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Abstract

Objective: This research paper presents the study and simulation of a four-bar mechanism, as well as the implementation
of natural coordinates as an alternative and effective method for kinematic analysis.
Methodology: A general method for the optimal synthesis of mechanisms for lower-limb prostheses is developed by im-
plementing intelligent computing tools such as genetic algorithms, with the purpose of reducing study times.
Results: Through biomechanical march studies, dimensional characterization and motion parameters are obtained, such
as the CIR of the knee joint, with which a prosthetic model was developed, whose structural mechanical behavior was
studied under use conditions by means of the finite element method.
Conclusions: It is evidenced that the prosthesis model fulfills the kinematic requirements and is structurally functional
under static and dynamic loads that exceed the nominal values of real loads and evidence safety factors above 7.
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Resumen

Objetivo: Este trabajo de investigación presenta el estudio y la simulación de un mecanismo de cuatro barras, así como la
implementación de las coordenadas naturales como método alternativo y efectivo para el análisis cinemático.
Metodología: Se desarrolla un método general para la síntesis optima de mecanismos para prótesis de miembro inferior
mediante la implementación de herramientas de computación inteligente como los algoritmos genéticos, con el fin de re-
ducir los tiempos de estudio.
Resultados: Mediante estudios biomecánicos de la marcha, se obtuvieron la caracterización dimensional y parámetros de
movimiento como el CIR de la articulación de la rodilla, con lo cual se desarrolló un modelo protésico, cuyo comporta-
miento mecánico estructural se estudió en condiciones de uso mediante el método de elementos finitos.
Conclusiones: Se evidencia que el modelo de la prótesis cumple con los requisitos cinemáticos y es estructuralmente fun-
cional bajo cargas estáticas y dinámicas que superan los valores nominales de carga real y evidencian factores de seguridad
superiores a 7.
Financiamiento: Universidad de Pamplona
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INTRODUCTION

Transfemoral amputation in Colombia is a problem caused mainly by work or traffic accidents,

diseases, and war (Cárdenas et al., 2016, Luengas & Penagos-Marcelo, 2017, Parkin, 2016). Regard-

less of the cause, unilateral lower limb amputation is classified as transfemoral (above the knee) and

transtibial (below the knee) according to the amputation height (Edelstein & Moroz, 2011). The loss of

a limb restricts the functionality and natural capacity of the human body to interact with its environ-

ment, but the amputation of a lower limb severely impairs gait, which hinders locomotion and the

development of people’s daily activities (Amador et al., 2011, Ocampo et al., 2010). With amputation,

not only are the body segments and joints lost, but also years of training, the parameters that define

a person’s walking style, and, most importantly, the ability to move freely at different speeds (Martí-

nez, 2013). Therefore, it is necessary to implement mechanical elements or mechanisms that replicate

movements and can replace an affected part of the human body. It is within this context that the use

of the mechanisms provides a broad solution. Polycentric mechanisms provide researchers with ver-

satility in applications that require monitoring defined trajectories, such as those generated during

the walking cycle. One of the main challenges in the application of mechanisms in biomechanics is to

define the kinematics and kinetics required, since the mechanism must have the degrees of freedom

(movement) and the original restrictions (resistance) of a human joint under normal operating condi-

tions. Specifically, the kinematic analysis of mechanisms is a mathematically complex problem, and,

in most cases, only approximate solutions can be obtained. Cases where the geometry of the mecha-

nism is not very complex have analytical solutions, but most of them do not (Avello, 2014, Romero-

Núñez & Flórez-Serrano, 2018). In this field, the exact location of the knee joint’s center of rotation

is of great importance for measuring its kinematics and kinetics. However, no study has yet been

able to accurately identify the center of rotation of the knee for several daily activities (Kyungsoo et
al., 2015, Titchenal et al., 2017). Therefore, this research includes the study, analysis, and simulation

of a four-bar mechanism, as well as the implementation of natural coordinates for analysis. To this

effect, the study was carried out in different stages. Initially, a biomechanical study of the lower limb

was carried out in order to determine its behavior. Afterwards, the natural coordinates method was

implemented, and the optimization process was carried out. The third stage consisted of simulating

the prosthesis by means of a virtual prototype.

EXPERIMENTATION AND MODELING

Natural coordinate modeling

Correct modeling of a mechanism must begin with a position analysis. Figure 1 shows the four-

bar mechanism to be used throughout the entire process until a model of a knee prosthesis is obtai-

ned.
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Figure 1. Four-bar mechanism modeling using natural coordinates

Source: Authors.

The figure illustrates the four-bar mechanism, where there is a defined natural coordinate vector q.

q = [xc yc xD yD xP yP ]
T (1)

Since there is only one degree of freedom in this mechanism, the vector of degrees of freedom is

written as ψ = [ϕ], which corresponds to an angular coordinate measured from the positive x axis.

Six constraint equations are needed, which are described below.

Φ(q, ϕ) =



(xC − xA)− a sinϕ
(yC − yA)− a cosϕ

(xD − xC)2 + (yD − yC)2 − b2

(xD − xB)2 + (yD − yB)2 − c2

(xp − xC)2 + (yp − yC)2 − d2

(xp − xD)2 + (yp − yD)2 − e2


(2)

The objective is to find an alternative solution to the problem regarding the position of the four-

bar mechanism, which is achieved by solving the equations mentioned above, whose problem is

reduced by finding the cut-off points between two circumferences, as shown in Figure 2.
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1
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Figure 2. Open and cross-configuration of the four-bar mechanism

Source: Romero-Núñez, 2016.

The resulting vector of natural coordinates is defined by q.

q =


C

D

P

 =



xC

yC

xD

yD

xD

yD


=



xA + a cosϕ

yA + a sinϕ

xC + l1
s (xB − xC) +

h1
s (yC − yB)

yC + l1
s (yB − yC) +

h1
s (xC − xB)

xC + l2
b (xD − xC) +

h2
b (yC − yD)

yC + l2
b (yD − yC) +

h2
b (xC − xD)


(3)

To determine the speeds and accelerations of the points of the aforementioned quadrilateral, a

substitution of the variables mentioned by Nikravesh, 2007 must be performed. To solve the system

of equations, one must have knowledge of the speed of the degrees of freedom (initial velocity).

From the equation, it is concluded that

Φqq̇ = −Φt (4)

where Φq is the Jacobian matrix of the restriction equations, q̇ is the vector of speeds to be found,

and Φt is the partial derivative of the constraint equations with respect to time.
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Biomechanical study

Biomechanical analysis allows identifying and defining the variables involved in the gait cycle,

such as the speed and acceleration of the different joints and the maximum and minimum angles

during the flexion and extension phases. The use of specialized software such as KINOVEA allows

observing processes that are imperceptible to the human eye, with which the behavior of the lower

limb can be studied (Cáceres-Alvarado & Palacios-Mendoza, 2017). KINOVEA is a free-to-use vi-

deo annotation tool designed for sport analysis. It features utilities to capture, slow down, compare,

annotate, and measure motion in videos.

Figure 3 shows the application of the software for the identification of the reference system used

in the study of the patient’s gait cycle.

Figure 3. Reference system for the running cycle

Source: Authors.

A starting reference system was created by means of a platform and a grid sailcloth to measu-

re body posture, with the purpose of obtaining more accurate data and establishing a speed of 1,8

km/h. A march study was then conducted on students of the University of Pamplona, during which

the different phases of the march were observed as well as changes in the position, velocities, and

accelerations of the knee joint through five cycles. The dynamic study of the lower limb began with

the determination of the movement ranges of the knee joint, in order to obtain the maximum angles

and critical points throughout the different phases (flexion and extension), in addition to the place-
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ment of markers at the points necessary for the analysis (greater trochanter, knee, and ankle joint), as

shown in Figure 4.

Figure 4. Anatomical points in the study of gait and knee extension and flexion angles

Source: Authors.

Variable identification

Once the markers were placed, the ankle and knee joints were followed in order to obtain the

Cartesian coordinates of the ankle joint. Tracking points were used in the balancing phase with the

joint as the reference center of the knee. Thanks to the graphic analysis of the videos of the ideal

gait cycle, a real approximation of the desired curves was shown to the polycentric mechanism so it

could replicate them. In Figure 5a, the ideal center of rotation of the knee is shown. This was done

by means of a thorough analysis, in which specific points within the stability zone were defined.

The knee changes its center of rotation when there is a variation in the angle of flexion. The points

generated by the path made by the ankle joint in the oscillation phase were located, as shown in

Figure 5b, thus obtaining the necessary Cartesian coordinates to generate the curves described by the

joints. The coordinates in the x and y axes were determined for the previously located points, and,

with some small variations in the data, the curves were made as smooth as possible.

Using the experimental data from the points of interest in the lower limb, the trajectory of the stu-

died point of the knee and the trajectory of the ankle in the swing phase of the gait were described, as

shown in Figure 6a. After determining these curves, the optimization of the mechanism was carried

out by means of a genetic algorithm, from which a mechanism that shows an approximation of the

CIR was obtained from a biomechanical analysis, as shown in Figure 6b.

The monitoring of the trajectories generated by the markers allowed identifying the velocity and

acceleration of these points (markers) during the five gait cycles studied. The maximum velocity va-

lue (Figure 7a) occurs at the beginning of the balancing stage, that is, when the foot is at the midpoint

of the oscillation movement. The negative acceleration values (Figure 7b) take place at the moment

of contact between the foot and the surface, whereas the maximum values appear when the ankle
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Figure 5. a) Knee CIR, b) ankle tracer

Source: Authors.

Figure 6. a) Curves described by the CIR of the knee and the ankle joint, b) optimal solution of the mechanism

after the optimization process

Source: Authors.

is lifted from the ground, that is, when the walking cycle begins. In addition, in Figure 7, the time

at which the joint is subjected to a constant load for a defined period of time (1 s) can be identified:

while the lowest part of the limb (heel) is in contact with the ground.

RESULTS

The results of the optimization process allowed obtaining a mechanism with specific characte-

ristics, for which the following link lengths were established: superior link (45,00 mm), inferior link

(62,25 mm), curve link (37,50 mm), straight link (60,00 mm). The mechanism proposed for structural
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Figure 7. Data of the knee (markers) for five gait cycles: a) velocity and b) acceleration

Source: Authors.

analysis follows the design guidelines presented by Castro-Valladares, 2012. The CAD process was

carried out with the help of the SOLIDWORKS 2018-2019 software while respecting the scaled mea-

sures. ANSYS was used for structural analysis, which works by modules depending on the system

under study.

Engineering data

For the simulation of the polycentric knee mechanism, an aluminum alloy was used for the links

and accessories, and 304L stainless steel was employed for the axles. The properties of each material

are shown in detail in Table 1.
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Table 1. Material properties

Property Aluminum alloy Stainless steel 304L

Density (kg/m3) 2770 7850

Young module (GPa) 71 190

Poisson radius 0,330 0,265

Creep effort (MPa) 280 205

Tensile stress (MPa) 310 510

Source: Authors.

Model

In this stage, the mechanical interface of ANSYS R16 was employed. Initially, the materials were

assigned: aluminum alloy and structural steel 304L. Subsequently, the type of contact was defined for

each of the faces with node intersections. This was done to approximate the behavior of the assembly

as close as possible to the real one. The mesh determination was the result of the metric convergence

between the elements. The optimal element size obtained from the simulation was 2 mm, given that,

with this configuration, there is a greater number of nodes and elements and the characteristics of

the mesh are better than in configurations with a larger average element size.

The next step was meshing the model. A mesh with a form function was configured in order to use

the mechanical-physical preference type, the Mechanical APDL solver in iterative mode to find the

solution, and tetrahedral elements with an average size of 2 mm, which was obtained from the mesh

study shown in Figure 8. The mesh converges to the solution in such a way that the computational

time is optimized. The meshing of the piece has defined characteristics to improve the quality of the

results, such as a fine relevance center, high smoothing, slow transition, and a fine expansion angle

center.

Load configuration

The piece was subjected to a standard gravity of 9,807 m/s2. Moreover, in the upper part, a uni-

formly distributed load of 2.000 N was placed on the upper face, and a position restriction was im-

posed on the mechanism, which did not allow movement in the other directions.

Solution

For the model analysis, the following relevant solutions were applied:

• Total deformation

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Volumen 26 Número 73 • Julio - Septiembre de 2022 • pp. 115-129

[124]



Optimal Synthesis of a Four-Bar Mechanism for the Knee Using Natural Coordinates for Kinematic Formulation
Flórez-Serrano., E.G Romero-Núñez., N.N y Flórez-Martínez., Y.A.

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

0 2 4 6 8 10 12

N
um

be
r 

of
 n

od
es

Average size (mm)

Figure 8. Mesh convergence

Source: Authors.

• Equivalent effort (Von Mises)

• Security factor

• Fatigue factor

The load was parameterized in order to obtain several design points and characterize the behavior

of the polycentric knee mechanism. To determine the fatigue behavior the load, the amplitude rate

was used, applying the load for a period of 1 s. Additionally, Goodman’s theory of failure was defined

according to studies conducted in this type of geometry (Amador et al., 2012).

Parameterization

The results of the parameterization of the load are shown in Table 2. The data show an increase

in the values of maximum deformation and equivalent stress, as well as a decrease in the safety and

fatigue factors, as the applied load increased.

The results obtained at design point number 3 demonstrate an ability to withstand loads above

2.000 N. Additionally, the structure has a total mass of 1,018 kg.

Total deformation

This section presents the results of the simulation with respect to the total deformation produ-

ced in the prosthesis from a point load applied on its upper surface, which simulated two times the

weight exerted by an average person. Figure 9a shows the maximum value of the deformation ob-

tained in the simulation (0,13639 mm). The observed deformation under maximum load can lead to
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Table 2. Parameterization of the applied loads

Design

point

Nodal

force (N)

Maximum total

deformation (mm)

Maximum equivalent

effort (MPa)

Security

factor

Fatigue

factor

1 500 0,033979 8,6937 >15 >15

2 1000 0,068031 17,381 >15 7,5152

3 2000 0,135390 38,873 7,8052 3,6411

Source: Authors.

Figure 9. Model simulation results: a) total deformation and b) equivalent effort (Von Mises)

Source: Authors.

conclude that the elements are designed to work in the plastic zone of the materials, within which no

significant total deformation is evidenced.

Equivalent effort (Von Mises)

As can be concluded from the results obtained, this element is not damaged by applying a static

point load on its upper surface, which simulates a mass greater than 200 kg.

It is of great importance to highlight that the highest values are found in the upper and lower

supports, where elements with right angles are evidenced and the change in the cross-section is

abrupt. Another important parameter provided by this application is the security factor. These values

contribute to reducing the failure of the material due to overload. A static load security factor and
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a dynamic fatigue load factor corresponding to 7,8052 and 3,6411, respectively, were obtained from

the simulation. The maximum effort was approximately 35 MPa and located on the upper surface

(Figure 9b).

CONCLUSIONS

By studying the background of this type of work, it can be concluded that there is no established

method for determination and optimization that converges to the location of the center of rotation

of the knee. The use of natural coordinates should be considered as an efficient and concise method

because it implies simpler equations and therefore involves the use of a smaller number of angular

coordinates. According to the results obtained through the optimization process, an efficient method

for determining the lengths of the links was obtained since the CIR of the mechanism closely resem-

bled the CIR described by the knee joint, which was defined by the biomechanical analysis of the

videos. The curves generated after the optimization process closely resemble those observed in the

biomechanical analysis, which indicates that this method can be used in other studies that require the

use of polycentric mechanisms, since they generate defined trajectories. According to the results ob-

tained in the simulation, it was evidenced that the prosthesis model is structurally functional under

static and dynamic loads that exceed nominal real load values.
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