

Issue 4/2021

 163

POSSIBILITIES FOR DEVELOPING

AND IMPLEMENTING A MOBILE APPLICATION

FOR RECOGNIZING THE SHAPE

OF THE ENVIRONMENT, TEXT, AND READING QR

CODES USING THE ANDROID CAMERAX

FRAMEWORK AND THE MACHINE LEARNING KIT

Miljan PELEŠ1, Svetlana JEVREMOVIĆ1, Aleksandar SIMOVIĆ1,

Aleksandra HADŽIĆ1
1 Information Technology School, Cara Dušana 34, 11070 Belgrade,

Serbia, Emails: miljan4718@its.edu.rs;

svetlana.jervremovic@its.edu.rs; aleksandar.simovic@its.edu.rs;

aleksandra44820@its.edu.rs

How to cite: PELEŠ, M., JEVREMOVIĆ, S., SIMOVIĆ, A., & HADŽIĆ,

A. (2021). “Possibilities for Developing and Implementing a Mobile

Application for Recognizing the Shape of the Environment, Text, and Reading

QR Codes Using the Android Camerax Framework and the Machine Learning

KIT.” Annals of Spiru Haret University. Economic Series, 21(4), 163-179, doi:

https://doi.org/10.26458/2148

Abstract

The advancement and development of digital technologies have resulted in

the need to network various devices at the application level. Wireless

communication between devices via the Internet has opened a plethora of

possibilities for enhancing user capabilities. We are witnessing dizzying

changes in computer technology, and we can conclude that the device’s

purpose is no longer narrowly defined. The mobile phone is evolving into a

personal computer, innovative features are being added to today’s televisions,

and cameras can process and send photos. These are merely a few examples of

universal electronic devices. Of course, for the device to perform all these

functions, adequate hardware infrastructure integrated into the device itself is

required, as is the fundamental software component that connects user

Issue 4/2021

 164

operations and the components themselves - the operating system. This paper’s

operating system under consideration is the Android operating system, which

is currently the most popular operating system for smart devices.

Keywords: machine learning; Android; QR codes.

JEL Classification: O14

Introduction

The paper aims to analyze the possibilities of combining the Android CameraX

framework with the Machine Learning Kit to create and implement a mobile

application for recognizing the shape of the environment, text, and QR codes. To

fully describe the technology that will be used for this project, the concept of

machine learning (MLKit) and CameraX software must be introduced. The first

section, i.e., the second chapter of this paper, will cover the theory of the Android

operating system and a description of the functionalities and libraries used in the

project itself. The second section of the paper will cover a theoretical introduction

to machine learning (Machine Learning Kit), machine learning applications within

the Android operating system, and an explanation of all machine learning tools.

The third section will explain CameraX Framework support in Android systems

and introduce the understanding of the solution’s implementation. It discusses how

to use an Android device’s camera and explains how it works.

1. Android Applications and Operating System

Google’s Android is an open-source operating system based on the Linux

kernel. It is intended for various devices, ranging from mobile phones, where it is

most prevalent, to smartwatches, fitness devices, home appliances, and televisions.

This applicability on a wide range of devices is due to the Android operating

system’s ability to separate the hardware from its software. Android is based on the

direct manipulation of objects on the screen through touch inputs, as evidenced by

the appearance of touch screen mobile phones. This chapter will provide a brief

overview of Android’s history, the structure of an Android application, the

operating system’s architecture, and system applications. Finally, a brief overview

of the libraries used in this project will be provided, followed by a more detailed

explanation in Chapters Four and Five.

Issue 4/2021

 165

Using the language, you can create applications for the Android platform in a

variety of ways: C/C++, Java/XML, Basin/XML and HTML5.

When the C/C++ programming languages are used for application development,

we refer to them as “native applications” (native applications). These are the most

fundamental applications. To bring this up to speed, consider the software stack

architecture. The software stack is divided into three basic levels:

• HAL (Hardware Abstraction Layer)

• PAL (Platform Abstraction Layer)

• Application Layer (AL)

Native applications run on the platform layer or the layer between the PAL and

AL, known as middleware, and serve to translate a user application into a machine-

readable language. This approach is required when creating the performance or

managing the resources so that only a small number of developers deal with this

method of developing applications.

The most common type of Android application is written in the Java / XML or

Kotlin / XML language, and it is programmed on the application layer of the

software stack. Java is a virtual machine-required language, and Android employs

the Android Runtime (ART) virtual machine for this purpose. This virtual machine

has been in use since the Android operating system’s version 5.0 (Lollipop)

replaced the Dalvik virtual machine. The Dalvik virtual machine does not accept

standard Java class files and instead uses its format: Dalvik Executable (DEX). In

contrast to standard Java applications, which contain multiple class files, DEX

consolidates all class files into a single. dex file. The main distinction between the

ART virtual machine and the Dalvik VM is that ART translates a substantial

portion of the executable byte code into machine native language during

installation, so restarting the application does not necessitate a complete translation

of the applications.dex executable byte code into machine language. ML

(Extensible Markup Language) is used to create resource files as well as files that

contain some functional data and contracts within the application.

The Android platform is made up of a variety of components that can be divided

into six categories:

• Linux kernel

• HAL - A hardware abstraction layer

• Native Libraries (source libraries)

• Android Runtime (executable environment)

• Java API framework

Issue 4/2021

 166

This layered structure is what sets the Android operating system apart. This

structure implies that the operating system comprises several layers that build on

top of one another. Each layer has specific functions described through its interface

to the higher layer; more specifically, each layer implements the higher layer’s

coupling.

2. Technology Used for Model Development

When it is discussed about the programming language for developing Android

applications on which this paper is based, it is referred to the Java programming

language, which is used to write the source code. It is written in text files with

the.java extension, compiled and translated into byte code, then executed using the

previously mentioned virtual machine. The difference between Android and regular

Java applications is that ART virtual machines do not read traditional bytecode but

instead require compiled binary code in the DEX format. .jar Java archives contain

both classic.java and compiled. class files. The Android executable environment

does not recognize Java archives but bundles all files from a single application in a

particular format known as an Android Application Package (APK) file with the

extension.

A Java Development Kit (JDK) must be installed on the computer for an

Android application to be successfully created. Following that, the Java source

code must be translated into a form understandable by ART, which necessitates

using a special compiler. Other tools, such as linkers, debuggers, and libraries with

built-in functions, are required to run the code. All these components are bundled

together under the banner of the Android Software Development Kit (SDK), which

consists of the following units: SDK Platform, SDK Tools, Sample Apps,

Documentation and Android Support.

Following these prerequisites comes the Android platform’s ultimate

development environment, an Android Studio application.

Android Studio is an integrated development environment that manages the

complexities of developing Android applications. It is built on the IntelliJ IDEA

development platform. Android Studio makes it simple to test, debug, and, most

importantly, build applications. It does all the work of compiling code into DEX

binary format and connecting the code to the JDK and Android API libraries. It

includes predefined functions and special libraries for developing Android apps for

a variety of devices. It is distinguished by a detailed overview of the possibilities

for interaction with the developer, a presentation of the application’s structure, and

Issue 4/2021

 167

a comprehensive tool for testing applications. It supports the entire application

development process, from the design of the user interface to the software solution

and the ability to oversee databases. Android Studio is now regarded as one of the

most comprehensive software environments for developing user applications.

This project will use the most recent version of the environment, Android

Studio Arctic Fox 2020.3.1, as illustrated in Figure 1.

Fig. 1. Android Studio Development Framework

3. Machine Learning

At the outset, it will be explained what machine learning is, how it works, and

what applications it has. Machine Learning (ML) is a branch of statistics and

computer science that enables a computer to learn how to perform a specific task

without being pre-programmed.

Machine learning is based on the idea that generic algorithms can show

something interesting about a set of data without the need to write custom code for

the problem. Rather than writing code, data is fed into the generic algorithm,

generating its logic based on the data.

Issue 4/2021

 168

The classification algorithm, for example, is one type of such algorithm. It can

store data in various groups. Without changing a single line of code, the same

classification algorithm used to recognize handwritten numbers could be used to

classify emails as “spam” or “not spam.” The algorithm is the same, but different

training data are fed into it, resulting in different classification logic.

The machine learning algorithm is a black box, creating its logic based on data.

Many of these types of classification algorithms are covered under the umbrella

term “machine learning.” Machine learning is divided into two categories:

supervised learning and unsupervised learning. The main distinction is whether the

samples are labelled, whether the computer is told which (for example) images

contain the terms we want to recognize or whether we let it try to understand the

structure of the input.

Machine learning has a wide range of applications in a variety of industries.

• Text categorization based on topic, expressed feelings and/or attitudes, and the

like

• Text machine translation Understanding has spoken language

• Image face recognition

• Segmenting the market

• Observing the use of various applications

• Autonomous vehicles (self-driving cars, for example) and many more.

ML Kit is a mobile SDK that enables Google’s machine learning tool within

Android applications. Google’s machine learning tool is free, giving developers

maximum flexibility in its application.

The ML Kit API is compatible with all devices with an API level greater than

sixteen, specifically all Android devices running Android version 4.1 or higher.

This range enables Google machine learning tools to be used on 99.8% of current

devices, effectively covering the entire market.

The ML Kit comprises ten completed APIs that allow you to work with various

areas of machine learning. This paper will go over the following APIs: Recognition

of text, Face recognition, Detection of body position, Image recognition for selfies,

Scannable barcodes, Image tagging, Detecting and tracking objects and Text

recognition in digital form.

Android applications that read data encoded in standard bar code formats can be

easily created by using the bar code scanning API. Scanning bar codes is done on

the user’s device and does not require an internet connection.

Issue 4/2021

 169

Bar codes are a quick and effortless way to transfer data from the real world to a
mobile application. For example, a 2D format such as a QR code, contact
information, or Wi-Fi data can be encoded. When the user scans the bar code, the
ML Kit automatically processes the scanned data, allowing the application being
developed to provide answers intelligently.

The following reading formats are supported: Codabar, Code 39, Code 93, Code
128, EAN-8, EAN-13, ITF, UPC-A, UPC-E, Aztec, Data Matrix, PDF417 and QR
Code.

The barcode scanning API supports scanning all barcode formats simultaneously
without specifying which format is required. Marking a specific format, on the other
hand, speeds up the scanning process. Figure 2 depicts a processing example.

The following barcode formats are not supported:
• 1D bar codes with only one character ITF bar codes with fewer than six

characters
• FNC2, FNC3, or FNC4 bar code formats
• In ECI mode, QR codes are generated

Fig. 2. Example of generation

4. Camerax Framework

CameraX Framework is a collection of libraries designed to make working with

Android devices’ cameras easier. Developing applications that use a camera has

always been demanding, but these applications are also the most dynamic on the

user side. CameraX allows us to use the API that runs on most Android devices,

with background support up to Android 5.0. (API Level 21).

Issue 4/2021

 170

CameraX extends the capabilities of the old Camera2 API, which has been

updated to collaborate with the Android camera. Prior to the Camera2 API, the

original Camera API was used, which is now deprecated and replaced by the

Camera2 API, which is still in use.

CameraX makes all functionalities easily accessible and allows for their

implementation in a small number of lines of code. In addition, the old API’s

compatibility issue with older generation devices has been resolved.

In the following ways, this framework improves the developer experience:

1. Simple to use - CameraX has introduced a new feature in Android called use

cases, which allows developers to focus on the tasks at hand rather than

configuring the device. There are two fundamental applications:

a. Preview - This function displays the image on the screen (camera view)

b. Image Analysis - Gain access to the processing of individual camera frames

and send them to custom algorithms. The ML Kit will be used in the upcoming

Android application.

c. Image Capture - Maintains high-quality images.

These use cases are compatible with all Android devices running version 5.0 or

higher.
2. Device consistency - Managing the consistency of camera behaviour in an

app is a challenging task. Numerous functionalities must be considered, including
aspect ratio, orientation, rotation, image preview size, and high-resolution image
size. CameraX makes it simple to work with all the cameras, as mentioned earlier
behaviours.

3. New camera experience - CameraX includes an optional add-on called
“Extensions,” which gives you access to the same features and capabilities as the
built-in camera app on a specific Android device. In other words, devices with
HDR, Night, Portrait, Beauty, and other camera modes can be used with the
CameraX API

4.1 Architecture
The architecture of the CameraX Framework will be described in detail below,

including its structure, how to work with the API, how to use the lifecycle, and
how to combine use cases.

Developers use CameraX to access the device’s camera via a “use case.”
Currently, the following use cases are available:

• Preview - Uses the PreviewView class to display the image on the screen
(camera view).

Issue 4/2021

 171

• Image Analysis - Gain access to the processing of individual camera frames
and send them to custom algorithms such as ML Kit.

• Image Capture - Maintains high-quality images.
Usage scenarios can be combined. For example, an application can use the

Preview case to show a user an image that the camera sees, the Image Analysis
case to determine if people in the picture are laughing, and the Image Capture case
to take a picture all simultaneously time.

A few things must be specified when working with the CameraX library:
• Use case with the necessary configuration
• How to manage feedback
• Camera execution flow, such as when to activate the camera and when to

capture and process data
The set () method is used to configure the usage case, followed by the build ()

method. Each use case has its API, such as the takePicture () method in the “Image
Capture” use case.

CameraX uses life cycles to determine when a camera should open, when an
image capture session should be started, and when to steal to interrupt and shut
down camera execution.

When working with an Android camera, the CAMERA permission must be
added to the application. Except for devices running Android version 10.0 and
higher, WRITE_EXTERNAL_STORAGE is required to save images to files. During
application execution, permissions must be requested from the user (requesting
runtime permissions).

CameraX must meet the following minimum requirements to run on the device:
Level 21 of the Android API
• FragmentActivity or AppCompatActivity is required for life cycle activities in

Android Architecture Components 1.1.1.
CameraX must be included in the build.gradle files to be used as part of an

Android project.
The following line of code must be added to the project’s build.gradle file:

Fig. 3. Code added to the project’s build.gradle file

Issue 4/2021

 172

The following code must be inserted into the “Android” block:

Fig. 4. Code inserted into the „Android” block

Each module that is used must be added to the application build.gradle file:

Fig. 5. Each module that is added to the application build

4.2 Configuration
Each use case must be configured to control various aspects of the use case’s

operations. For example, in the “Image Capture” use case, you can change the
aspect ratio and the flash mode.

CameraX automatically configures configuration parameters based on the
device on which the application is running. For example, if no resolution has been

Issue 4/2021

 173

specified manually previously, or if the resolution defined by the developer is
unsupported, CameraX will automatically determine which resolution is best to
use. The library provides all these features, removing the developer’s need to write
custom code for each device.

4.3 Preview use case
When adding a camera preview to an application, the PreviewView class, a

View that can be cut, scaled, or rotated depending on the screen on which it is
displayed, should be used.

4.4 Image analysis use case
The “Image Analysis” use case (case for image analysis) provides the

application with a processor image that is used to process the image (e.g., in
combination with the ML Kit). The application performs image analysis on each
frame that the Preview use case displays.

Images are processed in such a way that they are sent to the executor, where
image analysis begins.

The example code in Figures 6 and 7 demonstrates how to implement image
analysis as well as how to connect the use cases for image analysis and camera
display with the camera life cycle.

Image analysis can be performed in two modes [14]:
1. Mode of blocking
2. Mode of non-blocking
Calling the setBackgroundStrategy () method and passing the

STRATEGY_BLOCK_PRODUCER parameter activates the lock mode. The image
processor receives camera frames in sequential order in this mode. This means that
if the analyze () method takes longer than the latency of one frame in the current
array of frames, the frames may be out of date because new frames are not
forwarded for processing until the method returns a return value.

Calling the setBackgroundStrategy () method and passing the
STRATEGY_KEEP_ONLY_LATEST parameter activates the non-blocking mode. The
image processor receives the last available frame that the camera recorded when the
analyze () method was called in this mode. Some frames may be ignored if the method
lasts longer than the latency of a single frame in the current sequence of frames.

It is necessary to call the image before returning a value from the analyze ()
method.

To avoid memory filling, use the close () method.
CameraX produces images in the YUV 420 888 format.

Issue 4/2021

 174

4.5. Image capture use case
The image use case was created to take high quality and high-resolution images.

There are two ways to invoke the image capture method:
• takePicture (Executor, OnImageCapturedCallback) - this method saves the

downloaded image to the memory buffer
• takePicture (OutputFileOptions, Executor, OnImageSavedCallback) - this

method saves the downloaded image in the forwarded file location
 Basic image download functionalities are available for use as part of the case for

downloading images. For the best image optimization, you need to set the
ImageCapture.CaptureMode parameter to CAPTURE_MODE_MINIMIZE_LATENCY,
while for the best image quality, you need to set it to
CAPTURE_MODE_MAXIMIZE_QUALITY.

The following code shows an example of how to configure an image download
application:

Fig. 6. Configuring an image download application

After configuring the camera, the following code generates an image in

response to a user action (in this case, a onClick () action):

Fig. 7. action onClick()

Issue 4/2021

 175

5. Practical Application of the Developed Model

The designed and implemented model for recognizing objects, text, barcodes

and faces with the results of successful reading is shown in Figure 8.

Fig. 8. Execution of key functionalities of the developed model (from left to right:

Object recognition; Text recognition; Barcode recognition; Face recognition)

Given the complexity of the realized model, the description of the logic of the

realized functionalities will be presented with selected elements of importance. The

logic of the application is defined by the AndroidManifest.xml file, which serves to

describe the basic information related to the application itself, related to the

Android operating system and Google Play. It also defines the permissions that the

application uses and registers all external and internal services. The manifest file

also serves to register all the activities used in the application, and this is shown

below.

Issue 4/2021

 176

LauncherActivity contains a nested tag <intent-filter> in which it is defined that

LauncherActivity is the entry point of the application, i.e. when the application is

launched, this activity will be the first to be displayed. LauncherActivity has one

basic function - starting the animation and, after the successful completion of the

animation, starting the MainActivity activity. Animations are defined as special

XML files located in the anim resource folder. In the onCreate () method of the

activity that is called when the activity is created, the animation itself is started, as

well as all the necessary variables are initialized. The following is the starting code

of the LauncherActivity java class.

Issue 4/2021

 177

The demanding logic of the realized model is the logic of reading and

processing itself frames from the camera. Each activity that works with the camera

is defined separately, and each analyzes the image in its own way. The logics of all

activities that work with the camera are very similar so that a characteristic part of

the logic for scanning bar codes will be shown, as well as the differences found in

other activities.

All parameters used for activities are defined as class fields BarcodeActivity.

Objects scanner_view, imagine, flash and last_read after initializations in the

onCreate () method point to equivalent View elements within the

activity_barcode.xml file. Variables soundManager, foundBarcode, capturedBitmap,

DateRead, hasFlash and cameraRunning are used for tracking and maintaining the

various conditions required during the execution of activities. Finally, the variables

camera, previewView, cameraProviderFuture, and cameraProvider serve to work

with the camera. The following are the declarations of the basic variables as well as

the onCreate method.

Issue 4/2021

 178

Issue 4/2021

 179

Conclusion

This scientific paper addressed both theoretical and practical aspects of the

development and use of Android-based applications.

The theoretical section described how the Android software stack functions and

how the application layer communicates with the lower layers. It is demonstrated

how Android libraries function and how the Android Studio development

environment integrates all of this into a single project. The theoretical part of the

CameraX library and the ML Kit and its implementation are then explained.

In this paper’s practical section, an application was created to demonstrate how

the ML Kit works in conjunction with the CameraX library. Scanning bar codes,

detecting environmental objects, scanning digital text, scanning faces, creating a

database, storing data and images, and so on were all performed. This paper is a

functional application incorporating all the above features.

References
[1] Darwin I. F., (2017) Android Cookbook: Problems and Solutions for Android

Developers, Second Edition, O’Reilly Media, Inc.

[2] Griffiths, D. and Griffiths, D. (2017) Head First Android Development: A Brain-

Friendly Guide, Second Edition, O’Reilly Media, Inc.

[3] Talbot, J. and McLean J. (2014) Programiranje Android aplikacija, CET, Beograd.

[4] ITAcademy course - Android application development; PDF documents from the

lecture. (visited 22.08.2021.)

[5] https://appinventiv.com/blog/google-play-store-statistics/; The total number of apps in

the Google Play Store. (Accessed 23.08.2021.)

[6] https://source.android.com/; About the Android Open-Source project, as well as a

complete website for various data. (Accessed 23.08.2021.)

[7] https://developer.android.com/training/camerax; CameraX
 CameraX architecture,

configuration options, preview implementation, image analysis, image capture.

(Accessed 25.08.2021.)

[8] https://developers.google.com/ml-kit/guides; ML kit, text recognition, face recognition,

pose Detection, selfie segmentation, bar code scanning, image tagging, object detection

and tracking, digital ink recognition. (Accessed August 27, 2021.)

[9] https://developers.google.com/; Using Android documentation while creating a

complete application. . (Accessed August 27, 2021.)

Issue 4/2021

 180

