
risk and return goes a long way back to Bachelier [1]. Since 
then, in finance literature, many efforts have been put on 
creating models to perceive the behavior of capital flows. Those 
models are simplifications of reality due to the complex nature 
of financial markets [2]-[5]. Nevertheless, financial analysts 
find that their estimations, contrary to their theories, have 
limited empirical validity [6]-[20]. They realized that a small 
change in the models have a bigger impact than the theories 
would predict. It is well known that those models are 
constructed in the framework of the random walk theory. 
However, empirical evidence shows that the related data 
contain outliers. The source of outliers can be assumed to be 
exogenous variables. But, the existence of outliers may be due 
to emotions, such as greed and fear, in investment decisions. 

                                                           
*Corresponding author/Yazışılan Yazar 

Moreover, this may result in high volatility which in turn may 
create a divergence of equilibrium tendency in financial 
markets. From this point of view, the equilibrium assumption 
of the Efficient Market Hypothesis (EMH) is redundant. 

Before the EMH presented by Fama [4], the Modern Portfolio 
Theory (MPT) was proposed with specific assumptions 
involving the Gaussian distribution and the random walk 
theory [2]. MPT is the concept of diversification in terms of 
constructing portfolios which minimizes risk for a specified 
level of returns. The measure of risk is variance of stock returns 
that are assumed to be a random walk, and independent and 
identically distributed (IID) variables (For a detailed collected 
study of random walk characteristic of price behavior can be 
found in Cootner [21], the random character of stock market 
prices). In this context, according to the Central Limit Theorem, 
returns are expected to be normally distributed with finite 
variance. The MPT was extended by Sharpe [3], Lintner [22], 
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and Mossin [23] to Capital Asset Pricing Model (CAPM). The 
CAPM by combining a riskless asset and the optimal portfolios 
of the MPT develops a linear measure of the sensitivity of a 
risky asset to the market risk, called Beta. Thereafter, the CAPM 
has become a standard of rational investor behavior in financial 
markets. Later, based on the random walk and IID assumptions, 
Black and Scholes [24] developed the Option Pricing Model, 
subsequently, Ross [5] proposed the Arbitrage Pricing Theory 
(APT). All those models are embraced by the EMH which 
formulated on the changes in price come only from unexpected 
new information [69]. The EMH with its three different 
classifications (weak, semi-strong and strong) evolved from the 
MPT [4]. Strong form efficiency is considered impossible in the 
real world [25]. Thus, the weak and semi-strong forms of the 
EMH are assumed to be applicable in practice [26]. 

The MPT, CAPM, and EMH have their own successes in financial 
markets, however, a large and growing literature criticizes the 
models [26]-[41]. Mandelbrot [42] first challenged the EMH 
informing those returns are non-normal. Due to non-normality 
of returns, he stated that the EMH needs to be revised. 
Essentially, the supporters of the EMH and the MPT ([6],[43], 
[44], among others) were well aware of the problematic 
assumptions and the limitations of theories [45]. Consequently, 
Fractal Market Hypothesis (FMH) was proposed as alternative 
hypothesis by Peters [45] and Peters [46] to understand the 
chaotic behavior of financial markets. The FMH emphasizes the 
impact of liquidity and investment horizons on the behavior of 
investors. The FMH aims to generate a model for investor 
behavior and market price movements that fits the real world. 
A market exists to support a stable or liquid environment for 
trading. A liquid environment is where the investors with 
short- and long-horizon come together. Thus, liquidity does not 
mean trading volume by itself. In this context, liquidity creates 
stable markets. On the contrary, the EMH does not say anything 
about liquidity, it says that prices should always be fair whether 
liquidity exists or not [66]. The EMH assumes there is always 
enough liquidity. However, markets are not always liquid. 
When the lack of liquidity strikes, investors are willing to take 
any price they can, fair or not [46]. This may be considered as 
the result of panic/courage and fear/greed of investors. These 
types of situations are the creators of outliers.  

The aim of this study is to propose a new approach to 
theoretical framework of portfolio selection. From this point of 
view, we suggest several steps consistent with the FMH. As 
suggested by Peters [45] and Kiehling [47], Hurst exponents are 
considered as a means of risk measure for portfolios. In the 
analysis of this study, the Hurst exponent is by itself necessary 
but not sufficient condition in the portfolio selection problem 
to avoid the suboptimal portfolios. Therefore, the Lyapunov 
exponents for the same level of Hurst exponents are considered 
as an indicator for the best portfolio selection. 

The structure of the study is as follows. The second section 
briefly describes the methodology and the steps of the analysis. 
The third section conveys some information about the data. The 
fourth section provides empirical evidence from the analysis. 
The final section is the conclusion remarks of the study. 

2 Methodology 

2.1 Theoretical Framework  

The EMH’s assumptions are mainly summarized as follows: 
First, investors are rational, therefore, investing activities are 
uncorrelated. Because the investors are rational, they pay the 

right price for the (fair) value. Second, changes in price come 
only from unexpected new information, hence, the distribution 
of price changes is normal (or Gaussian). Third, transactions 
are costless, and information is available for every investor 
[33],[48].  

Failure of normality assumption was first realized by Osborne 
[49]. He plotted the density function of stock market returns, 
and labeled the returns are “approximately normal”. He found 
out there is more observation in the tails of the distribution 
then it would be expected. This, fatter tail situation, is the first 
implication of the departure of the normality assumption. 
Turner and Weigel [50] studied the volatility of the S&P 500 
and Dow Jones index returns, and they found out that daily 
return distributions are negatively skewed. Moreover, the 
distributions contain a larger frequency around the mean than 
the normal distribution should have. Dillén and Stoltz [51] 
found out that the empirical distribution of stock returns and 
the residuals are fat tails for twenty stocks quoted on the 
Stockholm Stock Exchange. Aygoren [17] examined 87 stocks 
traded in Borsa Istanbul and he concluded that stock price 
changes do not fit to Normal or Gaussian distribution. 
Mandelbrot [42] entitled these types of distributions which 
may have fractal dimensions as “Stable Paretian” that are 
characterized by undefined, or infinite variance. In Panel A and 
B of Figure 1, the negatively skewness and fat tails are 
illustrated, respectively. 

Panel A: Daily Return Distrbutions: Actual vs. Normal 

 
 

Panel B: Difference in Frequency Between Actual and 
Normal Distrbutions 

 

Figure 1. The frequency distribution and difference in 
frequency of S&P500 stock returns and normal distributions 

guan [52]. 

Studies mentioned above present evidence that the stock 
market returns are not normally distributed. In this regard, the 
diagnostics of normal distribution (i.e., the correlation 
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coefficient, t-statistics, etc.) is violated, as well as the random 
walk process in returns is critically weakened. 

Based on the debate above, there are several studies which 
investigate the distributions of returns that fit the real world 
[26], [53]-[60]. Those studies mainly focus on chaos and fractal 
behaviors; however, they were confined with individual asset 
returns. In this study, we aimed to apply chaos and fractal 
behavior of portfolio returns. We believe that this study will 
have a theoretical contribution to the finance literature. Even 
though Peters [46] examined the portfolio selection case based 
on the non-normality framework, he approached the subject 
from the point of the single-index model. After several 
empirical experiences, he indicated that the process should be 
revisited, and further work should be done. 

According to the MPT, portfolio returns are the weighted 
average of individual expected stock returns. From the point of 
the fractal behavior, this is the less controversial part of the 
MPT. But the variance as the measure of risk is an obvious 
problem because fractal distributions do not have a variance 
(i.e., undefined, or infinite, variance) to optimize. It is well 
known that the risk and return tradeoff are a crucial topic for 
financial investors. In terms of the FMH, the calculation of the 
expected return of a portfolio with the weighted average of 
individual expected stock returns is still valid. Yet, to measure 
the risk new approaches are needed (Tilfani et al. [68] 
constructed multi-scale portfolios in determining efficient 
market frontiers using fractal regressions. In their study, 
covariance matrix is considered as the risk measure in respect 
to dynamic correlation coefficient [DCC] framework.). In this 
framework, the fractal dimension may also be evaluated as a 
risk measure. If a time series has a consistent trend instead of a 
random walk behavior, it has lower fractal dimensions. The 
fractal dimension is an interesting alternative for measuring 
the risk of altering from a real mode and it shows a time path. 
This feature is different from a measure of dispersion such as 
the standard deviation [47]. Hurst exponent suggested by Hurst 
[61] is considered as a means of fractal dimension. In the 
following section, the theoretical framework of Hurst exponent 
will be discussed. 

2.2 Rescaled range (R/S) analysis and the hurst 
exponent 

Hurst [61] introduced Rescaled Range (R/S) Analysis in the 
hydrological study of the Nile valley. As a hydrologist Hurst 
studied on the optimum dam size of the Nile River. He analyzed 
overflows of the Nile valley for a long period and constructed 
the R/S Analysis framework. 

Calculating the Hurst exponent is a part of R/S Analysis. Let be, 
a mean of time series (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑁) is 𝑦̅.  

𝑦𝑡 ≡ ln(𝑥𝑘+1 𝑥𝑘⁄ )   𝑘 = 1,2, … , 𝑁 (1) 

𝑦̅ =
1

𝑁
∑ 𝑦𝑡

𝑗
𝑡=1    j= 1,2, … , 𝑁 (2) 

On the next step, 𝑌𝑗 , the cumulative time series are calculated. 

𝑌𝑗 = [(𝑦1 − 𝑦̅) + ⋯ + (𝑦𝑗 − 𝑦̅)] (3) 

After calculating the cumulative time series, adjusted range, 𝑅𝑛, 
can be calculated via the maximum value of 𝑌𝑗  minus the 

minimum value of 𝑌𝑗 . 

𝑅𝑛 = [ max
1≤𝑘≤𝑛

∑(𝑌𝑗 − 𝑌̅𝑛)

𝑘

𝑗=1

− min
1≤𝑘≤𝑛

∑(𝑌𝑗 − 𝑌̅𝑛)

𝑘

𝑗=1

] (4) 

𝑆𝑛, the estimated standard deviation with maximum likelihood 
can be calculated as follows on the next step: 

𝑆𝑛 = √∑ (𝑦𝑖 − 𝑦̅)2
𝑛

𝑖=1
√𝑁⁄  (5) 

On the last step, the Hurst exponent is adjusted range over 
standard deviation. Where, 𝑐 is a constant; 𝐻 denotes the Hurst 

exponent; and 
𝑅𝑛

𝑆𝑛
⁄  is known as the rescaled range. 

𝑅𝑛
𝑆𝑛

⁄ = 𝑐𝑛𝐻 (6) 

It is hard to estimate the Eq. (6) because it is an exponential 
model. A logarithmic conversion is needed: 

log(𝑅
𝑆⁄ )

𝑛
= log 𝑐 + 𝐻log 𝑛 (7) 

The Hurst exponent, 𝐻, may take on values between zero and 
one. A value of 0.5 is a random walk process. It differs from 0.5 
means that a time series' changes are not normally distributed. 
For a persistent or trend-reinforcing series, it has a value 
between 0.5 and 1 (0.5 < H ≤ 1.0). The more Hurst exponent 
approximates 1, the stronger the system's trend-reinforcing 
behavior gets. Values between 0 and 0.5 (0 ≤ H < 0.5) indicate 
anti-persistent or mean reverting systems. Moreover, high 
Hurst values show less noise and clearer trends than lower 
ones [45],[47],[58],[62],[67]. In Table 1, the fractal taxonomy of 
times series categorized to understand predictions for 
meaningful forecasts. 

Table 1. The fractal taxonomy of times series. 

Term Color 
Hurst 

Exponent 
Fractal 

Dimension 
Anti-persistent, Ergodic, 

Mean-reverting, 
Negative Serial Correlation 

Pink 
Noise 

0 < H < 0.50 0 ≤ D <2 

Gaussian Process, Normal 
Distribution 

White 
noise 

H ≡ 0.50 D ≡ 2 

Brownian Motion, Wiener 
Process 

Brown 
noise 

H ≡ 0.50 D ≡ 2 

Persistent, Trend-
reinforcing, Hurst 

Process 

Black 
noise 

0.50 < H < 1 2> D; D> 1 

Cauchy Process, Cauchy 
Distribution 

Cauchy 
Noise 

H ≡ 1 D ≡ 1 

Source: Mulligan [62]. 

The Hurst exponent provides information about the 
persistence of the system. Although the Hurst exponent 
excepted as a measure of risk, it avoids the information about 
the length of the prediction horizon or long-memory of the 
system. There may be many alternatives with the same Hurst 
exponent but different prediction horizons in investment 
opportunity set. To choose the best alternative, therefore, the 
prediction horizon should be calculated. To do so, the Lyapunov 
Exponent can be a measure of predictability of a system. In the 
following section, the theoretical framework of the Lyapunov 
exponent will be discussed. 

2.3 The Lyapunov exponent 

The Lyapunov exponent characterizes the dynamics of a 
complex process. It measures the divergence of two 
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neighboring spots after p periods. The Lyapunov exponent is 
therefore a measure for the predictability of a system. For 
calculation, an empirical time series 𝑌 = (𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑇) m-
dimensional phase spaces 𝑧 could be formed as follow [47]: 

𝑧𝑡 = (𝑦𝑡, 𝑦𝑡+1, 𝑦𝑡+2, … , 𝑦𝑡+𝑚+1) 𝑡 = 1,2, … , 𝑇 − 𝑚 + 1 (8) 

On the next step, all neighboring spots are identified as (𝑎𝑗 , 𝑎𝑘) 

where |𝑎𝑗 , 𝑎𝑘| < 𝜀 with 𝑎𝑗 ≠ 𝑎𝑘 is true in all conditions. There 

are 𝑁 pairs of neighboring spots. The distance between the 
neighboring spots, 𝛿, in p periods can be calculated as follow: 

𝛿𝑝
(𝑗,𝑘)

=
|𝑎𝑗+𝑝, 𝑎𝑘+𝑝|

|𝑎𝑗−𝑎𝑘|
 (9) 

Then the Lyapunov exponent, 𝜆, follows the function: 

𝜆 =
1

𝑝 × 𝑁
× ∑(𝑙𝑛𝛿𝑝

(𝑗,𝑘)
)

𝑗,𝑘

 (10) 

Negative values of Lyapunov exponents show a contraction in 
phase space (Phase space is a graph that shows all possible 
states of a system. In phase space, the value of a variable is 
plotted against possible values of the other variables at the 
same time. For instance, if a system has three descriptive 
variables, the phase space is plotted in three dimensions, with 
each variable taking one dimension). It means that the distance 
between two neighboring spots shrinks in the course of time. 
On the contrary, positive Lyapunov exponents describe a 
dispersion in phase space [63]. When the Lyapunov exponent 
grows, the sensitivity of the system reacts rapidly to the change 
of its starting conditions. From a slightly different perspective, 
the Lyapunov exponent indicates the loss of predictive ability. 
The system becomes unpredictable after certain periods of 
time. Therefore, from the point of financial investors, the 
Lyapunov exponent can be considered as a measure of 
prediction horizon length. 

Reciprocal of the Lyapunov exponent (1/𝜆) is a way to 
determine the prediction horizon length (period of a long-
memory cycle). In other words, after 1/𝜆 periods of time, no 
information about the starting conditions can be found. The less 
Lyapunov exponent is the longer the prediction horizon length 
and vice versa. 

2.4 Steps of the analysis 

According to the aim of the study, we construct a methodology 
using empirical finance, the R/S analysis (Hurst exponent) and 
the Lyapunov exponent. Analysis of the study involves two 
sections. Firstly, for creating portfolios, uniform distribution 
weights are generated to simulate the relationship between 
returns and the Hurst exponents (as a means of risk measure) 
of portfolios. The steps are as follows (pseudo-codes are 
available in the Appendix A): 

1. Returns of each individual stock are calculated, 
2. The weight matrix (involving 5000 weights) is 

randomly generated from uniform distribution, 
3. Using the uniformly distributed portfolio weights and 

stock returns, the daily uniform portfolio return time-
series are calculated, 

4. Expected returns of each uniform portfolio return 
series are calculated, 

5. The Hurst exponents of each of the daily uniform 
portfolio return time-series are estimated by R/S 
model, 

6. The expected returns and the Hurst exponents of 
uniform portfolios are plotted to present the pattern. 

Secondly, we are interested in calculating weights of optimal 
portfolios of Markowitz mean-variance method to examine the 
relationship between returns and the Hurst exponents of those 
portfolios. The steps are as follows (pseudo-codes are available 
in the Appendix B): 

Returns of each individual stock are calculated. 

1. The weight matrix (involving 5000 weights) is 
generated by Markowitz mean-variance method. 
Frontier portfolios are the optimal portfolios 
generated on the efficient frontier, 

2. Using the frontier portfolio weights and stock returns, 
the daily frontier portfolio return time-series are 
calculated, 

3. Expected returns of each frontier portfolio return 
series are calculated, 

4. The Hurst exponents of each of the daily frontier 
portfolio return time-series are estimated by R/S 
model, 

5. The expected returns and the Hurst exponents of 
frontier portfolios are plotted to present the pattern, 

6. The Lyapunov exponents of each daily frontier 
portfolio return time-series are calculated, 

7. The expected returns, the Hurst exponents, and the 
Lyapunov exponents of each daily frontier portfolio 
return time-series are plotted. 

3 Data 

Daily observations of 92 stocks traded in London Stock 
Exchange (FTSE-100) are used to investigate behavior of FTSE 
for the period between January 4, 2010, and November 22, 
2019. The stocks that have available data during the study 
period are selected and the number of observations for each 
stock is 2580. The dataset is obtained from Bloomberg 
Professional Database. In this study natural logarithmic price 
changes are considered as the main data, and they are 
calculated as follows [64]-[65]: 

𝑅𝑡 = ln(𝑃𝑡) − ln(𝑃𝑡−1) (11) 

Where, 𝑃𝑡 is the price of individual stock at the time t; 𝑃𝑡−1 is 
the price of individual stock at the time t-1 and 𝑅𝑡 is the natural 
logarithmic price changes or returns of individual stocks. The 
summary descriptive statistics of dataset are shown in Table 2. 
It is seen that the behavior of price changes has fat tails and 
negatively skewed. 

Table 2. The summary descriptive statistics of the dataset. 

 
Minimum value of 

Observations 
Maximum value of 

Observations 
Kurtosis 1.9797 1512.4307 

Skewness -33.7935 0.5207 

Minimum of 
Minimums 

-1.8917 - 

Maximum of 
Maximums 

- 0.3772 

Standard 
Deviation 

0.0109 0.0426 

Mean -0.0005 0.0013 

Source: Calculated by Authors. 
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4 Findings 

This study provides an investigation to detect if the empirical 
evidence from the London Stock Exchange forms a pattern 
between returns and the Hurst exponents of uniform portfolios. 
Interestingly, we confront a specific pattern between two 
variables. Figure 2 illustrates that 5000 simulated uniform 
portfolios form a frontier. In this context, the Hurst exponents 
as a means of risk measures can be used to find out the optimal 
portfolios. Dotted and solid curves show the whole frontier 
formed by 5000 simulated uniform portfolios. However, the 
solid curve is of prime importance in terms of optimal uniform 
portfolios, i.e., for a specific level of the Hurst exponent, there is 
only one optimal solution (the highest return portfolio). To find 
the optimal portfolio, weight matrix must be calculated. To do 
so, there needs to be an objective portfolio Hurst exponent 
function that involves relationship among individual stocks’ 
Hurst exponents. Unfortunately, we do not have the objective 
function, and it is out of this study’s scope. Therefore, this 
problem can be a topic of further studies. 

The above inferences guide us to question if the frontier 
portfolios of Markowitz mean-variance have the same patterns 
with their Hurst exponents. To achieve this goal, we acquire the 
weights of 5000 mean-variance frontier portfolios (Figure 3). 

Using the frontier portfolio weights and stock returns, the daily 
frontier portfolio return time-series are calculated. Afterwards, 
the expected returns and Hurst exponents of each frontier 
portfolio return time-series are generated and plotted in  
Figure 4. Our expectation (the dotted curve in Figure 4) was to 
detect the same pattern with Figure 2, however, Figure 4 
presents a different pattern (solid behavior) far from that. To 
sum up, there is an obvious difference between portfolio 
selection of the MPT and fractal structure of financial markets. 
Figure 4 shows that a sharper decrease in returns occurs as the 

Hurst exponents increases compared to our expectation. The 
reason of this behavior may be due to existence of many 
alternatives with the same Hurst exponent but different 
prediction horizons in investment opportunity set. To 
understand these deviations, the Lyapunov exponents of 
frontier portfolios can suggest us a detailed information. 

In Section 2.3, we mentioned that reciprocal of the Lyapunov 
exponent (1/λ) is a way to determine the predictive ability. 
Figure 5 illustrates the expected returns, Hurst exponents, and 
prediction horizon lengths (1/λ) for frontier portfolios. There 
are positive and negative signs of Lyapunov exponents which 
also effect the sign of 1/λ. A positive Lyapunov exponent 
measures “stretching” in phase space; that is, it measures how 
rapidly nearby neighbor points diverge from one another. On 
the other hand, a negative Lyapunov exponent measures 
contraction, how long it takes for a system to reestablish itself 
after it has been perturbed. Peters [45] states that economic 
time series contain all the phases of the system, not just the 
chaotic ones. Therefore, the parameters must be chosen to 
maximize the measurement of the stretching of points in phase 
space while minimizing the contractions, that can occur when 
market activity is truly random or when market activity is low. 
In this context, the negative Lyapunov exponents of Figure 5 
may indicate low market activity periods. This can imply that 
during the low market activity periods, portfolio selection of 
the Markowitz’s mean-variance approach can mislead the 
investors. The positive Lyapunov exponents of Figure 5 have 
another story. They may provide us to select the best 
investment set in financial markets; that is, the portfolios which 
have short prediction horizon lengths should have relatively 
higher returns than long prediction horizon lengths. Thus, 
investors should create portfolios with optimal prediction 
horizon lengths for the same level of Hurst exponents. This 
optimization problem may be another topic for further studies. 

 

 

Figure 2. The expected returns and hurst exponents of uniform portfolios. 
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Figure 3. The efficient frontier graph of 5000 frontier portfolios. 

 

Figure 4. Expected returns and hurst exponents of 5000 frontier portfolios. 
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Figure 5. The expected returns, hurst exponents, and lyapunov 1/lambdas of 5000 frontier portfolios. 
 

5 Conclusion 

Research of the stock returns’ behavior date back to the 
beginning of the twentieth century and have been an important 
area in finance literature. Earlier studies define the return 
behaviors as random walk or Brownian motion. Due to the 
complex nature of financial markets, those studies can be 
characterized as the simplifications of reality. Nevertheless, 
researchers find that their estimations, contrary to the theories, 
have limited empirical validity, i.e., empirical evidence show 
that the related data contain outliers. The existence of outliers 
may be due to the emotions, such as panic/courage and 
fear/greed of investors, in their investment decisions. 
According to the Efficient Market Hypothesis (EMH), there are 
three different classifications of financial markets: weak, semi-
strong and strong. Strong form efficiency is considered 
impossible in the real world due to the existence of outliers. 
Thus, the weak and semi-strong forms are assumed to be 
applicable in practice. However, the applicability of weak and 
semi-strong forms in the real world was intensively criticized 
by the researchers. Consequently, the Fractal Market 
Hypothesis (FMH) was proposed as an alternative hypothesis 
in the sense of the criticism to the EMH. The FMH aims to 
generate a model for investors’ behavior and market price 
movements that fits the real world. 

The motivation of this study is Peters’ [45]-[46] works that 
examine the portfolio selection case based on the non-
normality framework. He approached the subject from the 
point of the single-index model. After several empirical 
experiences, he indicated that the process should be revisited, 
and further work should be done. The aim of this study is to 
propose a new approach to theoretical framework of portfolio 
selection. From this point of view, we suggest several steps 
consistent with the FMH. As suggested by Peters [45] and 
Kiehling [47], Hurst exponents are considered as a means of 
risk measure for portfolios. In the analysis of this study, we 

realized that the Hurst exponent is by itself necessary but not 
sufficient condition in the portfolio selection problem to 
eliminate the suboptimal portfolios. To avoid the selection of 
suboptimal portfolios from the investment opportunity set, the 
Lyapunov exponents for the same level of Hurst exponents are 
considered as an indicator of the best portfolio. 

For empirical analysis, the data involves daily observations of 
92 stocks traded in London Stock Exchange (FTSE-100) for the 
period between January 4, 2010, and November 22, 2019. The 
stocks that have available data during the study period are 
selected. The data after December 2019 is not included to the 
analysis because the effect of coronavirus. For this reason, this 
period is excluded from the analysis, but we are aware of the 
coronavirus effect that is supporting to FMH due to creating 
illiquid markets. Further research should include the data of the 
period after the coronavirus effect vanishes. 

In conclusion, the results of the study have several theoretical 
contributions. As mentioned, earlier studies focused on 
individual financial instruments’ returns in terms of the FMH. 
But, in this study, portfolio returns are examined as a new 
approach to FMH, and we believe that a gap is filled in the 
finance literature. Findings indicate that there is the existence 
of the efficient frontier relationship between portfolio returns 
and the Hurst exponents. It is possible to optimize returns 
according to the Hurst exponents. However, an objective 
function is needed for the optimization. The results also show 
that there is an obvious difference between portfolio selection 
of the MPT and FMH. A sharper decrease in returns occurs as 
the Hurst exponents increases compared to the theoretical 
expectation. To understand these deviations, the Lyapunov 
exponents are suggested for the detailed information. 

Furthermore, the MPT and EMH are invalid in London Stock 
Exchange. This result is consistent with the literature which 
criticizes those theories. Secondly, the findings suggest that the 
portfolio selection of Markowitz’s mean-variance approach can 
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mislead the investors. Investors should calculate an optimal 
solution with regards to the Hurst and Lyapunov exponents. 
These inferences can be summarized as the empirical 
implications of this study.  

Considering the analysis’ results, this study constitutes new 
research topics in finance literature. Further studies may be to 
find a mathematical function between the Hurst exponents of 
individual stock returns and the Hurst exponents of portfolio 
returns. Another research topic may be to focus on Lyapunov 
exponents with respect to portfolio selection. 
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Appendix A 

Algorithm: Generating Uniform Portfolios 
𝑃𝑡 : The daily price of individual stock at the time 𝑡, 𝑡 = 1, … , 𝑇 
𝑁 : Total number of individual stocks 
𝑤𝑖  : The portfolio weight of 𝑖𝑡ℎ stock 
 
Begin 

function (Generate returns of individual stocks (𝑅𝑡)) { 
 calculate Returns matrix (𝑅𝑡) using Equation (11), 
 The size of matrix is 𝑁𝑥(𝑇 − 1) 
 end  
 } 
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Appendix A: Continued. 

function (Create weight matrix from uniform distribution) { 
 for sum(𝑤𝑖) = 1 
 calculate 5000 uniformly distributed random numbers for each individual stock within the range of [0,1] 
 end  
 } 
 The size of matrix is 5000𝑥𝑁 
 end  
 } 
function (Calculate uniform portfolio return series) { 
 calculate Daily uniform portfolio return matrix by 𝑅𝑡 ×  𝑤𝑖 
 The size of matrix is 5000𝑥(𝑇 − 1) 
 end  
 } 
function (Calculate expected return of each uniform portfolio) { 
 calculate Returns vector (𝑅𝑝) by summing each column of daily uniform portfolio return matrix 

 The size of vector is 5000𝑥1 
 end  
 } 
function (Estimate the Hurst exponents of uniform portfolios) { 
 calculate The Hurst exponents vector (𝐻𝑝) for each uniform portfolio using Equation (7) 

 The size of vector is 5000𝑥1 
 end  
 } 
Scattered Plot (Returns vector (𝑅𝑝), Hurst exponents vector (𝐻𝑝)) 

end 

Appendix B 

Algorithm: Generating Frontier Portfolios 
𝑃𝑡 : The daily price of individual stock at the time 𝑡, 𝑡 = 1, … , 𝑇 
𝑁 : Total number of individual stocks 
𝑤𝑖  : The portfolio weight of 𝑖𝑡ℎ stock 
 
Begin 

function (Generate returns of individual stocks (𝑅𝑡)) { 
 calculate Returns matrix (𝑅𝑡) using Equation (11), 
 The size of matrix is 𝑁𝑥(𝑇 − 1) 
 end  
 } 
function (Create weight matrix from MV optimization) { 
 for sum(𝑤𝑖) = 1 
 calculate 5000 frontier weighs for each individual stock within the range of [0,1] 
 end  
 } 
 The size of matrix is 5000𝑥𝑁 
 end  
 } 
function (Calculate frontier portfolio return series) { 
 calculate Daily frontier portfolio return matrix by 𝑅𝑡 ×  𝑤𝑖 
 The size of matrix is 5000𝑥(𝑇 − 1) 
 end  
 } 
function (Calculate expected return of each frontier portfolio) { 
 calculate Returns vector (𝑅𝑝) by summing each column of daily frontier portfolio return matrix 

 The size of vector is 5000𝑥1 
 end  
 } 
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Appendix B: Continued. 

function (Estimate the Hurst exponents of frontier portfolios) { 
 calculate The Hurst exponents vector (𝐻𝑝) for each frontier portfolio using Equation (7) 

 The size of vector is 5000𝑥1 
 end  
 } 
Scattered Plot (Returns vector (𝑅𝑝), Hurst exponents vector (𝐻𝑝)) 

function (Estimate the Lyapunov exponents of frontier portfolios) { 
 calculate The Lyapunov exponents vector (𝜆𝑝) for each frontier portfolio using  

 Equation (10) 
 The size of vector is 5000𝑥1 
Scattered 3DPlot (Returns vector (𝑅𝑝), Hurst exponents vector (𝐻𝑝),  

 Lyapunov exponents vector (𝜆𝑝)) 

 

end 

 


