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Introduction

In daily life, scientific descriptions are central to individuals coping with 
everyday problems and receiving the requisite information, such as illustrating 
the past week’s health and fitness data on your mobile phone for your doctors 
or sharing your cycling route over time in the Global Positioning System with 
friends. Darwin (2018) proposed that grouping facts constitutes science, reveal-
ing that describing facts of scientific phenomena, that is, generating scientific 
descriptions, should be an ability of great value. In the classroom or laboratory, 
describing scientific phenomena often involves making observations, collecting 
data, analysing the obtained data, and drawing conclusions about the results, 
and thus serves as a solid foundation for further scientific investigation. 

Since many scientific phenomena cannot be directly introduced to the 
classroom, it is critical to help students describe and represent the phenom-
ena by constructing their models, which allows the abstract phenomena to 
be visualised, simplified, manipulated, scale-transformed, and mathematized 
(National Research Council, 2012; Zwickl et al., 2015). The process of modelling 
involves essential skills in scientific practices, including model constructing, 
data collecting, phenomenon observing, and model improvement (National 
Research Council, 2012; Nicolaou & Constantinou, 2014). Starting from con-
structing models, individuals should be able to develop external representa-
tions of a physical phenomenon (Namdar & Shen, 2015) after directly observing 
the phenomenon or indirectly using secondary sources. However, it has long 
been challenging for students to coordinate various representations and con-
nect physics representations with real-world phenomena (Ibrahim & Rebello, 
2013; Kozma & Russell, 2005; Stull et al., 2016). To actively scaffold and support 
students’ learning of physical phenomena, technology-based laboratories hold 
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Abstract. Proposing scientific descriptions 
is critical for individuals to cope with 
daily problems and acquire essential 
information. Nonetheless, few classes 
have enhanced students’ ability to 
describe facts of scientific phenomena. 
Thus, using a tool of technology-based 
laboratory, this research examined whether 
students’ scientific descriptions and 
mathematical modelling behaviours could 
be improved. The participants included 52 
undergraduate students randomly assigned 
to the experimental and control group. 
Two prompts were developed to remind 
the experimental group that it is common 
to place ‘time’ along the x-axis and that 
mathematical modelling is important in 
physics. Results showed that as expected, all 
participants generated more propositions 
in scientific descriptions, especially the 
experimental group. However, contrary to 
the hypothesis, the participants did not 
propose more correct propositions and the 
effect of group was limited. Moreover, the 
hypotheses were partially supported that 
the participants used more image-based 
and mathematics-based representations to 
describe phenomena, and the proportion 
of participants whose propositional type 
was quantitatively increased, though no 
main effects of group were observed. Most 
participants adjusted their mathematical 
models by keeping slightly changing the 
coefficients/constants to fit the data, rather 
than applying relevant physics knowledge 
to revise models, illustrating their 
difficulties in connecting mathematical 
representations with actual phenomena.
Keywords: mathematical modelling, 
model-building behaviours, modelling 
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great promise. Technology-based laboratories have been developed to help students gain a better understanding of 
scientific phenomena by simultaneously presenting the obtained data in terms of selected variables and displaying 
diagrams depicting the connections between/among the variables (Chien et al., 2015; Hsu & Wu, 2016). In essence, 
these technology-based laboratories provide multiple representations among which students can make connections 
and comparisons and construct their mental models.

In the previous research, a technology-based laboratory, InduLab, was developed to assist students in mathematical 
modelling of physics experiments (e.g., pendulum motion), and its benefits for laboratory physics in high school were 
confirmed (Liu et al. 2017). Taking a step further, could individuals describe and represent a real-world phenomenon 
differently with the help of InduLab? The pilot study found that the effect of InduLab on undergraduate students’ 
scientific descriptions was less profound. More details of the pilot study are reported in the Research Focus section.

Hence, the current research provided two prompts as treatment and then examined the effect of InduLab on 
undergraduate students’ construction of scientific descriptions, that is, describing facts of scientific phenomena, as 
well as their mathematical modelling behaviours. The first research question centres on learners’ scientific descrip-
tions: Do the use of InduLab and receipt of the prompts affect undergraduate students’ scientific descriptions? The 
second research question concerns learners’ modelling behaviours: Which modelling behaviours are performed by 
undergraduate students with and without the prompts when engaging in InduLab? Before continuing, a clarification 
about terminology and limitations should be provided. It is easy but utterly incorrect to equate modelling activities with 
simply finding appropriate formulas. In this research, there was something about fitting of a function to empirical data, 
which could be called also as modelling, but there is more: The rich process of modelling with mathematical functions 
in an authentic context was cautiously examined. This kind of model-building activity is merely a small piece of the big 
picture since various kinds of complex models (e.g., stochastic models; Erickson, 2006) and modelling approaches exist 
(Sevinc & Lesh, 2018). However, it would be difficult to handle all of the issues regarding models in a single research 
study. In Haverty et al. (2000)’s research, they specifically asked the participants to perform modelling with mathemati-
cal functions, that is, discover a mathematical function that represented the connections between two variables, to 
reveal the cognitive processes in mathematics. Namdar and Shen (2015)’s synthesized literature review of modelling 
in the last three decades also found that most research emphasised only a part of the modelling process (i.e., model 
interpretation) since it could be time-consuming and challenging to consider the whole process. Thus, this research 
limited itself to examine the performances and behaviours of modelling with elementary mathematical functions in 
a technology-based context. It is noteworthy that ‘model’ and ‘mathematical model’ were used in this limited sense.

Literature Review

Scientific Descriptions and Models

In this research, ‘scientific descriptions’ refer to facts of scientific phenomena. They are constructed from collected 
data that illustrate scientific phenomena based on an individual’s mental model and prior knowledge. Mental models 
are analogical representations of external reality within an individual’s mind (Johnson-Laird, 1983). Mental model 
plays a critical role in generating scientific descriptions since individuals must understand and explain the phenom-
ena by referencing to the model (Johnson-Laird, 1983). Mental models are the syntheses of various representations 
(i.e., propositions, mental images, and mental models). Ainsworth (2006) suggested that learners’ mental models for 
scientific concepts would be more complete and coherent with multiple representations. 

In addition to mental models, other modelling perspectives also exist. Though these perspectives might differ 
in whether they involve mental representations, situation models, or real models, most of them include the goal of 
constructing a mathematical model to explain real physical phenomenon (Sevinc & Lesh, 2018). For instance, Hestenes 
(1987, 441) particularly emphasised the mathematical formulation in physics: ‘models are physical properties represented 
by quantitative variables.’ Namdar and Shen (2015) also concluded that mathematical modelling of the physical world 
must be prioritized to obtain scientific knowledge successfully. Mathematical modelling has long been emphasised in 
science education (Greca & Moreira, 2002), because it reflects the nature of a physical system, allowing the quantitative 
estimation of the behaviour of the system and because it is beneficial for learning physics concepts and processes. 
Moreover, mathematical modelling activities have many plausible answers, making it unnecessary for students to seek 
only one correct answer. For example, Angell et al. (2008) proposed a mathematical modelling approach in a Norwe-
gian secondary physics classroom, finding that students became more aware of the modelling nature of physics. In 
addition, by engaging in modelling activities, learners also gain opportunities to utilise representations to develop a 
deeper understanding of natural phenomena (Baumfalk et al., 2018). 
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Nonetheless, mastering different representations has always been a challenge for learners (Ibrahim & Rebello, 2013; 
Kohnle & Passante, 2017; Kozma, 2003; Kozma & Russell, 2005; Stull et al., 2016). Ibrahim and Rebello (2013) explored 
how engineering students utilised mental representations for open-ended tasks on kinematics and work. They found 
that most students used propositions as their main mental representations in both tasks. Moreover, most students 
tended to use a single representation, rather than meaningfully integrating multiple representations. In the studies 
of Kozma (2003) and Kozma and Russell (2005), they indicated that chemistry students were unable to transform one 
representation into another compared to expert chemists. In addition, the novice students generated descriptions 
based merely on the superficial features of one representation, without precise interpretation. To assist learners in suc-
cessfully developing scientific descriptions, Kozma suggests that instructional technologies can be a potential route 
to present multiple representations for further coordination and integration.

Technology-Based Laboratory

Researchers have suggested that technology-based laboratories have significant advantages (Bernhard, 2018; 
Chien et al., 2015; Hochberg et al., 2020; Hsu & Wu, 2016; Wang et al., 2017). First, the experimental data can be shown 
in multiple representations, enabling students to make sense of the data by transforming and communicating them 
between different representations. Second, the selected variables can be visualised almost instantaneously, which 
provides students with instant feedback to construct and revise models. Based on the two advantages, students can 
devote greater effort to reading and interpreting the representations automatically generated by computers.

Although technology-based laboratories support individuals’ learning, assistances such as prompts or instruc-
tions to scaffold students’ interactions with educational technologies are needed (Kohnle & Passante, 2017; Wang et al., 
2017). Kohnle and Passante (2017) examined the effects of interactive computer simulations and tutorials on learners’ 
representational learning with the material as perturbation theory. Results demonstrated that after the combined 
simulation tutorial, learners proposed more representations, had higher consistency between representations, and had 
progressed toward higher representational competence levels, showing that learners should be supported to create 
and make sense of multiple representations while engaging in technology-based laboratories.

However, what kind of assistances should be provided to facilitate science learning in technology-based learning 
environments? Several principles for appropriate assistances have been proposed (Hsu & Wu, 2016; Kozma, 2003; Wang 
et al., 2017). First, providing representations to students could make abstract scientific entities and processes explicit. 
For instance, students could be reminded to select the appropriate variables for the axes when graphing a function in 
a technology-based laboratory and make sense of the graphs corresponding to the underlying scientific phenomena. 
Second, to help students make connections across multiple representations. For instance, students could be asked to 
propose models in a technology-based laboratory and identify how its changes affect the graphs of functions. This 
principle also corresponded to Moyer-Packenham and Bolyard’s (2016) statement that inspecting different simultane-
ously changing representations allows individuals to make connections and comparisons between representations. 
Using these principles, Wang et al. (2017) explored the effects of three simulation groups (using two mobile applica-
tions and a computer simulation) on students’ conceptual understanding and found that all groups made significant 
progress in understanding physics.

Research Focus

Though the scientific description is essential for every citizen, it is never an easy task to represent real phenomenon 
by constructing models, especially as learners often encounter challenges in connecting different representations 
(Ibrahim & Rebello, 2013; Kozma, 2003; Stull et al., 2016). To overcome these challenges, technology-based laboratories 
offer many advantages (Bernhard, 2018; Hochberg et al., 2020; Wang et al., 2017). With appropriate assistances (e.g., 
prompts), technology-based laboratories could be scaffoldings for coordinating multiple representations, and thus 
allowing individuals to propose scientific descriptions differently. 

Though the benefits of InduLab for scientific modelling were confirmed in the previous research (Liu et al., 2017), 
its effect was less pronounced for scientific description in the pilot study. The pilot study was conducted with six un-
dergraduate students. All participants had to complete the experiment using identical materials as in this research, 
and follow-up interviews were conducted. The results showed that the participants intended to arbitrarily select any 
two variables as the x- and y-axes when modelling the motion of an object, even though it is conventional in physics 
to place ‘time’ along the x-axis (Araujo et al., 2008; Reisslein et al., 2005). Moreover, most students did not propose any 
mathematical equations to fit the obtained data. Thus, based on the design principles (Hsu & Wu, 2016; Kozma, 2003; 
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Wang et al., 2017), this research developed two prompts as the experimental intervention to remind participants that 
the time variable should be selected for the x-axis and informed them that mathematical modelling is an efficient way 
to understand scientific phenomena. 

For the first research question regarding the participants’ performance in scientific descriptions, four hypotheses 
were developed. The current research predicted that learners, especially those who receive the prompts, could propose 
scientific descriptions differently. First, according to the phenomenon that was frequently founded in creativity, research 
people who provide more responses are likely to have responses with greater quality (Silvia et al., 2013), this research 
suggests that the experimental group that receives the prompts would generate more propositions (Hypothesis 1) and 
with greater accuracy (Hypothesis 2). Moreover, with the prompts, this research believes that the experimental group 
would be more able to act as experts that master different representations, as indicated in the studies of Kozma (2003) 
and Kozma and Russell (2005). Thus, they would adopt more types of representations (i.e., image type; Hypothesis 3) 
and quantitative descriptions (i.e., quantitative propositional type; Hypothesis 4) in their scientific descriptions after 
engaging in InduLab. 

Hypothesis 1:   After using InduLab, all learners would generate more propositions, especially in the experimental 
group.

Hypothesis 2:   After using InduLab, learners would get more accurate propositions, especially in the experimental 
group.

Hypothesis 3:   After using InduLab, more learners would adopt image type as representational type, especially 
in the experimental group. 

Hypothesis 4:   After using InduLab, more learners’ propositional type would be quantitative, especially in the 
experimental group.

For the second research question concerning the participants’ spontaneous mathematical-modelling behav-
iours, one exploratory research question was developed:

Exploratory Research Question: How would the mathematical-modelling behaviours be performed by par-
ticipants with and without the prompts while engaging in InduLab?

Research Methodology 

General Background

The current research was carried out with quantitative research method, which adopted inquiry strategies (e.g., 
experiments and surveys) to collect data for analysis (Creswell, 2003). Adopting the raw data of a real-world phe-
nomenon, undergraduate students were randomly assigned to experimental and control groups and their scientific 
descriptions and spontaneous mathematical modelling behaviour were probed before and after using InduLab. 
The experiment was conducted at a university in northern Taiwan between December 2018 and January 2019. 

Participants

A total of 56 undergraduate students with an average age of 21.25 years (SD = 3.16) participated in the 
research. They signed up either through an independent website or via the experimenters’ e-mails and received 
USD$5 after completing the experiment. Of the participants, 84% were female; and about 11% had taken courses 
in both calculus and statistics, whereas 36% had taken either of them, indicating at least half of the participants 
had a basic understanding of using Microsoft Excel and SPSS to solve problems concerning statistics. They were 
non-science majors (e.g., educational psychology, fine arts, Chinese literature) but had learned linear functions and 
their graph plots in 7th grade, quadratic functions and their graph plots in 9th grade, and kinematics and mechanics 
in 10th and 11th grade. They were randomly assigned to the experimental (n = 28) and control (n = 28) groups. 

Ethics

This research received ethics approval from the Research Ethics Committee, National Taiwan Normal University. 
Before the experiment, the researcher explained the aim of this research to the participants and also clearly stated 
that the data collection was anonymous and would not be accessed by others. 
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Instruments

Prior Knowledge Test 

This research adapted the Chinese version of the Test of Understanding Graphs in Kinematics (CTUG-K), translated 
from Beicher (1994), to evaluate participants’ prior knowledge of kinematics. The original test comprised seven dimen-
sions with 21 items. Seventeen items with greater difficulty were selected and tested by 94 undergraduate students. 
After items with rather lower difficulty were removed, 10 items remained in the CTUG-K. The CTUG-K thus comprised 
10 items with possible scores ranging from 0–10. For the performance of the 56 participants in the research, the ac-
curacy fell in the range .29–.66 (Md = .54), item difficulty .30–.67 (Md = .50), and item discrimination .47–.77 (Md = .61), 
while KR21 = .72, indicating that CTUG-K has good measurement properties. 

Tasks 

This research developed tasks on paper worksheets, and every participant had to work on the same sheet of paper 
twice, as a pre-test (e.g., Appendix A) and a post-test. For the pre-test, participants read a concise explanation and a 
table involving four variables about a kinematic phenomenon, and then wrote down a scientific description as precisely 
and in as much detail as possible. For the post-test, with the aid of InduLab, participants revised their descriptions or 
added more descriptions after manipulating data plots. 

To assist participants in understanding this experiment, an example task and a practice task were developed. The 
example task provided slope motion with its data. For the pre-test, three types of sentences were provided to illustrate 
how to propose scientific descriptions. The first type was to provide a quantitative description for a variable: ‘The basket-
ball is rolling down a hill at a constant velocity of 0.35 mm/ms.’ The second type was to describe the linear connection 
between two variables qualitatively: ‘The distance that the basketball rolled down the hill was proportional to the time 
it rolled.’ The third type was to describe the quadratic connection between the two variables qualitatively: ‘The distance 
that the basketball rolled down the hill increased per unit time.’ For the post-test, examples to show participants how 
to revise the descriptions were provided. For example, it should have been said that the basketball rolled down the hill 
with an acceleration of 0.35 mm/ms2. Moreover, the descriptions could also be integrated, such as ‘the distance that the 
basketball rolled down the hill was not proportional to the time. The speed was slower at first for about 0.1 mm/ms, 
and then became faster at 0.6 mm/ms. This shows that the distance the basketball rolled down the hill increased per 
unit time.’ In addition, the practice task topic was free fall, which had been studied by participants in senior high school. 

Regarding the formal task, only an explanation and a table for the kinematic phenomenon were provided with a 
blank worksheet. The topic and data concerned a weather balloon ascent in Coffeyville, Kansas, USA, in 1991, retrieved 
from Erickson (2006)’s research. Appendix A shows the worksheet for the formal task. Participants could write their 
descriptions in the blank area. All materials were adjusted by one professor in educational psychology and one associ-
ate professor in science education.

Modelling with InduLab 

A technology-based modelling tool called InduLab was developed. After collecting data, students can experi-
ence an explicit model building process with InduLab; that is, they can freely propose and revise models to fit the 
experimental data with immediate feedback including a visual plot and the error in the modelling (Liu et al., 2017). In 
this research, the raw data of the scientific phenomenon were provided to participants directly, including the variables 
of time, speed, acceleration, and height. After entering the data in InduLab, a data plot would be shown (the dots in 
the plots of Appendix B), and then the students were to work on the mathematical models to explain the data. There 
are two main features in InduLab, axis-changing and formula-finding (i.e., data-fitting). Once a model is committed, 
InduLab shows the model plot (circles in the plots of Appendix B) in the background of the data plot (dots in the plots). 
In the top figure of Appendix B, the model f(t) = 1.5t was chosen. The dots were clearly above the circles, showing an 
error of 195.61 as computed by InduLab and defined as the sum of all vertical absolute distances between all pairs of 
corresponding dots and circles divided by the sum of the absolute y-values of all experimental data. There are other 
ways to compute the error measure, but the current measure is chosen due to its simplicity for understanding. The 
participants could then adjust the formula to improve the model. After several trials, the students entered the model 
f(t) = 4t + 300, and the resulting plot showed that the circles were closer to the dots, with an error of 4.76%. In addition, 
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participants’ manipulations would be recorded in the backstage, including the variables along the x- and y-axes, the 
time point of modelling, the formula, and the error.

Procedure

The experiment was conducted individually. After obtaining informed consent, participants were administered 
the CTUG-K for up to 10 minutes. The participants were shown the example task to learn how to write down scientific 
descriptions, and they then wrote down the descriptions of the practice task and formal task for up to eight minutes 
each and returned the worksheets. Subsequently, the researcher explained the features of InduLab to both groups, 
but only the experimental group received two prompts stating that it is common to place ‘time’ along the x-axis and 
that mathematical modelling is of great value in physics. Afterwards, participants were instructed on how to revise 
the scientific descriptions using the example task. Participants were then allowed to enter the data into InduLab and 
practice its features for about four minutes. After that, participants were given up to eight minutes for each task to revise 
the practice task and formal task on their worksheet. It took participants about one hour to complete the procedure.

Manipulation Check

To check if the participants in the experimental group followed the prompts, the experimental and control groups’ 
performance on the axis-changing and formula-finding was first examined using the practice task. In axis-changing, the 
percentage selecting time as the x-axis was significantly higher in the experimental group (M = 74%) than in the control 
group (M = 37%), t(54) = −5.52, p < .001. For formula-finding, the number of models was only marginally significantly 
higher in the experimental group (M = 11.18) than in the control group (M = 5.61), t(54) = −1.80, p = .078. Thus, two 
criteria were then adopted to exclude participants in the experimental group that failed to follow the prompts. The 
first criterion was the percentage stating the time variable along the x-axis in the first three minutes, which was lower 
than 80%. The second criterion was the number of models entered in InduLab was zero. These two criteria excluded 4 
participants, leaving 24 participants in the experimental group and 28 participants in the control group. 

Data Analysis

Regarding the worksheet analysis, a proposition was defined as a unit of meaning that involves sentences/im-
ages that convey a particular meaning, and then the number of propositions elicited was calculated. The accuracy of 
each proposition was examined, and incorrect and correct propositions were scored 0 and 1, respectively. Next, each 
participant’s representational type was identified. Participants who proposed only verbal descriptions were classified 
as the verbal type, and those who included figures or formulas in the propositions as the image type. Since the sci-
entific phenomenon in this research involved four variables and participants might provide descriptions qualitatively 
or quantitatively, five propositional types were initially identified as qualitative univariate, quantitative univariate, 
qualitative multivariate, single sequence multivariate, and sequences/formulas multivariate descriptions. However, 
several types contained less than five participants, which makes the chi-square analysis unacceptable. Thus, the five 
types were combined into quantitative−qualitative types (Table 1). A total of 104 responses on the pre-test and post-
test were given scores by the first researcher. The other researcher then reviewed 20 of the responses for checking the 
reliability of the coding. The interrater reliability was perfect, with Kappa value of 1 (p < .001). 

Table 1
The Scoring Criteria for Two Propositional Types 

Types Scoring Example of incorrect propositions Example of correct propositions

Qualitative 
description

Describe variables or the connections 
between variables qualitatively.

The acceleration and time are in 
inverse proportion. The acceleration 
gets smaller as time goes by. 

The weather balloon gets higher as 
time goes by. 

Quantitative 
description

Describe variables or the connections 
between variables with sets of data, 
sequences, or equations.

The weather balloon ascends to 18195 
meters within 4193.3 seconds.

The relation between height and time is 
f(t)=4.3t, with an error of 4. 
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Research Results 

The score on CTUG-K showed no significant differences between the experimental and control groups, t(50) = 
−0.32, p = .975, confirming the groups’ equivalence. The average score was 5.15 (SD = 2.67). This result corresponded 
with the design of recruitment in that the participants were unfamiliar with the conceptions and graphs used in 
kinematics. In addition, the two groups also showed no significant differences in their response time on CTUG-K, 
t(49) = −1.36, p = .180, and the average response time was 8.16 minutes (SD = 1.92). 

The Participants’ Performance of Scientific Descriptions

To explore the performance of scientific description before and after using InduLab between the two groups, 
the average numbers of their propositions, average accuracy of propositions, representational types, and propo-
sitional types were compared. 

The average number of propositions on the pre-test was 2.72. A 2 x 2 (group x test) ANOVA of the numbers 
of proposition was conducted. The main effect was significant for test, F(1, 50) = 61.20, p < .001, ηp

2 = .55, and for 
group, F(1, 50) = 6.59, p = .013, ηp

2 = .12, but no interaction effect existed between the two factors, F(1, 50) = 0.24, 
p = .627. By test, participants advanced more propositions in the post-test (M = 4.07, SD = 0.20) than in the pre-test 
(M = 2.74, SD = 0.14). By group, the experimental group (M = 3.79, SD = 0.22) advanced significantly more proposi-
tions than the control group (M = 3.02, SD = 0.21). 

For the average accuracy of propositions, the average accuracy of all participants’ propositions on the pre-
test was about 76%. A two-way ANOVA of the average accuracy of propositions showed no main effect of test, 
F(1, 50)= 0.39, p = .844, or group, F(1, 50) = 0.25, p = .619, nor did interaction effects exist between the two factors, 
F(1, 50) = 0.26, p = .609. Overall, the average accuracy of propositions on the post-test for all participants was also 76%. 

By representational type, 80% of the participants were of the verbal type and only 20% of the participants 
were of the image type on the pre-test. Next, a test of homogeneity to examine the differences in representational 
type between the two groups on the post-test was conducted, but no significant difference was found, χ2 = 0.20, 
p = .657. Thus, the McNemar’s test for all participants was performed, finding that the difference between pre-test 
and post-test was significant (χ2 = 22.00) at the 0.01 level. Twenty-two participants of the verbal type on the pre-
test changed to the image type on the post-test, and no participant of the image type on the pre-test changed 
to the verbal type.

For propositional type, the relationships between the two propositional types with the average accuracy of 
propositions were examined. No significant correlations were found for either the pre-test (r = −.06) or the post-test 
(r = .19), indicating that there was no difference in the accuracy of the propositional types that each participant 
proposed. Afterward, the difference between the two groups on the post-test with tests of homogeneity was 
examined. Results showed no significant difference in the propositional types between the two groups on the 
post-test, χ2(1, n = 52) = 1.03, p = .310. Thus, the McNemar’s test was conducted to examine whether the changes 
in the propositional types between pre-test and post-test were statistically significant for all participants. The 
results were marginally significant, χ2(1, n = 52) = 4.45, p = .065. Nine participants whose propositional type was 
qualitative type on the pre-test changed to the quantitative type on the post-test, and only two participants whose 
propositional type on the pre-test was the quantitative type changed to qualitative type.

The Participants’ Spontaneous Mathematical-Modelling Behaviours

All participants’ spontaneous mathematical-modelling behaviours were examined by the mathematical models 
they proposed with InduLab. Regarding the time participants spent in proposing the first model, there was no sig-
nificant difference between the experimental group and the control group, t(27) = 0.30, p = .770. The average time 
spent by all participants was 2.65 minutes. The number of models provided by the participants in the experimental 
group (M = 21.18) was marginally significantly higher than in the control group (M = 12.17), t(27) = −1.92, p = .066.

The Preparatory Work of Mathematical Modelling 

There were 29 participants proposed models, 12 in the control group and 17 in the experimental group. Most 
participants proposed models after viewing several graph plots (control/experiment, n = 8/14). Table 2 presents 
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12 graph plots of the data in the order of the number of participants involved in building a model, from the most 
participants to the least. If a participant proposed only one model, one formula is shown, and if a participant pro-
posed several models, then the first and the last formulas are shown. Finally, the column of error would be ‘Infinity’ 
if InduLab could not calculate the error of a given formula.

Table 2 
Indulab’s Graph Plots and Participants’ First and Last Equations 

Graph plots Participant 
No. Formula Error

a.

4 f(t) = 3859/838.7 112843.95
6 f(t) = t 343.41

f(t) = 172+0.003t^2 50.93
7 f(t) = 5t 13.72

f(t) = 4.3t 4.00
9 f(t) = 0 Infinity

f(t) = 5t 13.72
16 f(t) = 0.004t 110749.39

f(t) = 4.3t 4.00
20 f(t) = 4t 10.86

f(t) = 4.3t 4.00
21 f(t) = 172/−3.3t 804019.42

f(t) = 95.2t 95.35
22 f(t) = 2t+100 112.65

f(t) = 4.5t+90 5.89
25 f(t) = 0.001t^2 91.07

f(t) = 0.001480t^2 48.42
26 f(t) = 0.5t^2 99.62

f(t) = 0.05t^2 96.27
28 f(t) = 5t 13.72

f(t) = 5t−5 13.71
37 f(t) = 10t 55.79

f(t) = 4.5t 6.09
38 f(t) = 0.5t^2 99.62

f(t) = 0.0025t^2 47.90
40 f(t) = 4t 10.86

f(t) = 4.5001 8.48
48 f(t) = 0.0003t 1477891.78

f(t) = 0.1t^2 98.11
51 f(t) = 5t 13.72

f(t) = 4.3000001t 4.00
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Graph plots Participant 
No. Formula Error

b.

1 f(d) = 20d 98.87
f(d) = 0.23d 4.13

9 f(d) = 5d 95.49
f(d) = 50d 99.55

18 f(d) = 2*8+sqrt(8)+pow(8,2) 1333.30
f(d) = 2*30.8+sqrt(30.8)+pow(30.8,2) 93.37

21 f(d) = 172 615.78
f(d) = 2445 62.95

29 f(d) = 0.2d 15.47
f(d) = 0.26d+0.5 13.30

40 f(d) = 65 1717.84
50 f(d) = 0.5d 54.90

f(d) = 0.235d 4.12
52 f(d) = 300d 99.92

f(d) = 0.232d 3.89
57 f(d) =172d 99.87

f(d) = 18195m Infinity

c.

2 f(t) = 2s Infinity
f(t) = 482 100.00

4 f(t) = 3859/838.7 99.78
7 f(t) = log(t,10) Infinity

f(t) = t^1 100.00
16 f(t) = 0.0001t 105.35

f(t) = 0.0001t^3 100.00
21 f(t) = –3.3 100.31

f(t) = –3.30t 100.00
28 f(t) = 0.0002t 102.11

f(t) = 0.001t^–1 83083.74
54 f(t) = 0.005t^0 235.61

f(t) = 0.0000005t^0 2060945.52
56 f(t) = 0.05t^–2 11039.51

f(t) = 0.3t^11/100 100.00

d.

7 f(t) = .01t^2 99.98
f(t) = 0 Infinity

22 f(t) = t^2–5 100.00
f(t) = 2t–5 99.81

28 f(t) = 0.5t 99.24
f(t) = 3t 99.87

33 f(t) = 0.001t^2 99.87
f(t) = 0.020t 89.10

54 f(t) = 10t+0.00005t^2 99.96
f(t) = 5–0.00032t^1 6.05

63 f(t) = 4 14.62
f(t) = 4.35 8.48
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Graph plots Participant 
No. Formula Error

 e.

21 f(v) = 4.56221v 5679.23
f(v) = 5.02802v 5144.45

22 f(v) = 1/2v 52614.82
f(v) = v^2–5 7510.09

33 f(v) = 100v 223.06
f(v) = 500v 65.26

52 f(v) = 200v^2 71.70
f(v) = 20v^1 1237.06

 f.

29 f(d) = 0.002d 99.90
f(d) = 0.0001d^2 100.00

 g.

28 f(a) = 0.05a 862894.90
f(a) = 5a^6 6128468.69

50 f(a) = 5 11.14
f(a) = 4.5 8.48

 h.

3 f(v) = 3v 38856.04
21 f(v) = 4.14815v 28073.55
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Graph plots Participant 
No. Formula Error

 i.

21 f(a) = 0 Infinity

 j.

– – –

 k.

– – –

 l.

– – –
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The Process of Mathematical Modelling 

Among the participants who proposed models with graph plots that looked more linear, five participants 
proposed constant models and nine participants estimated the time from the height, indicating that they could 
not provide appropriate formulas with correct physical meaning to fit this simple linear-looking graph plot. About 
30% (9/29) of the participants could not use the parameters of mathematical modelling appropriately, which 
resulted in ‘Infinity’ in the error column. In Table 2c, for example, participant No. 2 mistook units for parameters 
and proposed the model f(t) = 2s for acceleration with time; thus, this error could not be calculated and InduLab 
responded with Infinity. 

In addition, three participants of the experimental group selected the height-time graph for their hypoth-
eses after seeing all the graphs that set the time along the y-axis, and then proposed only quadratic models for 
graph plots that looked more linear. This is probably because these participants figured out that the connection 
between time and height is not a linear connection after viewing several graphs that put time along the x-axis, so 
they persisted in revising a quadratic model to fit the data.

Model Modifying Strategies 

Except for the three participants who proposed models less than three times, 96% (25/26) of the participants 
tended to mildly adjust the coefficients or constants instead of changing the highest degree of the formula. This 
strategy was also found in the past research (Liu et al. 2017). It demonstrates that most participants revised their 
models gradually based on the error and corresponding graphs from InduLab to improve the models. 

Participants Who Did Not Engage in Modelling 

Though the first graph plot in InduLab is simple and looks linear (i.e., Table 2b), up to 23 participants did not 
propose any models (control/experimental, n = 16/7). Among them, 15 participants had viewed the graphs with 
time along the x-axis, showing that they might be more capable of relating the physical conception to the graph 
plots. Another eight participants viewed only one or two graphs that put time along the x-axis, and five of them 
were in the control group with lower scores of prior knowledge. This shows that low-prior-knowledge participants 
in the control group did not understand the principle that time should be the independent variable along the x-axis.

Among the participants who did not engage in modelling, over 90% of them viewed graph plots with the axis-
changing feature; the average number of graphs viewed was 5.77 and the average time spent was 4.75 minutes. 
Moreover, one-third of the participants were in the experimental group, that is, they had been reminded of this 
critical feature of mathematical modelling. They still proposed no models to fit the experimental data, probably 
because these participants failed to connect the formulas to the graph plots when proposing a model, or perhaps 
because the participants believed that these graphs could not be represented concisely by a mathematical model 
and thus decided not to propose hypotheses. For instance, one participant in the control group who had a high 
score on the prior knowledge test viewed the graph plots that set the time along the x-axis for five minutes but 
proposed no model in the end.

The Performance of Model Builders and Non-Model Builders in Scientific Description 

To confirm whether the initial capabilities of model builders and non-model builders were different, their 
performances in scientific description on the pre-test were compared. Results showed no significant differences 
between the two groups on CTUG-K, average numbers of their propositions, and average accuracy of propositions, 
ts(50) < 1.01, p > .319. There was also no significant difference in the representational type and the propositional 
types between the two groups, χ2(1, n = 52) < 0.16, p > .686. 

On the other hand, the performances of model builders and non-model builders on the post-test were also 
compared to clarify the impact of using InduLab. The propositional types proposed by the two groups were signifi-
cantly different, χ2(1, n = 52) = 4.39, p = .036. The percentage of model builders using the quantitative type (86.2%) 
was significantly higher than among non-model builders (60.9%). However, there were no significant differences 
between the two groups on the average numbers of their propositions and the average accuracy of propositions, 
ts(50) < 1.72, p > .092, as well as the representational type, χ2(1, n = 52) = 0.66, p = .416. 
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Though model builders proposed more quantitative scientific descriptions, the worksheets showed that only 
40% of the model builders provided their equations, and 30% of them just wrote down their equations without 
any explanation, indicating that most model builders could not make a connection between the formalized lan-
guage of mathematics and the corresponding graphs and could not provide an explanation for their hypotheses. 
However, there were a few participants who provided more details and precise data in their scientific descriptions, 
thus turning to quantitative types after mathematical modelling. For instance, one participant’s propositional type 
changed from the qualitative to quantitative type after proposing models 30 times. On the pre-test, he stated: ‘The 
ascending distance of weather balloon increases as the ascent time gets longer.’ On the post-test, he described the 
phenomenon more precisely: ‘The V is getting faster and faster first, decreasing dramatically at about 200 seconds, 
then diminishing slightly, and finally showing a recovery. According to the distance-time graph, the mathemati-
cal model of t is f(d) = 0.232d.’ Some people further interpreted the data to make sense of the phenomenon after 
mathematical modelling. Take one participant who proposed models 43 times, a relatively high frequency, as an 
example. Initially, he stated: ‘The acceleration decreases from 0.30727 to 0.00004 after the weather balloon ascends 
to great altitudes. The speed of 4 m/s is maintained constantly.’ After using InduLab, the participant drew two graph 
plots on his worksheet and described: ‘According to the velocity-time graph, the weather balloon does not move 
at a constant speed at the beginning, which is probably influenced by the airflow of troposphere.’ 

Discussion

This research adopted raw data from a real physical phenomenon to explore non-science-major undergradu-
ate students’ scientific descriptions and spontaneous mathematical-modelling behaviour after using InduLab. For 
the first research question concerning the participants’ performance in scientific descriptions, four hypotheses 
were examined. Hypothesis 1 was supported that participants generated more propositions after using InduLab, 
especially in the experimental group. Hypothesis 2 was not supported that the average accuracy of their proposi-
tions showed no difference between the test and the group. Hypothesis 3 and 4 were partially supported that 
40% of the participants changed the representational type from verbal on the pre-test to image type, and roughly 
20% of the participants changed their propositional type from qualitative on the pre-test to the quantitative type. 

The main effects of test were significant-participants advanced their performances of scientific description 
in the post-test than in the pre-test. It indicated that students were able to describe a scientific phenomenon 
quantitatively and precisely once they have access to a modelling tool to engage with the data of the physical 
world. The performances of model builders and non-model builders also support the results that the model build-
ers proposed more quantitative propositional types than did the non-model builders. As was found in previous 
studies (Bernhard, 2018; Hochberg et al., 2020; Wang et al., 2017), this technology-based learning approach can 
help students visualise experimental data with different representations almost instantaneously, so students can 
devote greater effort to clarifying the connections between quantitative variables and constructing mathematical 
models in their scientific descriptions, which was regarded as prioritized skills for mastering scientific knowledge 
by Hestenes (1987) and Namdar and Shen (2015). 

On the contrary, the main effects of group on students’ scientific descriptions were much weaker. The limited 
effects are consistent with those of the studies of Ibrahim and Rebello (2013) and Kozma (2003), who found that 
novice learners often adopt propositions as the primary mental representations and have trouble focusing on 
more than one representation. It appears that despite the technology-based InduLab modelling tool, which might 
assist novices in understanding and describing the connections and variations between variables in a short time, 
more systematic instructions should be developed. More specifically, it is necessary to design long-term learning 
activities for students to better familiarize themselves with the tool. For example, Stull et al. (2016) suggested that 
educators demonstrate how to use models in solving problems and design laboratory activities that require learners 
to propose models and understand the phenomena. In short, learners would not be able and willing to employ 
technology-based laboratories until they became familiar with the laboratories and understood their values. 

For the second research question regarding participants’ spontaneous mathematical-modelling behaviours, 
one exploratory research question was explored. About half of the participants engaged in the mathematical 
modelling activity. Regarding the modelling process, among the participants who proposed models with graph 
plots that looked strongly linear, several of them adopted a constant model to fit the data or estimated height by 
time, indicating that they did not understand the mathematical meaning of the phenomenon and the physical 
meaning of their models. Interestingly, three participants from the experimental group viewed the graph plots 
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that put time on the x-axis repeatedly and demonstrated great persistence in proposing a quadratic model, even 
though the graph plots of height and time looked more linear than quadratic. A possible explanation is these 
participants constructed the hypothesis that the height and time of the phenomenon were not in a linear con-
nection after they integrated the information from various graph plots. In the classroom, teachers should assist 
learners in collecting data with different variables, observe the combinations of those variables in mathematical 
models, and then generate good hypotheses and theoretical models. Regarding the model modifying strategies, 
the result was corresponding to the previous research (Liu et al. 2017) that most participants tended to revise their 
models gradually to improve the models. Furthermore, most model builders just copied the formulas on their 
worksheets without providing explanations, indicating that students could not apply their acquired experiences 
to connect the formulas and realistic data. The participants had not only learned linear and quadratic functions 
with their graph plots but had also studied how to adjust the formulas to alter the corresponding graph plots 
in junior and senior high school. However, these learning experiences would appear not helpful for students in 
constructing ideal mathematical models and descriptions. 

Our earlier studies (Liu et al. 2017) applied InduLab as a modelling tool to assist students in engaging in 
mathematical-modelling activities after physics experiments. Students participated in experiments that they had 
learned before and sought an ideal formula relating the two given variables with InduLab. In contrast, the current 
research adopted a real-world phenomenon that the participants had never learned from textbooks and required 
them to propose mathematical models in a short time using InduLab. Even under this open-ended problem 
condition, several participants did not explore the difference between the observed data and the corresponding 
predicted value to improve the accuracy of their scientific description with mathematical-modelling behaviours. 
This is consistent with previous research (Erickson 2006). In the mathematics curriculum, symbolic expressions 
are usually provided without real context, so students have little experience connecting their understanding with 
real-world phenomena and coping with variability, which causes them difficulty in decoding the mathematical 
parameters and dealing with data that are not precise and error-free. For example, given a set of authentic data 
about an ascending weather balloon, the participants could build a mathematical model, such as distance = 0.4 
× time. However, they failed to connect the quantities and variables in the formula with the actual motion of the 
weather balloon (e.g., the slope of the graph, 0.4 m/s, is the speed of the balloon).

Conclusions and Implications

This research confirmed that the technology-based laboratory InduLab enabled non-science-major col-
lege students to precisely describe facts of a scientific phenomenon with more scientific propositions, image/
mathematics-based representations, and quantitative narrations. In addition, this research also determined that 
many participants tended to adjust their mathematical models by only slightly changing the coefficients or con-
stants to fit the data, rather than applying relevant physics knowledge to revise their models, illustrating their 
difficulties in connecting mathematical representations with actual phenomena. 

In Taiwan, model building is rarely taught or is only demonstrated by teachers in physics classrooms due to 
time constraints and its practical value vis-à-vis high-stakes tests. Students are told the theory and given equa-
tions and rarely deal with the modelling error that arises in a real context. In future research, researchers could 
clarify how learners deal with various graph plots. Do they realise that the graph plots are influenced by certain 
critical factors and identify the negligible error in the graph plots? How do their beliefs shape their understand-
ing of scientific phenomena? If learners’ understanding and difficulties in the scientific inquiry process could be 
revealed, then more scientific activities with real context could be developed to assist learners in engaging in 
science learning. 

Although the present research makes several useful contributions, some limitations need to be considered. 
First, this research involved the task of describing a physical phenomenon instead of a mathematical modelling 
task (e.g., improving the models for a realistic problem). Future studies may focus specifically on how learners 
solve various problems with mathematical modelling. Second, since it was difficult to include the participation 
of high school students, the participants were undergraduate students whose learning experiences were similar 
to those of high school students. However, some participants conceded that they had already forgotten these 
conceptions. Future studies should include high school students as participants to clarify learners’ scientific de-
scriptions and mathematical modelling behaviours more thoroughly.

https://doi.org/10.33225/jbse/22.21.495 

A TOOL OF TECHNOLOGY-BASED LABORATORY ENABLED STUDENTS TO PRECISELY 
DESCRIBE SCIENTIFIC PHENOMENA
(pp. 495-512)



509

Journal of Baltic Science Education, Vol. 21, No. 3, 2022

ISSN 1648–3898     /Print/

ISSN 2538–7138 /Online/

Acknowledgements

This research was financially supported by the Ministry of Science and Technology (project number: MOST 
108-2511-H-224-007-MY3; 107-2511-H-003-025; 108-2410-H-656-009-MY3) as well as the “Institute for Research 
Excellence in Learning Sciences” of National Taiwan Normal University (NTNU) from The Featured Areas Research 
Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) 
in Taiwan.

Declaration of Interest 

Authors declare no competing interest.

References

Ainsworth, S. (2006). Deft: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 
16(3), 183–198. http://doi.org/10.1016/j.learninstruc.2006.03.001

Angell, C., Kind, P. M., Henriksen, E. K., & Guttersrud, Ø. (2008). An empirical-mathematical modeling approach to upper secondary 
physics. Physics Education, 43(3), 256–264. http://doi.org/10.1088/0031-9120/43/3/001

Araujo, I. S., Veit, E. A., & Moreira, M. A. (2008). Physics students’ performance using computational modeling activities to improve 
kinematics graphs interpretation. Computers and Education, 50(4), 1128–1140. http://doi.org/10.1016/j.compedu.2006.11.004

Beicher, R. J. (1994). Testing student interpretation of kinematics graphs. American Association of Physics Teachers, 62(8), 750−756. 
http://doi.org/10.1119/1.17449

Bernhard, J. (2018). What matters for students’ learning in the laboratory? Do not neglect the role of experimental equipment! 
Instructional Science, 46, 819–846. https://doi.org/10.1007/s11251-018-9469-x

Chien, K. P., Tsai, C. Y., Chen, H. L., Chang, W. H., & Chen, S. (2015). Learning differences and eye fixation patterns in virtual and 
physical science laboratories. Computers and Education, 82, 191–201. http://doi.org/10.1016/j.compedu.2014.11.023

Creswell, J. (2003). Research design: Qualitative, quantitative and mixed methods approach (2nd ed.). SAGE Publications.
Darwin, C. (2018). Autobiography. In F. Darwin (Ed.), Selected letters on evolution and origin of species (pp. 5–58). LSC Communications.
Erickson, T. (2006). Stealing from physics: Modeling with mathematical functions in data-rich contexts. Teaching Mathematics 

and Its Applications: International Journal of the IMA, 25(1), 23–32. http://doi.org/10.1093/teamat/hri025
Greca, I. M., & Moreira, M. A. (2002). Mental, physical and mathematical models in the teaching and learning of physics. Science 

Education, 86(1), 106–121. http://doi.org/10.1002/sce.10013
Haverty, L. A., Koedinger, K. R., Klahr, D., & Alibali, M. W. (2000). Solving inductive reasoning problems in mathematics: Not-so-

trivial pursuit. Cognitive Science, 24(2), 249–298. http://doi.org/10.1016/S0364-0213(00)00019-7
Hestenes, D. (1992). Modeling games in the Newtonian world. American Journal of Physics,  60(8), 732–748. 

http://doi.org/10.1119/1.17080
Hochberg, K., Becker, S., Louis, M., Klein, P., & Kuhn, J. (2020). Using smartphones as experimental tools — a follow-up: Cognitive 

effects by video analysis and reduction of cognitive load by multiple representations. Journal of Science Education and 
Technology, 29, 303–317. https://doi.org/10.1007/s10956-020-09816-w

Hsu, Y. S., & Wu, P. H. (2016). Development and evaluation of technology-infused learning environments in Taiwan. In M. H. Chiu (Ed.), 
Science education research and practices in Taiwan (pp. 211–232). Springer. http://doi.org/10.1007/978-981-287-472-6_11

Ibrahim, B., & Rebello, N. S. (2013). Role of mental representations in problem solving: Students’ approaches to nondirected 
tasks. Physical Review Special Topics-Physics Education Research, 9, 020106. http://doi.org/10.1103/PhysRevSTPER.9.020106

Johnson-Laird, P. N. (1983). Mental models. Cambridge, MA: Harvard University Press.
Kohnle, A., & Passante, G. (2017). Characterizing representational learning: A combined simulation and tutorial on perturbation 

theory. Physical Review Physics Education Research, 13, Article 020131. http://doi.org/10.1103/PhysRevPhysEducRes.13.020131
Kozma, R. (2003). The material features of multiple representations and their cognitive and social affordances for science 

understanding. Learning and Instruction, 13(2), 205–226. http://doi.org/10.1016/S0959-4752(02)00021-X
Kozma, R., & Russell, J. (2005). Students becoming chemists: Developing representational competence. In J. K. Gilbert (Ed.), 

Visualization in science education (pp. 121–146). Springer. 
Liu, C. Y., Wu, C. J., Wong, W. K., Lien, Y. W., & Chao, T. K. (2017). Scientific modeling with mobile devices in high school physics 

labs. Computers & Education, 105, 44−56. https://doi.org/10.1016/j.compedu.2016.11.004 
Moyer-Packenham, P. S., & Bolyard, J. J. (2016). Revisiting the definition of a virtual manipulative. In P. S. Moyer-Packenham (Ed.), 

International perspectives on teaching and learning mathematics with virtual manipulatives (pp. 3–23). Springer.
Namdar, B., & Shen, J. (2015). Modeling-oriented assessment in k-12 science education: A synthesis of research from 1980 to 2013 and 

new directions. International Journal of Science Education, 37(7), 993–1023. http://doi.org/10.1080/09500693.2015.1012185
National Research Council. (2012). A framework for k-12 science education: Practices, crosscutting concepts, and core ideas. The 

National Academies Press. 
Nicolaou, C. T., & Constantinou, C. P. (2014). Assessment of the modeling competence: A systematic review and synthesis of 

empirical research. Educational Research Review, 13(3), 52–73. http://doi.org/10.1016/j.edurev.2014.10.001

https://doi.org/10.33225/jbse/22.21.495

A TOOL OF TECHNOLOGY-BASED LABORATORY ENABLED STUDENTS TO PRECISELY 
DESCRIBE SCIENTIFIC PHENOMENA

(pp. 495-512)



510

Journal of Baltic Science Education, Vol. 21, No. 3, 2022

ISSN 1648–3898     /Print/

ISSN 2538–7138 /Online/

Reisslein, J., Seeling, P., & Reisslein, M. (2005). Computer-based instruction on multimedia networking fundamentals: Equational 
versus graphical representation. IEEE Transactions on Education, 48(3), 438–447. http://doi.org/10.1109/TE.2005.849744

Sevinc, S., & Lesh, R. (2018). Training mathematics teachers for  realistic math problems: A  case of  modeling-based teacher 
education courses. ZDM Mathematics Education, 50, 301–314. http://doi.org/10.1007/s11858-017-0898-9

Silvia, P. J., Beaty, R. E., & Nusbaum, E. C. (2013). Verbal fluency and creativity: General and specific contributions of broad retrieval 
ability (Gr) factors to divergent thinking. Intelligence, 41, 328–340. http://doi.org/10.1016/j.intell.2013.05.004

Wang, J. Y., Wu, H. K., & Hsu, Y. S. (2017). Using mobile applications for learning: Effects of simulation design, visual-motor 
integration, and spatial ability on high school students’ conceptual understanding. Computers in Human Behavior, 66, 
103−113. http://doi.org/10.1016/j.chb.2016.09.032

Zwickl, B. M., Hu, D., Finkelstein, N., & Lewandowski, H. J. (2015). Model-based reasoning in the physics laboratory: 
Framework and initial results. Physical Review Special Topics-Physics Education Research,  11(2), 020113. 
https://doi.org/10.1103/PhysRevSTPER.11.020113 

Appendix A.  Worksheet of the formal task
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Appendix B.  Finding an ideal formula in InduLab 
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