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ABSTRACT

Viral infections have led to many public health crises and
pandemics in the last few centuries. Neurotropic virus
infection-induced viral encephalitis (VE), especially the
symptomatic inflammation of the meninges and brain
parenchyma, has attracted growing attention due to its
high mortality and disability rates. Understanding the
infectious routes of neurotropic viruses and the mechanism
underlying the host immune response is critical to reduce
viral spread and improve antiviral therapy outcomes. In this
review, we summarize the common categories of
neurotropic viruses, viral transmission routes in the body,
host immune responses, and experimental animal models
used for VE study to gain a deeper understanding of
recent progress in the pathogenic and immunological
mechanisms under neurotropic viral infection. This review
should provide valuable resources and perspectives on
how to cope with pandemic infections.

Keywords: Neurotropic viruses; Viral encephalitis;
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INTRODUCTION

Viral encephalitis (VE) is a major global disease, with an
incidence rate of 1.4 cases per 100 000 inhabitants (Silva,
2013). Following infection with a variety of neurotropic viruses,
VE can cause acute intracranial inflammatory injury of the
meninges and brain parenchyma (Ludlow et al., 2016). Clinical
VE pathogens are primarily neurotropic RNA viruses, such as
Japanese encephalitis virus (JEV), Zika virus (ZIKV), West
Nile virus (WNV), Dengue virus (DV), and severe acute
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respiratory syndrome coronavirus 2 (SARS-CoV-2), and DNA
viruses, such as herpes simplex virus 1 and 2 (HSV-1 and
HSV-2), varicella zoster virus (VZV), and cytomegalovirus
(CMV) (Kennedy, 2005; Silva, 2013; Spudich & Nath, 2022).
The typical incubation period for primary infection is
approximately six days, during which the prodromal phase
may present with symptoms such as mild fever, sore throat,
cough, nausea, vomiting, myalgia, and fatigue (Bale, 2015).
Diagnostic strategies include clinical and laboratory testing as
well as neuroimaging. Acute viral invasion of the central
nervous system (CNS) can increase mortality and disability if
treatment is delayed. A window exists during which time
epidemiological analysis and diagnosis can confirm the
infection route, genome, antigen, and specific immunoglobulin
M (IgM) and immunoglobulin G (IgG) of the invading virus
(Venkatesan etal.,, 2013). However, specific therapeutic
approaches for effectively curing VE after viral infection
remain limited, emphasizing the need for more intensive basic
investigations on viral invasion routes, VE pathogenesis, and
host immunity post-infection to accelerate the development of
novel diagnostic and therapeutic strategies.

The brain is a relatively well-protected organ and contains
several cellular barriers, including the blood-brain barrier
(BBB), which acts as a defense mechanism to prevent entry of
dangerous factors and drugs from the peripheral circulation
into the CNS (de Lima et al., 2020). Natural human infection
from fresh or postmortem samples of VE is extremely rare,
posing a challenge in the study of VE pathogenesis and
immune defense in humans. However, the transmission and
life cycle of neurotropic viruses have been extensively
investigated in animal models, such as artiodactyls, domestic
birds, and mosquitoes. With the advance of VE animal
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models, especially non-human primate (NHP) and rodent
models, our understanding of virus infection routes,
pathogenesis, and immunity has greatly improved. In addition
to classic invasion via blood circulation and peripheral nerves,
we recently showed that meningeal lymphatic vessel (MLV)
endothelial cells can be infected by JEV and vesicular
stomatitis virus (VSV) and transport viral particles to cervical
lymph nodes (CLNs) (Li etal., 2022). The unique origin and
definite role of meningeal immune cells in health and disease
have become interesting fields of study (Brioschi et al., 2021;
Cugurra et al., 2021; Niu et al., 2022), remaining elusive until
recently (de Lima etal., 2020). In the present review, we
provide a comprehensive summary of prevalent neurotropic
viruses, potential routes of neurotropic viral invasion, and host
immune defense. Furthermore, we discuss reported animal
models with neurotropic viral loading. This review should
provide useful information for further investigation into the
diagnosis and treatment of VE in the future.

Table 1 Categories of neurotropic viruses

CATEGORIES OF NEUROTROPIC VIRUSES

Viruses that invade the nervous system are collectively known
as neurotropic viruses. Neurotropic viruses include RNA and
DNA viruses from various families, including Bunyaviridae,
Flaviviridae, Bornaviridae, Herpesviridae, Orthomyxoviridae,
Paramyxoviridae, Picornaviridae, Retroviridae,
Polyomaviridae, Rhabdoviridae, and Togaviridae (see Table 1
for details). Following CNS infection, inflammation can arise in
distinct anatomical regions, such as the meninges
(meningitis), brain (encephalitis), and spinal cord (myelitis), or
simultaneously in multiple regions (meningoencephalitis,
encephalomyelitis). Neurotropic viral infection of the CNS can
cause acute inflammatory lesions, as well as chronic
inflammatory or  non-inflammatory  lesions.  Various
neurological disorders, such as Guillain-Barre syndrome,
multiple sclerosis, narcolepsy, and lethargic encephalitis, are
considered to be delayed onset virus-induced diseases

Viral family Virus Genome Reference
Herpesviridae Herpes simplex virus-1, HSV-1 dsDNA Bradshaw & Venkatesan, 2016; Whitley, 2015
Varicella zoster virus, VZV dsDNA Nagel et al., 2020
Cytomegalovirus, CMV dsDNA Cheeran et al., 2009
Human herpes virus 6, HHV-6 dsDNA Agut et al., 2015; Kimberlin & Whitley, 1998
Epstein-Barr virus, EBV dsDNA Houen et al., 2020; Tselis, 2014
Pseudorabies virus, PRV dsDNA Liu et al., 2021
Flaviviridae Japanese encephalitis virus, JEV + ssRNA Redant et al., 2020
West Nile virus, WNV + ssRNA Klein, 2021; Sips et al., 2012
Zika virus, ZIKV + SSRNA gg;:han et al., 2019; Klein, 2021; White et al.,
Tickborne encephalitis virus, TBEV + ssRNA Cvjetkovi¢ et al., 2016; Kubinski et al., 2020
Dengue virus, DV + ssRNA Trivedi & Chakravarty, 2022; Verma et al., 2011
St Louis encephalitis virus, SLEV + ssRNA Marques et al., 2017
Picomaviridae  Poliovirus, PV + sSRNA Egcavgvnell et al., 2015; Verboon-Maciolek et al.,
Enterovirus 71, EV71 + ssRNA Solomon et al., 2010
Human parechovirus, HPeV + ssRNA Verboon-Maciolek et al., 2008
Coxsackievirus A16, CV-A16 + ssRNA Hooi et al., 2020
Rhabdoviridae  Rabies virus, RABV — ssRNA Hemachudha et al., 2013
Vesicular stomatitis virus, VSV — ssRNA Beier et al., 2011; Sabin & Olitsky, 1937
Retroviridae Human immunodeficiency virus, HIV + ssRNA Gonzalez-Scarano & Martin-Garcia, 2005
Human T cell lymphotropic virus, HTLV + ssRNA Cabre et al., 2000
Polyomaviridae John Cunningham virus, JCV dsDNA Ferenczy et al., 2012
Orthomyxoviridaelnfluenza A virus 2§gAmented ) Takahashi et al., 1995; van Riel et al., 2015
Paramyxoviridae Measles virus —ssRNA Fisher et al., 2015
Mumps virus, MuV — ssRNA Rubin et al., 1998
Togaviridae Chikungunya virus, CHIKV + ssRNA Das et al., 2015; Klein, 2021
Equine encephalitis virus, EEV + ssRNA Ludlow2016
Venezuelan equine encephalitis virus, VEEV + ssRNA Ludlow et al., 2016
Western equine encephalitis virus, WEEV + ssRNA Ludlow2016
Eastern equine encephalitis virus, EEEV + ssRNA Ludlow et al., 2016
Bornaviridae Bornavirus — ssRNA Jordan & lan Lipkin, 2001
Bunyaviridae La Crosse virus, LCV 2;9Amented - McJunkin et al., 2001
Rift Valley fever virus, RVFV %imented T Abeetal, 2019
Toscana virus, TOSV 2ilimented B Gori Savellini et al., 2019
Coronaviridae  CYere cute respiratory syndrome coronavirus 2, SARS- oy 4 Erickson et al., 2021; Meinhardt et al., 2021

CoV-2

dsDNA: Double strand DNA. ssRNA: Single strand RNA. +: Positive-sense. —: Negative-sense.
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(Ludlow et al., 2016). Perineural virus infection-induced nerve
inflammation, nerve damage, and neurological complications
pose considerable threats to human and animal health and
can cause substantial economic losses. A deeper
understanding of the mechanism underlying the invasion of
neurotropic viruses in the nervous system will provide a
valuable theoretical foundation for proper treatment.

Flaviviruses (FVs) are enveloped, positive-sense, single-
stranded RNA viruses (ssRNA) carried by mosquitoes and
ticks and are regarded as neurotropic viruses due to their
significant neuroinvasive characteristics. A small percentage
of infected individuals may exhibit neurological symptoms,
such as acute encephalitis, meningitis, and acute flaccid
paralysis, while long-term effects include Parkinsonism,
dystonia, and cognitive changes. Classical neurotropic FVs
include the JEV, ZIKV, WNV, DV, tick-borne encephalitis virus
(TBEV), and St Louis encephalitis virus (SLEV).

Horses, pigs, birds (corvid species), and dogs are natural
reservoirs of FVs. For example, the JEV replicates and
remains in porcine tonsils for up to 25 days, enabling
persistence in seasons when mosquitoes are inactive (Garcia-
Nicolas etal., 2018). WNV is maintained in nature in a
mosquito-bird-mosquito transmission cycle primarily involving
Culex mosquitoes (Turell etal., 2001). Aedes mosquitoes,
namely Aedes aegypti, Aedes albopictus, Aedes scutellaris,
and Aedes polynesiensis, are recognized vectors for the
transmission of DV infection. TBEV is transmitted from the
saliva of infected ticks within minutes of a tick bite (Lindquist &
Vapalahti, 2008). Humans are regarded as “dead-end hosts”
because they are infected accidentally by FV-carrying
mosquitoes.

The primary sites of FV infection include subcortical nuclei
(substantia nigra and thalamus), anterior horn neurons, and
neocortex, with different neurological signs occurring in some
individuals. About 80% of human WNV infections are
asymptomatic (Mostashari etal., 2001), while those with
symptoms are characterized by the acute onset of fever,
headache, fatigue, malaise, muscle pain, weakness, difficulty
concentrating, and neck pain or stiffness (Watson etal,
2004). In neuroinvasive WNV disease, infection of spinal
motor neurons (anterior horn cells) causes acute asymmetric
flaccid paralysis, similar to that seen with poliomyelitis (Li
etal., 2003). Many patients with WNV-induced encephalitis
exhibit movement disorders, including severe tremors and
parkinsonism (Sejvar et al., 2003). While most JEV infections
present with either mild symptoms (fever and headache) or
remain asymptomatic, those that develop encephalitis can
suffer significant morbidity and mortality. Patients with
meningoencephalitis may progress to a permanent
neurological deficit or ultimately death (Salimi etal., 2016).
JEV neuroinvasion in patients can cause reduced levels of
consciousness associated with seizures, movement disorders,
and flaccid paralysis, as well as perivascular and CNS
inflammation (Johnson etal., 1985). ZIKV infection during
pregnancy leads to an increased risk of fetal growth restriction
and fetal CNS malformations, resulting in long-term structural
and neurological defects (da Silva & Gao, 2016). Similarly,
tick-borne encephalitis can cause acute meningoencephalitis
with or without myelitis.

HSV-1, HSV-2, and VZV are members of the herpes family
of DNA viruses and are characterized by double-stranded
DNA genomes located within a capsid consisting of 162
capsomers. Among the herpes family viruses that infect the

nervous system, HSV is one of the most common pathogens
of infectious human encephalitis.

Herpesviruses have developed very specific mechanisms to
evade host defenses and establish latency by shutting down
lytic replication. Following primary HSV-1 infection, which is
typically asymptomatic, the virus becomes latent in trigeminal
and other cranial nerve ganglia, after which it spreads via
axons of the trigeminal nerve into the frontal and temporal
lobes. In immunocompetent adults, more than 90% of herpes
simplex virus encephalitis (HSE) cases are due to HSV-1.
HSE symptoms include headache, fever, and neck stiffness,
with associated convulsions and dysfunction of the
frontotemporal lobes (Bradshaw & Venkatesan, 2016).
Approximately 80% of neonatal encephalitis cases are caused
by HSV-2. Neonates present with systemic findings
(alterations in body temperature, lethargy, respiratory distress,
anorexia, vomiting, cyanosis) and neurological signs
(irritability, bulging fontanels, seizures, and coma) (Overall,
1994). VZV causes varicella (chickenpox) and herpes zoster.
Varicella usually results in mild to moderate illness in
immunocompetent patients but may cause serious
complications in infants and elderly individuals, such as CNS
involvement, pneumonia, secondary bacterial infections, and
death (Heininger & Seward, 2006). Typical herpes zoster
presents with vesicular eruptions distributed unilaterally within
a dermatome, sometimes preceded by paresthesia, itching,
and pain, a condition termed preherpetic neuralgia (Gilden
etal., 1991).

Rabies (RABV) and rabies-related viruses belong to the
Lyssavirus genus of the Rhabdoviridae family. The small,
negative-stranded RNA genome (12 kb) of RABV encodes five
proteins. RABV is a prototypical neurotropic virus transmitted
in the saliva of infected animals (predominantly dogsbut also
other species such as bats, foxes, raccoon dogs, raccoons,
mongooses, and skunks) via bites and scratches, which
infects host neurons almost exclusively. After successful
completion of the virus cycle, host death occurs due to the
exhaustion of infected neurons, accompanied by structural
damage and severe neuronal dysfunction (Hemachudha et al.,
2013).

Recent studies have reported that SARS-CoV-2 infection is
associated with encephalopathy, encephalitis, especially
meningoencephalitis, and other complications (Pilotto et al.,
2021). More than one-third of patients show mild or moderate
disturbance in consciousness (Pilotto etal.,, 2021) and
autopsy reports have revealed the presence of SARS-CoV-2
in the brain tissue of COVID-19 patients (Maury et al., 2021).
At present, however, the mechanism underlying SARS-CoV-2
neurotropism remains unclear.

Prions, which are unusual proteinaceous infectious agents,
can cause neuropathies (Aguzzi etal., 2007), with some
strains targeting the CNS as the primary target organ. Among
these prions, the scrapie prion protein (PrPSc), a misfolded
host-derived membrane glycolipoprotein cellular prion protein
(PrPC), can cause various fatal neurodegenerative diseases,
including transmissible spongiform encephalopathies (TSEs)
such as scrapie in sheep, chronic wasting disease (CWD) in
deer, bovine spongiform encephalopathy (BSE) in cattle
(known as “mad cow disease”), and Creutzfeldt-Jakob disease
(CJD) in humans. Aberrant prion protein conformations
accumulate in the CNS, causing spongiform changes in the
brain and eventually death. Generally, prion transmission
between distinct species (e.g., transmission of human prions
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into hamsters) is restricted by the species barrier. The
infectious conformer of this protein (PrPSc) is predicted to
recruit and convert the normal conformer (PrPC) into the
PrPSc form by interacting with specific regions of the protein,
thus completing the ‘replication’ process during infection (Tuite
& Serio, 2010).

TRANSMISSION ROUTE OF VIRUS IN THE BODY

Most viral infections started at barrier sites, such as epithelial
or endothelial cells on the peripheral surface, causing a tissue-
specific antiviral response. If the virus is not effectively
eliminated at the site of primary infection, it will spread to other
tissues and organs. Once the virus reaches its target tissue, it
rapidly replicates within the cells, leading to an overactivation
of the innate immune response, causing a local or systemic
“inflammatory storm” (Koyuncu et al., 2013).

The CNS possesses unique anatomical features, including
the BBB and an absence of conventional lymphatic vessels
within the parenchyma. The BBB is a special structure of
blood vessels composed of endothelial cells, astrocytes, and
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pericytes (Ballabh etal., 2004). Tightly connected vascular
endothelial cells in the BBB precisely regulate the exchange of
ions, macromolecules, and cells between blood vessels and
the brain to ensure the normal operation of nerve function and
prevent toxic substances and pathogens from entering the
brain (Daneman & Prat, 2015). Despite the highly complex
defense system that protects the CNS, certain viruses can
evade the protective barriers through different strategies.
There are three main routes for invading CNS defenses
(Figure 1).

Virus-infected leukocytes enter the CNS via the BBB

Certain viruses can enter the CNS via a “Trojan horse”
mechanism, in which infected leukocytes carry pathogens
from the blood across the BBB. Infection of monocytes and/or
macrophages is a major mechanism used by lentiviruses,
including simian immunodeficiency virus (SIV) and human
immunodeficiency virus (HIV), to migrate across vascular
barriers of the CNS (Alexaki & Wigdahl, 2008; Clay et al.,
2007). Infected monocytes pass through the BBB during
normal turnover of perivascular macrophages or due to the
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Although the CNS is protected by a highly complex barrier system, certain viruses still manage to enter the CNS and cause disease. One pathway
is via blood circulation, whereby viruses infect leukocytes in the blood, which then pass through the BBB into the CNS during normal turnover of

perivascular leukocytes or tight junction disruption of vessel endothelial cells. Viruses can also directly enter the CNS via the BBB by infecting

vascular endothelial cells. In addition, viruses can migrate through peripheral nerve infection to enter the CNS, e.g., via peripheral motor neurons at

axonal terminals, peripheral sensory neurons, and olfactory nerves. In addition to viral invasion routes, viruses can also drain from the CNS to the

CLNs via the MLVs.
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production of proinflammatory mediators that compromise the
barrier, such as CC-chemokine ligand 2 (CCL2) (Ancuta et al.,
2006; Roberts et al., 2010). Adhesion molecules also play a
crucial role in cellular migration, with vascular cell-adhesion
molecule-1 (VCAM-1) mediating mononuclear cell migration
into the brain during HIV and SIV infection (Sasseville et al.,
1994). Furthermore, JCV is believed to remain latent in the
lymphoid organs, neuronal tissue, and kidney, but may
reactivate under severe immunosuppression and infiltrate the
brain via the "Trojan horse" mechanism, resulting in
progressive multifocal leukoencephalopathy, a demyelinating
disease of the CNS with a high mortality rate (Chapagain &
Nerurkar, 2010). In addition, following WNV infection, the
systemic levels of tumor necrosis factor a (TNF-a) and
interleukin 6 (IL-6) increase macrophage inhibitory factor (MIF)
and adhesion molecule (ICAM) expression at the BBB and
promote tight junction disruption, thereby facilitating the
adhesion and entry of WNV-infected neutrophils into the CNS
(Arjona et al., 2007; Bai etal.,, 2010; Dai etal., 2008; Roe
etal.,, 2012).

Virus enters the CNS by
endothelial cells

Other viruses can directly enter the CNS via the BBB by
infecting vascular endothelial cells. Epithelial barrier integrity
relies on tight junction complexes composed of
transmembrane proteins located on the plasma membranes of
adjacent endothelial and epithelial cells. Disruption of these
tight junction complexes is a well-documented route for the
invasion of certain viruses, such as the influenza virus, Ebola
virus (EBOV), hepatitis C virus (HCV), and HIV (Meertens
et al., 2008). The HIV-Tat protein increases the permeability of
brain endothelial cells by down-regulating occludin mRNA
levels in microvascular brain cells to increase HIV
neuroinvasion (Xu et al., 2012a). Arboviruses can enter the
skin through insect bites, then transmigrate to secondary
lymphoid tissues and eventually enter the bloodstream,
causing systemic infections and inflammation-induced
disruption of the BBB, thus allowing the virus to invade the
CNS (Ransohoff et al., 2003; Wu et al., 2000). WNV capsid
degradation of the claudin protein disrupts epithelial barrier
tight junctions and function (Medigeshi et al., 2009; Xu et al.,
2012b). Replication of ZIKV, JEV, and HCV in brain
microvascular endothelial cells (BMVECs) does not cause
cytopathy but can increase vascular endothelial monolayer
permeability (Al-Obaidi etal., 2017; Mustafa etal., 2019).
Epstein-Barr virus (EBV) can infect human BBB cells, leading
to increased production of proinflammatory mediators that
result in immune cell adherence, which is implicated in the
onset of MS (Casiraghi etal., 2011). Some viruses (e.g.,
WNV, HCV, HTLV-1, JCV, EBV, and human cytomegalovirus
(HCMV)) can enter the CNS through the transcytosis of
cerebrovascular endothelial cells and infection of nerve cells
(Liou & Hsu, 1998; Papa et al., 2017). Poliovirus (PV) enters
human brain microvascular endothelial cells (HBMECs)
through dynamin-dependent caveolar endocytosis, facilitated
by the association between the PV receptor (PVR) and SH2
domain-containing protein tyrosine phosphatase 2 (SHP-2)
following virus attachment to the PVR, causing paralytic
poliomyelitis by replicating within motor neurons of the brain
and spinal cord (Ohka et al., 2012). Some regions of the CNS,
such as the choroid plexus and periventricular organs, are not
fully protected by the BBB and can be targeted as viral entry

infecting microvascular

points (van den Pol et al., 1999).

Virus enters the CNS through peripheral nerve infection

Viruses can also enter the CNS via migration through
peripheral nerve infection. RABV can infect myocytes through
saliva and subsequently enter peripheral motor neurons at
axonal terminals, where it eventually infects the CNS through
strictly unidirectional (retrograde) transneuronal transfer
(Ugolini, 2011). Similarly, PV can infect mucosal epithelial
cells after ingestion and invade the CNS via peripheral motor
nerves (Racaniello, 2006). Retrograde axonal transport in
neuronal cells may represent a major transmission route of
enterovirus 71 (EV71) in mice, spreading from skeletal muscle
to motoneuron junctions, peripheral motor nerves, then motor
nuclei in the CNS (Tan et al., 2014). In addition, HSV-1 can
infect keratinocytes and migrate to peripheral sensory neurons
and may invade the CNS via the trigeminal nerve or olfactory
sensory neurons after primary oropharyngeal infection (Mori
et al., 2005). FVs can spread to the CNS via axonal transport
from the periphery during viremia, as found in other
neurotropic viruses such as RABV, PV, and HSV.
Furthermore, WNV exhibits bidirectional spread in neurons,
with axonal transport promoting viral entry into the CNS,
followed by acute limb paralysis (Samuel etal.,, 2007).
Moreover, VSV, Nipah virus (Munster et al., 2012), influenza
virus (van Riel etal, 2015), RABV (Constantine, 1962),
bovine herpesvirus 5 (Lee etal, 1999), and equine
herpesvirus 9 (Narita et al., 2001) are proposed to enter the
CNS via the olfactory nerve. SARS-CoV-2 may also invade
the CNS through the olfactory bulb, spreading into functional
areas such as the hippocampus, thalamus, and medulla
oblong to induce brain inflammation (Meinhardt et al., 2021).

Virus is drained from the CNS to CLNs via meningeal
lymphatic vessels (MLVs)

While previous studies on viral dissemination have primarily
focused on the BBB and peripheral nerves, recent research
has revealed the potential involvement of MLVs in viral spread
during neurotropic virus infection. Specifically, Li et al. (2022)
demonstrated that JEV migrates from the CNS to CLNs, with
inoculation of suckling mice with deep CLNs (dCLNs) and
superfical CLNs (sCLNs) tissue homogenates from
intracerebrally JEV-infected mice resulting in a morbidity rate
exceeding 40%. These results indicate that viruses draining
from the CNS to the CLNs maintain their infectivity and may
trigger an immune response in the CLNs. Li et al. (2022) also
intracerebrally injected a recombinant VSV expressing green
fluorescent protein (VSV-GFP) into the mouse brains and
observed colocalization of VSV-GFP and lymphatic vessel
endothelial hyaluronan receptor 1 (LYVE-1), podoplanin
(PDPN), and prospero homeobox 1 (PROX1) in the meninges,
suggesting that the virus can drain from the CNS to the CLNs
via the MLVs (Figure 1).

IMMUNE RESPONSES TO VE

Clinical observations and experimental models have provided
strong evidence that both innate and adaptive immune
responses play important roles in the pathophysiology of VE
(Figure 2) (Chen et al., 2019; Suthar et al., 2013; Yshii et al.,
2015). Following neurotropic viral entry into the CNS, antiviral
immune responses are immediately induced by innate
immune cells, such as microglia, astrocytes, dendritic cells
(DCs), and infiltrated macrophages, as well as other immune
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cells. Given the toxic effects of proinflammatory
cytokines/chemokines, and a breached BBB, peripherally
circulating leukocytes, such as monocytes, neutrophils, and
lymphocytes, can infiltrate the CNS. Viral antigens, presented
by antigen-presenting cells (APCs), activate CNS-infiltrating
CD8* T cells, which differentiate into effector cytotoxic T
lymphocytes (CTLs). CTLs directly eliminate infected cells by
producing cytotoxic molecules, such as perforin and granzyme
B (Wong & Pamer, 2003). CTLs also clear infected cells by
releasing apoptotic ligands, including Fas ligand (FasL) and
TNF-ao-related apoptosis-inducing ligand (TRAIL) (Shrestha &
Diamond, 2007; Shrestha et al., 2012). Ferroptosis is also
involved in neurotropic viral clearance and brain injury (Yan
etal., 2023; Zhang et al., 2022a). Furthermore, CD8" T cell-
derived interferon y (IFN-y) plays an essential role in
restraining intracranial viral infection and clearing viruses from
infected neurons (Garber et al., 2019; Griffin & Metcalf, 2011).
Additionally, a small group of CD8" T cells can transform into
brain-resident memory T (bTRM) cells (Steinbach etal.,
2016). After viral reinfection, bTRM cells rapidly produce
cytotoxic molecules to prevent virus infection (Mockus et al.,

Subarachnoid
space

Microglia

Cervical
lymph nodes

Figure 2 Meningeal and parenchymal immunity during VE

2019). Finally, successful antiviral immunity is acquired with
virus-specific IgM and IgG/IgA antibodies secreted from B cell-
transformed plasma cells to decrease viral spread and
neutralize circulating viral particles (Lam et al., 2020).

The role of meningeal immunity has gained increasing
attention in recent years, particularly regarding its contribution
to VE (de Lima et al., 2020). MLVs can transport viruses into
the CLNs to regulate peripheral immunity (Li etal., 2022),
while meningeal macrophages directly protect against
lymphocytic CMV (LCMV) neuroinfection (Figure 2) (Rebejac
et al., 2022). Furthermore, evidence suggests that innate and
adaptive immune responses exhibit both beneficial and
detrimental roles in antiviral effects (Reagin & Funk, 2022).
Regulating immunological balance between viral clearance
and neuronal damage is important to increase survival and
decrease the sequela in infected patients.

Innate immunity in VE

The innate immune system establishes the first line of defense
against neurotropic viruses in the CNS. Microglia, astrocytes,
monocyte-derived macrophages, neutrophils, natural killer
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VE refers to acute intracranial inflammatory lesions and involves the meninges and brain parenchyma. Various viruses invade the CNS through

blood/lymphoid circulation and peripheral nerve migration. Damaged neurons release signals (such as ATP and cytokines) to recruit microglia,

which initiate innate immunity (D). Cytokines and chemokines are released from activated microglia (Act-Mig) and astrocytes (see text for details).
Thereafter, peripheral neutrophils (Neu), monocytes (Mo), and APCs (including DCs) infiltrate the brain parenchyma via increased BBB
permeability. IFN is produced to enlarge the antiviral effects and APCs present antigens to T cells and later to B cells, constituting adaptive

immunity @. CD8* T cells produce granzyme and perforin to clear infected cells, including neurons, vascular endothelial cells, and pericytes.

Plasmacytes differentiated from mature B cells secrete specific IgM and IgG antibodies to neutralize viral particles and restrict their spread.
Meningeal immunity 3 has also recently been reported to play an important role in VE. Both myeloid and B cells differentiate from HSCs, which
originate from skull bone marrow (BM) or meninges, and meningeal macrophages (MMs) extravasate from the pia mater or cross the arachnoid
mater into the brain parenchyma. Additionally, viruses can infect and transmit from MLVs into CLNs to enhance peripheral immunity. Red arrow:

Viral invasion/transmission; Blue arrow: Immune cell infiltration.
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(NK) cells, and DCs play critical roles in the innate response
against viral invasion. Type | IFN is important for host survival,
with mice lacking IFN-a/B receptors showing significantly
increased susceptibility to neurotropic viruses (Byrnes et al.,
2000; Fiette etal., 1995; Miller etal., 1994). IFN-B has an
important neuroprotective effect in the CNS and can induce
the production of neurotrophic factors (Boutros et al., 1997).
Rapid IFN-B response after infection reduces viral
transmission and inhibits viral replication before the initiation
of specific adaptive immune responses (Boutros et al., 1997).
Virally infected neurons can also produce a relatively low level
of type I IFN for CNS defense (Delhaye et al., 2006).

Innate immune responses are mediated by pattern
recognition receptors (PRRs), including retinoic acid-inducible
gene-l-like receptors (RLRs), nucleotide oligomerization
domain-like receptors (NLRs), C-type lectin receptors (CLRs),
Toll-like receptors (TLRs), absent in melanoma-2 (AIM2)-like
receptors (ALRs), and cytoplasmic DNA sensor cyclic GMP-
AMP synthase (cGAS) (Miller etal., 2021). Following
recognition of pathogen-associated molecular pattern
molecules (PAMPs), such as viral RNA or DNA, mRNA
metabolism, and viral protein expression, PRRs can modify
their conformational structures to initiate downstream
production of type | IFN and proinflammatory cytokines by
infected cells (Wilkins & Gale, 2010). Virus-infected cells can
also produce virus-derived small RNAs (vsiRNAs), including
small interfering RNAs (siRNAs), microRNAs (miRNAs), and
Piwi-interacting RNAs (piRNAs) (Ding, 2010; Parameswaran
et al.,, 2010; Pfeffer et al., 2004). Multiple herpesviruses use
viral miRNAs to regulate innate receptor recognition and the
signaling pathways of IFN production and function (Chen
etal.,, 2022). Moreover, designed peptides targeting viral
suppressors of RNAi (VSR) can effectively silence cognate
EV-71 RNA in vivo and in vitro. This evidence implicates the
involvement of vsiRNAs in the modulation of antiviral immunity
and potential therapeutic strategies (Fang et al., 2021). Thus,
both PPRs and vsiRNAs play important roles in host immune
defense against viral infection (Ding, 2010).

Damaged neurons can also produce chemokine CX3CLA1,
which binds to its receptor CX3CR1 expressed in microglia
and macrophages. Activation of these cells plays an important
role in immune protection of the body during the early stage of
infection (Jung et al., 2000; Maciejewski-Lenoir et al., 1999).
In addition to sensing adenosine triphosphate (ATP) signals
through the purinergic receptor P2Y12, residential microglia
are also recruited and activated around infected neurons to
enhance IFN production, proinflammatory cytokine release,
and phagocytic activity (Fekete etal., 2018). Microglia and
astrocytes respond quickly, producing antiviral and
proinflammatory mediators. During JEV infection,
proinflammatory molecules, such as RANTES, TNF-q, IL-1-a,
IL-6, IL-12, IL-18, IL-18, CCL2, C-X-C motif chemokine ligand
9 (CXCL9), CXCL10, and CXCL11, and proinflammatory
enzymes, such as cyclooxygenase-2 and inducible nitric oxide
synthase (iNOS), are up-regulated (Cheeran et al., 2005). In
vivo, astrocytes can produce CXCL10, CXCL11, and CCLS5 to
transfer virus-specific CD4" and CD8" T cells (Glass etal.,
2005; Klein etal., 2005; Lane etal., 2006). DCs also play
important roles in T cell activation and adaptive immune
response initiation during JEV infection (Li etal., 2011;
Sooryanarain etal.,, 2012). DCs can be rapidly activated
following neurotropic virus infection to release proinflammatory
cytokines and chemokines, such as type | IFN, TNF, IL-1B,

CCL2, CCL3, and CCL5 (Martina et al., 2008; Shrestha et al.,
2008; Silva etal, 2007). Following BBB breach and
chemokine release, infiltrated monocytes are differentiated
into macrophages, which are then recruited and activated in
the CNS. Removal of polymorphonuclear leukocytes by
mouse monoclonal antibodies Gr-1 treatment has highlighted
their crucial functions in viral clearance (Bai etal., 2010).
Using single-cell RNA-sequencing (scRNA-seq), a recent
study identified a novel subset of cells, named microglia-like
cells, during herpes simplex encephalitis, which show high
expression of Retnlg, Cxcr2, and Il1f9 and contribute to
increased CNS inflammation (Uyar et al., 2022). Another study
based on WNV-inclusive scRNA-seq reported that only a few
L929 cells respond and exhibit robust transcription of IFN-3
(O’Neal etal.,, 2019). The use of scRNA-seq to investigate
heterogeneity of innate immunity will greatly expand our
understanding of innate immunity in VE. Collectively, innate
immunity is involved in the recognition of neurotropic viruses,
presentation of viral antigens, and initiation of antiviral
responses.

Adaptive immunity in VE

Under physiological conditions, the BBB prevents immune
cells in blood circulation from entering the brain parenchyma,
and APCs, such as DCs, are absent in the brain parenchyma
(McMenamin, 1999). It is widely accepted that during CNS
infection, pathogenic antigens are transported by
cerebrospinal fluid (CFS) to draining lymph nodes (dLNs),
where antigen presentation immediately occurs (Cserr &
Knopf, 1992; Harling-Berg et al., 1999).

Neutrophils and DCs are primarily recruited to the CNS after
viral infection (Templeton etal.,, 2008; Zuo etal., 2006).
Neutrophils interact with endothelial cells through adhesion
molecules that promote the disintegration of tight junction
complexes, leading to the breakdown of the BBB. Neutrophils
can also secrete matrix metalloproteinase-9 (MMP-9) to
degrade the extracellular matrix and basement membrane of
the BBB, further promoting BBB permeability (Kjeldsen et al.,
1994). After BBB impairment, DCs appear within a few days of
CNS virus infection and migrate from the CNS to CLNs via
chemokine CCL3, thereby sensitizing virus-specific T cells
(Trifilo & Lane, 2004). Mouse CD11c" DCs can induce the
differentiation of CD4* T cells into inflammatory T-helper 17
(Th17) cells, increase the number of anti-inflammatory
regulatory T (Treg) cells in lymphoid tissue and CNS, and play
a protective role in the CNS during fatal neuritis (Chiou et al.,
2005; Kim et al., 2015). CD4" and CD8" T cells are recruited
into the infected CNS, to some extent, by chemokines CXCL9
and CXCL10 (Stiles etal.,, 2006; Walsh etal., 2007). In
addition, CCR5 contributes to T cell recruitment in the CNS
(Chen et al., 2001; Glass & Lane, 2003). CD4* T cells secrete
IFN-y to support the function of CD8" T cells (Weinger et al.,
2013), which are the main antiviral effector cells during CNS
infection. IFN-yis also critical for the elimination of viruses in
glial cells (Bergmann et al., 1999, 2003, 2006). CD8" T cells
produce IFN-y, granulosa B, and perforin (Ramakrishna et al.,
2004), which participate in the elimination of virus-infected
astrocytes (Lin etal.,, 1997). IFN-y helps oligodendrocytes
control viral replication (Gonzalez et al., 2006; Parra et al.,
1999). Recent mass cytometry of infiltrating immune cells
revealed a new subset of PD-1*CCR2*CD8" T cells that may
play important roles in viral defense (Zhang et al., 2019a). In
MHV and Sindbis virus (SINV) encephalitis models, T cells
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promote B cell proliferation and differentiation via secretion of
cytokines IL-10 and IL-21 (Linterman etal., 2010; Phares
etal., 2011; Puntambekar et al., 2011). B cells clear virions
from the CNS through powerful non-complement-dependent,
non-cytolytic mechanisms. During RABV infection, antibodies
against RABV glycoproteins inhibit viral RNA transcription and
prevent viral spread between cells (Dietzschold et al., 1992).
Antibodies can also sensitize NK cells and macrophages,
inducing antibody-dependent cell-mediated cytolysis of virus-
infected cells (Dietzschold etal.,, 1992). In acute infection,
virus-specific antibody-secreting cells (ASCs) play an
important role in achieving non-cytolytic viral clearance. In
addition, because viral RNA is difficult to completely eradicate
from target tissues, the long-term presence of ASCs in the
CNS can prevent viral reactivation (Metcalf & Griffin, 2011).
Human memory T cells contribute to defense against JEV
infection (Turtle et al., 2016). Previous studies have indicated
that IFN-y responses of asymptomatic individuals infected with
JEV are primarily mediated by CD8+ T cells, whereas IFN-y
responses of JEV-recovered individuals are primarily
mediated by CD4" T cells, suggesting that distinct clinical
outcomes in JEV infection may be associated with CD4+ and
CD8+ T cell responses. (Aleyas et al., 2009, 2012; Falasco
etal., 1990).

Understanding the relationship between different immune
cell infiltration and disease prognosis can help guide the
prediction and treatment of clinical VE.

Meningeal immunity in VE
The CNS also replies on meningeal immune defense, which
consists of the meningeal lymphatic system, glymphatic
system, immune cells, and cytokines (de Lima et al., 2020;
Louveau, 2018; Rua & McGavern, 2018). The crucial roles of
meningeal immunity have been confirmed in many studies of
different CNS diseases, such as stroke, Alzheimer’s disease
(AD), VE, and cancer (Chen et al., 2020; Da Mesquita et al.,
2018; Hu et al., 2020; Li et al., 2022; Song et al., 2020).
Recent research revealed that hematopoietic stem cells
(HSCs) reside in the meninges under steady-state conditions.
These meningeal HSCs are an important origin of leukocytes
that supplement immune cells in the CNS (Niu et al., 2022).
Reports also indicate that meningeal B cells derived locally
from the calvaria at the CNS border are educated and
negatively selected by CNS-specific antigens and may play an
essential role in maintaining immune privilege within the CNS
(Brioschi et al., 2021; Wang et al., 2021). In addition, recent
study found that a pool of meningeal monocytes and
neutrophils is supplied from the adjacent skull and vertebral
bone marrow, but not from circulated blood. Under spinal
injury and neuroinflammation, the meningeal myeloid cells can
infiltrate the CNS and may serve a critical function in affecting
the infection of these diseases (Cugurra etal., 2021).
Furthermore, in our previous work, we found that neurotropic
viruses, including JEV and HSV-1, can infect and replicate in
lymphatic endothelial cells (LECs). In vivo, JEV can spread
into dCLNs through the MLVs to activate the peripheral
immune response for CNS viral clearance. Moreover,
pretreatment of vascular endothelial growth factor C (VEGF-
C), a well-known cytokine for MLV expansion, can improve the
effects of antiviral infection (Li etal, 2022). MHC-II*
meningeal macrophages are also reported to play a critical
role in protecting against LCMV neuroinfection via regulation
of the IFN-I signaling pathway (Rebejac et al., 2022). These
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studies indicate that MLVs and meninge-resident immune
cells may exhibit unique functions in immune defense of the
CNS, including protection against neurotropic virus infections.
The recent confirmation of functional lymphatic vessels in the
brain meninges raises the possibility of an alternative drainage
route of macromolecules and immune cells in the
cerebrospinal fluid (CSF) into the CLNs. Following the initial
discovery of MLVs, whole-mount immunolabeling and imaging
revealed that most sinus T cells and MHCII* cells, as well as
some CD11c” and B220* cells, are found within the MLVs
(Louveau etal.,, 2015). Several studies have reported that
naive CD4" T cells and Tomato-labeled CD19* splenocytes
primarily accumulate in the dCLNs and sCLNs after
intracisternal magna injection into the CSF of naive mice
(Brioschi et al., 2021; Louveau et al., 2018). Thus, MLVs may
serve as a migratory route for B and T cells exiting the CNS
compartment. MLVs are also involved in the regulation of
immune cells under pathological conditions. Enhanced
drainage of MLVs promotes the transport of tumor-related
antigens and DCs from intracranial tumor tissue to dCLNs,
thereby promoting the enhancement of CD8" T cell initiation in
dCLNs and the rapid clearance of tumors (Da Mesquita et al.,
2018). Ablation of dorsal MLVs can reduce CNS-derived
autoantigen drainage, thus alleviating the inflammatory
response of brain-reactive T cells, delaying experimental
autoimmune encephalomyelitis (EAE) onset, and diminishing
pathology (Hsu et al., 2019; Louveau et al., 2018). However,
the molecular mechanism underlying the cross-talk among the
MLVs, skull, vertebral bone marrow-derived or meningeal
immune cells, and cytokines is still unclear. Thus, further
investigations focusing on the skull, meningeal ecosystem,
and local immunity among these regions are required.

EXPERIMENTAL ANIMAL MODELS OF NEUROTROPIC
VIRAL INFECTION

Different experimental animal models are required to
investigate the viral life cycle, viral invasion routes in hosts,
antiviral immunity, neuropathogenesis, clinical outcomes, and
therapeutic strategies. Here, we focus on experimental animal
species, including NHPs, artiodactyls, domestic birds, and
mosquitoes, and individual routes in experimental animal
models of neurotropic viral infection.

NHPs

NHP-based research has played a crucial role in
understanding the neuropathogenesis of neurotropic viral
infection, especially fetal infection from ZIKV (Haese et al.,
2021). ZIKV infection in adult macaques is generally limited to
pathologies of rash, fever, and conjunctivitis (Hirsch et al,,
2017). Following subcutaneous infection, viremia can be
observed as early as one day post-infection (dpi) and is
usually cleared by 10 dpi (Dudley et al., 2016). During this
period, ZIKV RNA can also be detected in saliva, lacrimal
fluid, CSF, urine, semen, and vaginal swabs (Li et al., 2016c).
These evidences suggest that the virus will develop rapid and
widespread infection in the body. Fetal death in pregnancy
and microcephaly in newborn babies are the most serious
outcomes of ZIKV infection in humans. In NHP models, a four-
fold higher rate of fetal loss occurs in ZIKV-infected rhesus
macaques compared to ZIKV-unexposed animals (Dudley
etal., 2018). The neurological pathologies and
histopathologies found in the brains of macaque newborns are
similar to those found in human neonates, including loss of
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neuroprogenitor cells and reduced brain size (Adams Waldorf
et al.,, 2018; Seferovic et al., 2018). In several NHP models,
certain CNS abnormalities have not yet been manifested
clinically (Mavigner et al., 2018). NHP models have also been
used to study the pathologies of TBEV, WNV, and DV
infection. However, the low quantity of offspring and high
experimental costs restrict large-scale basic and translational
research. Surprisingly, the Chinese tree shrew shows benefits
of safety, efficacy, and predictability for studying the neural
mechanisms underlying brain diseases, including VE (Yao,
2017). With the successful application of gene-editing
technology in tree shrew models (Li etal., 2017) and the
release of the tree shrew genome database (Fan et al., 2014),
a more powerful animal model for investigating VE should be
developed in the coming years.

Rodents

Rodents, such as mice and rats, are the most common
animals used for studies of neurotropic virus pathogenesis.
Wild-type (WT) mice and rats are sensitive to certain
neurotropic viruses, such as JEV and HSV-1, but exhibit less
consistent development of encephalitis under ZIKV, DV, and
WNYV infection (Kennedy, 2005; Miura etal., 1988). Thus,
several gene-editing and humanized mouse models have
been developed to study VE. AG129 mice, which lack both
type | and Il interferon (IFN) responses, generate reproducible
viremia and neurological symptoms, including tremors,
following ZIKV infection, with peak viremia (107 plaque-
forming units (PFU)/mL) at 2 dpi, high viral titers in the spleen
(1 dpi) and brain (3 dpi), and robust viral replication in the
testes. (Rossi etal.,, 2016). Recently, several groups have
reported on human angiotensin-converting enzyme 2 (hACE2)
transgenic mouse models for SARS-CoV-2, confirming that
hACE?2 is the target of SARS-CoV-2 and that the virus can
rapidly spread into tissues (Bao et al., 2020; Jiang et al., 2020;
Sun et al., 2020). Rodent models are also valuable tools for
studying pathology and immune responses and for testing
potential therapeutics and vaccines (see Table 2). Although
rodents are genetically and evolutionarily distant from NHPs
and humans, their dependable reproductive ability and gene-
editing capability make them useful tools for studying
neurotropic encephalitis.

Other animal models

Artiodactyls, domestic birds, and mosquitoes have also been
used for studying the transmission cycles of neurotropic
viruses. Some viruses can replicate in mosquitoes and their
zoonotic life cycle can be maintained in vertebrate hosts.
While pigs and domestic birds can potentially act as amplifying
or reservoir hosts, humans are considered dead-end hosts
(Hameed etal.,, 2021). Understanding these transmission
cycles will help to develop preventive measures, such as
vector control and vaccination in animals.

Diagnosis of neurotropic virus diseases

In 2013, the International Encephalitis Consortium released
guidelines related to case definitions, diagnostic algorithms,
and priorities for diagnosing encephalitis (Venkatesan et al.,
2013). The diagnostic strategies present clinical,
neuroimaging, and laboratory tests, including major and minor
criteria, with presumed viral infectious encephalitis given
priority examination (as per Table 3) (Fillatre etal., 2017;
Venkatesan et al., 2013). The Consortium also proposed an
etiological examination algorithm, including CSF examination,

skin and serum antibody detection, and other peripheral
examinations, including skin changes, tracheoscopy biopsy,
throat swab, and stool and urine culture.

Perspectives for animal model use in VE research

For decades, scientists and physicians have pursued
innovative therapeutic strategies to combat viral infections,
including IFN, immunoglobulin, and ribavirin treatment, due to
increasing clinical demands. Standard therapeutic compounds
that target receptors or enzymes involved in essential viral
functions have focused on host cell factors, with drug
resistance, cytotoxicity, and cellular side effects remaining
significant disadvantages. As such, computational screening
of small molecular drugs, nucleic acid-based antivirals, and
monoclonal antibodies that target virus-conserved proteins
provides an alternative strategy to target the development of
viral replication (Joe et al., 2022; Laulund et al., 2020; Lundin
et al., 2006). Classic drug screening is a cost-effective and
time-efficient technique to identify potential drug candidates,
allowing hundreds of candidates to be tested at the cellular
level in vitro, using viral titers as readouts. For example,
remdesivir and chloroquine, which are effective at inhibiting
SARS-CoV-2 replication, can be rapidly screened in vitro
(Wang etal., 2020). However, further study is required to
examine pharmacokinetics and drug metabolism in vivo,
particularly given the presence of the BBB.

Animal models are indispensable for investigating human
diseases and therapeutic interventions. Although rodents are
widely used, certain pathological phenotypes and immune
responses cannot be fully recapitulated in small animals and
in vitro culture systems. NHP models are ideal experimental
tools for studying pathology, immunity, and therapeutic
efficacy. However, limitations in terms of animal feeding,
inbreeding, and long experimental periods have restricted the
use of NHP models in VE research. Thus, the development of
viable animal models, such as the Chinese tree shrew, may
provide early diagnostic tools and contribute to the
development of effective therapies.

CONCLUSIONS AND FUTURE PERSPECTIVES

Identifying and classifying neurotropic virus species can help
epidemiologists and clinicians to respond quickly and
accelerate basic research. In the current review, we discussed
the categories of common neurotropic viruses (Table 1), which
remain the primary pathogens of VE. Newly identified SARS-
CoV-2 can enter the CNS and generate neuroinflammation
(Meinhardt et al., 2021), thus we included SARS-CoV-2 as a
new neurotropic viral candidate. Compared to DNA viruses,
neurotropic RNA viruses are endowed with the ability to
mutate frequently, leading to larger infectious populations. The
invasion and transmission routes of neurotropic viruses in
humans are becoming increasingly diverse. Beyond classical
invasion routes of the BBB, peripheral nerve migration, and
microvascular endothelial cells, the MLV system also exhibits
the ability to infect and transport neurotropic viruses from the
CNS to the periphery (Li et al., 2022). This beneficial behavior
can enhance peripheral immunity against intracranial viral
infection. However, the efflux function of MLVs can be
damaged (Li etal., 2022). With aged individuals exhibiting
recession MLV function, dysfunction of MLVs can promote
amyloid-B deposition in the meninges and aggravate
parenchymal amyloid-8 accumulation in transgenic mouse
models of AD (Da Mesquita etal., 2018). These findings
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Table 2 Animal models of neurotropic viruses

Species/Strain Viral strain Route of infection References
NHPs
Macaca sylvanus TBEV s.C. Kenyon et al., 1992; Suss et al., 2007
ZIKV s.C. Adams Waldorf et al., 2016, 2018
Rhesus macaque WNV i.d. Verstrepen et al., 2014
DV s.c./i.d. Li etal., 2013
HCMV i.p. Tarantal et al., 1998
ZIKV s.C. Dudley et al., 2016; Martinot et al., 2018
SARS-CoV-2 Intratracheal/i.n./ocular Gao et al., 2020; Munster et al., 2020; Shan et al., 2020
Callithrix jacchus WNV i.d. Verstrepen et al., 2014
Marmoset ZIKV s.c. Dudley et al., 2018
Squirrel monkey ZIKV i.d. de Alcantara et al., 2021
Olive baboon ZIKV s.C. Gurung et al., 2019
Tree shrew HSV-1/2 i.v./i.p./s.c./ocular Darai et al., 1978; Li et al., 2016b
Influenza i.n. Yang et al., 2013
§$gsack|e virus Nasal spraying Lietal, 2014
ZIKV s.C. Zhang et al., 2019b
SARS-CoV-2 Oral/i.n./ocular Xu et al., 2020
Rodents
C57BL/6 JEV i.v./i.p./footpad Grossberg & Scherer, 1966; Miura et al., 1988
DV i.p. Byrne et al., 2021
HSV-1 i.n./i.v./corneal Xiao et al., 2001
EV71 Intracranial Luo et al., 2019
BABI/c JEV i.p. Saxena et al., 2008
DV i.p./i.c. Byrne et al., 2021; Li et al., 2013
uMT WNV Footpad Diamond et al., 2003a
slgM-/- WNV Footpad Diamond et al., 2003b
RAG1-/- WNV Footpad Throsby et al., 2006
Ifnar1-/- ZIKV i.v./footpad Lazear et al., 2016
IRF3-/-IRF5-/-IRF7-/- ZIKV Retro-orbital » Lazear et al., 2016; Li et al., 2016a
AG129 ZIKV e R 6 :tllgrf 2:)1al1 2016; Rossi et al., 2016; Sumathy et al., 2017; Xie
DV i.p.fi.v. Brewoo et al., 2012; Fuchs et al., 2014
EESéransplanted with CD34+ DV Ei(:ic:]tgadlera via mosquito Cox etal,, 2012
HepG2-grafted SCID DV i.p. An et al., 1999
hSCARB2-transgenic CV-A16 i.n. Chen et al., 2021
HFH4-hACE2 SARS-CoV-2 i.n. Jiang et al., 2020
hACEZ2 transgene SARS-CoV -2 i.n./i.g. Bao et al., 2020; Sun et al., 2020
K18-hACE2 SARS-CoV-2 i.n. Winkler et al., 2020
C3H/He RABV i.m. Mifune et al., 1980
ICR RABV Footpad Smith, 1981
Kunming RABV i.m. Zhang et al., 2016
ZIKV s.C. Yu et al., 2017
Rat HSV-1/2 Oral mucosali.c. Bergstrom et al., 1991; Hirsch et al., 1984
RABV i.m. Ren et al., 2021
Golden hamster RABV i.m. Zhang et al., 2016
SARS-CoV-2 i.n. Chan et al., 2020
Artiodactyls
Pig/swine JEV Oronasal/s.c. Ricklin et al., 2016
Beagle RABV i.m. Fekadu et al., 1982
Horse WNV s.C. Meyer et al., 1931
Cattle JEV s.C. Kimura et al., 2010
Domestic birds
Chicken JEV s.C. Fan et al., 2019
Duckling JEV s.C. Xiao et al., 2018
Great egret JEV s.C. Nemeth et al., 2012
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Continued

Species/Strain Viral strain Route of infection References
Mosquitoes

Culex tritaeniorhynchus JEV Intrathoracic Buescher et al., 1959
Culex pipiens JEV Intrathoracic Hameed et al., 2019
Aedes aegypti DV Midgut Choy et al., 2020
Aedes albopictus DV Salivary glands Pompon et al., 2017
Aedes aegypti ZIKV Intrathoracic Boorman & Porterfield, 1956
Aedes aegypti/ unilineatus/ vittatus/ luteocephalus ZIKV Oral Diagne et al., 2015
Aedes albopictus ZIKV Oral Wong et al., 2013
Culex p. quinquefasciatus ZIKV Oral Guo et al., 2016
Culex annulirostris ZIKV Oral Duchemin et al., 2017

i.c.: Intracutaneous; i.d.: Intradermal; i.m.: Intramuscular; i.n.: Intranasal; i.p.: Intraperitoneal; i.v.: Intravenous; s.c.: Subcutaneous.

Table 3 Diagnostic tests preferred for suspected etiology

Causative agents Diagnostic tests

HSV-1/2

consider HSV CSF IgG and IgM in addition
vzv CSF: VzZV IgG
Enterovirus
EBV EBV serology: VCA IgG and IgM and EBNA 1gG
HHV-6 CSF: HHV-6 PCR/Photoconductive relay

Influenza

ZIKV/DV/ CHIKV

Measles virus Plasma/CSF serology/CSF: PCR

HSV-1/2 PCR: if negative and highly suspected, repeat within 3—7 days with CSF sent for HSV PCR; if test available,

CSF: EV PCR; Sensitivity may be low, if test available, consider throat swab and stool sent for EV PCR

Culture/Antigen detection/Respiratory secretion PCR
JEV CSF/serum: JEV PCR/CSF: IgM/Serology: IgM
CSF/serum: RT-PCR/CSF: IgM/Serology: IgG and IgM

CMV CSF: PCR/IgM
JCV CSF: RT-PCR/IgM/Serology: IgG and IgM/Plasma antigen
Rabies/ABLV Rabies/ABLYV testing: serological analysis of serum and CSF; viral isolation or RT-PCR from saliva; tests for viral antigen or

histopathology on either a brain biopsy or full-thickness biopsy of nape of neck

CSF: Cerebrospinal fluid; EBNA: Epstein-Barr nuclear antigen; RT-PCR: Reverse transcription polymerase chain reaction; VCA: Viral capsid

antigen.

suggest that neurotropic virus-infected aged individuals may
experience an increased risk of developing neurodegenerative
diseases, such as AD or Parkinson’s disease. Further
investigation is necessary to understand the impact of
neurotropic virus-infected MLVs in triggering or accelerating
the development of neurodegenerative diseases. Studies have
shown that IL-6 induced by genotoxic stress may promote
lymphangiogenesis in the bones, including the cranium, which
may contribute to bone and hematopoietic regeneration
(Biswas et al., 2023). However, it is still unclear whether and
how the intracranial inflammatory cytokines induced by viral
infection in the CNS, contributes to the expansion and
functional impairment of MLVs. Apart from VEGF-C, the
specific factors, such as inflammatory cytokines and
chemokines, that modulate the proliferation, migration, and
differentiation of LECs and influence the structure and function
of MLVs in the meninges during viral infection are yet to be
determined.

The generation of type | IFN in response to intracranial
neurotropic viruses has been demonstrated in parenchymal
neurons and immune cells, including residential microglia and
peripheral-infiltrating  leukocytes. Upon mobilization, B
lymphocytes will encounter viral antigens that stimulate their
maturation and differentiation into plasmacytes, which then
secrete virus-specific antibodies to neutralize viral particles
(Figure 2). Interestingly, meningeal immunity was recently
discovered to play an important role in antiviral immune
defense in the CNS (Li etal., 2022; Rebejac etal., 2022).

Immune cells, including many myeloid cells, are harbored in
the subarachnoid lymphatic-like membrane (SLYM) and may
participate in CNS immunity (Mgllgard et al., 2023). Mucosal-
associated invariant (MAIT) cells in the meninges preserve
meningeal barrier integrity and restrict neuroinflammation in
the brain (Zhang etal.,, 2022b). These findings imply that
resident immune cells in the meningeal ecosystem possess
many unexplored features in immune defense against
diseases, including VE. The importance of peripheral-
infiltrating immune cells in the clearance of intracranial
pathogens is indisputable. However, it remains unclear which
cells take priority in the mobilization of resident immune cells
in the meninges or periphery. In addition, the routes through
which meningeal immune cells shuttle between the peripheral
lymph nodes and the brain parenchyma are yet to be
explored. Of course, several barriers still exist in the field.
First, using LEC-specific Cre recombinase or photoinitiators to
ablate MLVs can result in fetal death or low-deleting area and
efficiency. Second, monitoring the transmission paths of
viruses and dynamic migration of immune cells in real-time in
the meninges and deep brain parenchyma is challenging.
Third, observing lymphangiogenesis of the MLVs with LEC-
specific lineage tracing in diseased animal models remains
difficult.

As summarized in this review, common animal model-based
experiments can provide first-hand evidence of the
pathologies of VE, including routes of infection (Table 2).
While NHP models are invaluable for pathological and

Zoological Research 44(3): 525-542,2023 535



therapeutic development studies of VE, the difficulty in
consecutively obtaining brain samples from individual animals
has restricted cellular mechanism studies of pathogenesis. In
vitro organoid co-culture systems are beneficial supplements,
although they cannot fully simulate pathological conditions of
VE. However, such systems have the advantage of cell
tropism in combination with the expression of receptors
necessary for viral entry and are useful models for drug
screening and therapeutic testing (Antonucci & Gehrke, 2019;
Depla et al., 2022). Finally, improving the delivery efficiency
and accuracy of antiviral drugs remains an unsolved clinical
issue. Engineering precision nanoparticle drug delivery
systems (NDDS) (Mitchell etal.,, 2021) and virus-based
nanoparticles (VNPs) (Li etal., 2019) may provide new
insights to ameliorate those problems. For example, FDA-
approved Plegridy is an injectable nanomedicine for relapsing
forms of multiple sclerosis that offers low-dosing frequency
(Mitchell et al., 2021). VNPs work well with different types of
cargo, including inorganic nanoparticles and proteins (Li et al.,
2019). Modulating the function of MLVs in animal models of
disease, including VE, may improve disease outcomes (Da
Mesquita etal.,, 2018; Hu etal, 2020; Li etal, 2022).
Furthermore, altering drug delivery and administration sites,
such as the meninges, may provide an improved therapeutic
strategy.

However, how to integrate animal models and advanced live
tracing systems to consecutively visualize the spread of
neurotropic viruses, lymphangiogenesis, and mobilization of
immune cells in the brain is still a challenge. How to improve
outcomes for VE patients with neoteric therapeutics and
modified drug delivery also remain urgent tasks.
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