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Abstract:  
In the industry, ball bearings are the most widely used machine element. 
The ball materials may differ in various bearing applications. Wear of the 
ball and recess after a period of use is the most common cause of ball 
bearing failure. The present study aims to develop the artificial neural 
network model for assessing the wear of different ball bearing materials. A 
wear test method has been followed as suggested by the ASTM-G99 
standard. The pin on disc apparatus was selected to conduct numerous 
trials. L9 array was considered to design the experiments. The factors 
considered for this study were load, time, and sliding speed. Based on the 
results obtained, ANN code was proposed to evaluate wear using numerous 
test parameters. The results obtained from the proposed model are nearly 
similar to experimental results, which would be evidence for the correctness 
of the model. The proposed neural network model can be used in numerous 
applications with given parameters. 
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1. INTRODUCTION    

 
The rapid advancement in science and 

technology has affected the original design and 
construction of bearings with high accuracy and 
peak performance in the most demanding working 
conditions [1,2]. The bearing is a supporting tool 
for relative positioning and rotation when 
transferring a load among two machine elements 
[3]. Loads operating on the bearing might be axial, 
radial or angular depending on the bearing 
specified requirements. Although ball in addition 
to roller bearings seem to be simple mechanisms, 
their internal processes are somewhat complicated. 
Bearing service life is measured in terms of time or 
the total number of revolutions before failures in 
the outer ring, inner ring or rolling element (ball or 
roller) occurs as a result of rolling fatigue caused 
by repetitive stress. The rated life of a ball bearing 
is defined as the time it takes for an item of 
equipment or a machine element to fail under the 

manufacturer's specified conditions of usage [4]. 
Metals, polymers, ceramics, and composites are 
among the materials used in bearings. Chrome 
steel, often known as 52100 chrome alloy steel, is 
the most common material used to make balls for 
ball bearings. The rolling contact bearing material 
customarily used is AISI52100 alloy steel. It has 
elevated compressive strength, inexpensive, 
superior wear resistance, and has admirable 
corrosion resistance in oxidation and acidic 
environments; however, Silicon Nitride and 
Alumina Oxide materials are also used for higher 
load applications [5,6].  

Wear life is a critical property of deep groove 
ball bearings. Wear and Frictions are the critical 
processes especially in case of ball bearings. 
Bearing wear alters their form and surface 
condition, resulting in lubrication pollution. When 
lubrication pollution reaches a particular level, the 
bearing's lubrication efficacy deteriorates and 
finally disappears, leading the bearing to lose 
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rotational precision and even basic operating 
capabilities. Adhesive wear is the term for this 
occurrence. The defect diagnostic procedure is 
divided into two stages: the first comprises signal 
processing, which includes feature extraction in 
addition to noise reduction, and the second is 
signal classification, which is based on the features 
collected in the previous stage. Many times noise 
signals collected from ball bearings are considered 
as the indicators for knowing the bearing health.  

 
2. RELATED WORK 

 
Many researchers are now working on ball 

bearings in order to improve the usage of neural 
network predictors on bearing systems and to 
investigate the accurate neural model of a ball 
bearing system [7]. Some researchers used feed 
forward neural network to develop a model which 
can be employed practically. Further, Patel and 
Upadhyay predicted and analysed the bearing 
defects using artificial intelligence algorithms. 
Experiments on rolling bearings with localised 
flaws on various bearing components were carried 
out across a wide range of speeds, and vibration 
signals were recorded [8]. A critical overview on 
Failure Diagnosis of Element Bearings using 
Artificial Neural Networks has been presented. 
When a bearing fails, precise, dependable, and 
proactive diagnosis is essential to restoring it to 
service as soon as possible, efficiently, and cost-
effectively. Every factor of bearing performance 
must be regularly examined, diagnosed, and 
forecasted utilising the most advanced 
technologies available. [9]. The wear rate of 
nanocomposites with A356 aluminium alloy matrix 
and silicon carbide nanoparticle reinforcement was 
optimised by examining the primary influences: wt 
percent of reinforcement, normal load, and sliding 
speed. The primary goal of the carried out the 
experiment was to identify the most significant 
components or combinations of factors that have 
the greatest impact on wear rate, so that the wear 
rate could be optimised [10,11]. The compocasting 
technique effectively produced the hybrid 
aluminium composite, A356 aluminium alloy 
reinforced with SiC (10 wt. percent) and Gr (1 wt. 
percent and 5 wt. percent) particle [11]. 

Some studies investigated the dependability of 
ball bearings on the crankshafts of piston 
compressors. The findings of the study on the 
tested ball bearings reveal that the size of the axial 
clearance corresponds to the sizes and 
temperatures before the time of noticing that 

condition and is a good indication of the technical 
system's dependability [12]. Furthermore, 
Reliability model of bearing assembly on an 
agricultural cardan shaft was exhaustively studied 
by researchers with the major goal of the 
suggested and conducted research within the 
provided work was to diagnose bearing assembly 
at cardan shaft joints in order to define the overall 
reliability of shafts [13]. Few researchers focussed 
on tribological behaviour of A356/10SiC/3Gr 
hybrid composite in dry-sliding conditions [14]. 

Vibration, wear, and lubrication processes, fluid 
dynamics and lubricant rheology, material 
characteristics, and contact mechanics all have an 
impact on rolling bearing function [15]. Palmgren 
proposed the fatigue limit approach in 1924 [16]. 
Lundberg and Palmgren presented their rolling 
bearing life theory in the years 1947–1952, and it 
was used as the equation for the fundamental 
rating life of rolling bearings, L10, in millions of 
rotations. 

The lifespan of a rolling bearing is currently 
often evaluated using the modified rating life Lnm 
formula rather than the standard rating life: 

 
Lnm=a1 X aISO X L10                            (1) 

 
Where: 

 a1 - modification factor for reliability other than 
90 per cent and  

aISO - represents parameters such as load, speed, 
oil viscosity, material fatigue limit, and content of 
contamination particles in the oil.  

 
Although rated life detection methods are 

available; however, very few wear detection 
models are available in past literature, therefore, 
authors primary intention is to introduce artificial 
neural network model for wear investigation of 
ball bearing under pure sliding context. 

 

2.1 Taguchi Method 
 

Taguchi techniques begin with the idea that we 
are creating an engineering system, such as a 
machine that will perform a certain function or a 
manufacturing process that will produce a specific 
product or item. Taguchi techniques also recognise 
that there are factors that are under our control 
and ones that are not. These are referred to as 
Control Factors and Noise Factors, respectively, in 
Taguchi nomenclature.  

The Taguchi Method is applied in four steps: 
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1) Consider the critical quality attributes and 
design factors for the product/process; 

2) Design of experiments and conduct trials as 
per selected array; 

3) Analyze the findings to find the optimum 
solutions; 

4) Confirm your findings with a follow-up test 
under ideal conditions. 

 
The Taguchi design is used to investigate the 

effect of graphite reinforcement, load, and sliding 
speed with constant sliding distance on the 
tribological behaviour of A356 aluminium matrix 
composites reinforced with 10% silicon carbide 
and graphite [17].  

 

2.2 Artificial Neural Networks 
 

An ANN is composed of a network of connected 
units or nodes called artificial neurons, which are 
often modelled after biological neurons. Each link, 
like synapses in a biological brain, has the ability to 
send a signal to other neurons. Back propagation is 
a technique for adjusting connection weights to 
compensate for errors discovered during learning 
as shown in Fig. 1. The quantity of error is 
efficiently distributed among the connections. Back 
prop calculates the gradient (the derivative) of the 
cost function associated with a particular state in 
relation to the weights.  

 
Fig. 1. Back propogation model in ANN 

 

Reinforcement learning, supervised learning, 
and unsupervised learning are the three primary 
learning paradigms. A collection of paired inputs 
and intended outputs is used in supervised 
learning. The goal of learning is to create the 
desired outcome for each input. In unsupervised 
learning, input data is supplied together with the 
cost function, a function of the data X, and the 
output of the network. The goal of reinforcement 

learning is to weight the network (create a policy) 
to do actions that have the lowest long-term 
(expected cumulative) cost. Therefore, it was 
planned to use supervised learning neural network 
model for ball bearing wear analysis with three 
parameters such as time, sliding speed and load 
under sliding condition of various ball materials. 

  
3. EXPERIMENTAL WORK 
 

This test was carried out in accordance with 
ASTM G99. Metallographic abrasive sheets (C-400) 
and (C-600) were used to polish chrome steel discs. 
The diameter of the ball rotation under the sliding 
conditions on the disc was adjusted according to 
the sliding speed track diameter of a steel disc 
revolving at a given speed. This pre-rubbing 
technique guaranteed that the ball and disc 
surfaces made complete contact. Disc specimens 
had a surface roughness of 0.09–0.11 μm. All of 
the specimens were cleaned manually in petrol 
and completely dried. 

 

3.1  Design of Experiments 
 

“Sir R. A. Fisher proposed the approach of 
putting out the conditions (designs) of experiments 
involving several parameters in the 1920s” [18]. 
Factorial design of experiments is the name given 
to this procedure. For a given set of components, a 
complete factorial design discovers all feasible 
combinations. Because most industrial trials 
contain a huge number of variables, the findings of 
a complete factorial design may need a large 
number of experiments. The tests are carried out 
in accordance with the Taguchi technique. The 
appropriate L9 orthogonal array is chosen based 
on the number of parameters and levels. The trials 
were carried out using the typical orthogonal array. 
The purpose of selecting an L9 orthogonal array is 
to reduce number of trials and optimize the results. 
load, sliding speed and time were three 
parameters as well as three levels were employed 
for creating L9 array. 
 
3.2 Pin on Disc Apparatus 

 

The friction and wear tests are carried out in an 
environment at room temperature (280C) as shown 
in Fig. 2. The applied loads ranged from 10 N to 
120 N, while the rotation rates of the discs ranged 
from 7m/s to 14m/s. The period ranged from 30 to 
90 minutes, and the sliding distance was adjusted 
appropriately as shown in Fig. 3. During the wet 
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test, Servo engine oil (20W40) was applied to the 
rubbing surfaces using an oil lubrication system at 
a flow rate of 50 ml/min. During the wet test, it 
was ensured that lubrication would be continuous 
between the Pin and the counter face. 

 

 

 
 
 
 
 
 

 
 
 
 
 

Fig. 2. Wear test rig setup  

 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3. Track diameter selection  
 

3.3 Experimental trials 
 

All of the specimens were cleaned by hand in 
petrol and then dried properly. The applied 
weights ranged from 10 N to 120 N, with disc 
rotation speeds ranging from 7 to 14 m/s, duration 
ranging from 30 to 90 minutes, and sliding distance 
varying appropriately. During the wet test, Servo 
engine oil (20W40) is applied to the rubbing 
surfaces at a flow rate of 50 ml/min utilizing an oil 
lubrication system. L9 array was chosen as shown 
in Table 1 below for trials 

Table 1. Control Factors with different levels 

Control factors Units 
Level 

I 

Level 

II 

Level 

III 

(A) Load N 10 60 120 

(B) Sliding speed m/s 7 14 21 

(C) Time min 30 60 90 

After performing numerous trials, the coding 
for artificial neural network was employed to 
evaluate the correctness of trials with their results. 

 

3.4 Neural Network Model 
 

The code for given neural network has been 
implemented on neural network model by using 
Matlab 2020. The coding of the programming was 
achieved with multilayer consideration as shown in 
Fig. 4. The following ANN program was used for 
machine learning. 

 
I=[7 7 7 10 10 10 14 14 14;10 60 120 10 60 120 

10 60 120;30 60 90 60 90 30 90 30 60]; 
O=[0.001 0.005 0.018 0.002 0.009 0.016 0.003 

0.004 0.010]; 
net = newff(I,O,[1 1],{'tansig','purelin'});  
net=train(net,I,O); 
net.trainParam.epochs = 1; 
net.trainParam.goal = 0.01; 
a =sim(net,I); 
y1=sim(net,[7 7 7 10 10 10 14 14 14;10 60 120 

10 60 120 10 60 120;30 60 90 60 90 30 90 30 60]); 
plot(a,y1,'--rs'); 

 

 
Fig. 4. Neural Network Training  
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4. RESULTS AND DISCUSSION 
 

The following results were obtained from the 
dry and wet conditions trials are shown in Table 2 
and Table 3 respectively. 

Fig. 5 highlights the neural network training 
state for possible ANN model. Furthermore, 
results obtained from this test were nearly 
matching with the experimental results. 

Table 2. ANN Results for dry conditions 

Sr. 
No. 

Sliding 
speed 
(m/s) 

Load 
(N) 

Time 
(min) 

Chrome Steel Si3N4 Al2O3 

Wear of 
Ball by 

ANN (gm)  

Wear of 
Ball by 
Expt. 
(gm) 

Wear of 
Ball by 

ANN (gm) 

Wear of 
Ball by 
Expt. 
(gm) 

Wear of 
Ball by 
ANN 
(gm) 

Wear of 
Ball by 

Expt. (gm) 

1 7 10 30 0.044836 0.042 0.016435 0.001 0.002768
2 

0.002 

2 7 60 60 0.112694 0.112 0.019538 0.021 0.076430
5 

0.032 

3 7 120 90 0.151347 0.151 0.02875 0.031 0.089009
9 

0.089 

4 10 10 60 0.05425 0.067 0.017753 0.002 0.002768
1 

0.003 

5 10 60 90 0.127998 0.127 0.026999 0.030 0.072090
2 

0.072 

6 10 120 30 0.150532 0.157 0.023273 0.024 0.089009
9 

0.032 

7 14 10 90 0.071075 0.063 0.025276 0.003 0.002768
1 

0.004 

8 14 60 30 0.123332 0.123 0.020004 0.021 0.030333
3 

0.029 

9 14 120 60 0.152093 0.225 0.028874 0.030 0.089009
9 

0.096 

Table 3. ANN Results for wet conditions 

Sr. 
No. 

Sliding 
speed 
(m/s) 

Load 
(N) 

Time 
(min) 

Chrome Steel Si3N4 Al2O3 

Wear of 
Ball by 

ANN (gm)  

Wear of 
Ball by 
Expt. 
(gm) 

Wear of 
Ball by 

ANN (gm) 

Wear of 
Ball by 
Expt. 
(gm) 

Wear of 
Ball by 
ANN 
(gm) 

Wear of 
Ball by 
Expt. 
(gm) 

1 7 10 30 0.00216 0.007966
485 

0.008 0.000488 0.00100 0.001 

2 7 60 60 0.01771 0.009356
824 

0.009 0.002848 0.00200 0.002 

3 7 120 90 0.03547 0.037787
009 

0.038 0.005578 0.00600 0.006 

4 10 10 60 0.00981 0.008406
031 

0.009 0.000863 0.00124 0.001 

5 10 60 90 0.02536 0.024977
707 

0.027 0.003223 0.00492 0.003 

6 10 120 30 0.02962 0.028954
303 

0.029 0.004423 0.00400 0.004 

7 14 10 90 0.01851 0.019854
856 

0.018 0.001193 0.00338 0.001 

8 14 60 30 0.02056 0.018991
682 

0.019 0.002023 0.00200 0.002 

9 14 120 60 0.03832 0.007966
485 

0.040 0.004753 0.00600 0.005 

 
Fig. 5. Neural Network Training State 



A.A. Patil et al. / Applied Engineering Letters Vol.7, No.2, 81-88 (2022) 

 86 

After successful completion of experimental 
test and software analysis, the confirmation test 
had been carried out and results are as given in 
Table 4. 

 
Table 4. ANN Results for dry conditions 
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Chrome Steel 7 10 30 0.044 0.05802 

Aluminium 
Oxide 

10 60 90 0.072 0.07209 

Silicon Nitride 14 60 30 0.020 0.01998 

 
Confirmation tests have been completed 

satisfactorily in both dry and wet situations. The 
regression equation's prediction of wear for 
various materials has been verified to be in good 
agreement with experimental data. In terms of 
experimental outcomes, the Artificial Neural 
Network constructed in MATLAB is likewise doing 
well. Wear of balls is higher in dry circumstances, 
whereas wear of balls is lower in wet situations for 
the corresponding materials. Silicon Nitride 
material demonstrates good wear resistance under 
high load situations and may be best suited for 
aviation engines. 

The artificial neural network is one of the most 
extensively used computer models (ANN). The 
capacity to be employed as an arbitrary function 
approximation method that 'learns' from observed 
data is its biggest benefit. A neural model including 
recurrent neural network structure is given and 
assessed in this research. Real-time data is 
employed in artificial intelligence modelling.  
Previously, wear damage was examined by few 
researchers [19,20]. To represent the damage 
(wear) induced by dry fretting and to characterise 
the dynamical frictional behaviour of the contact, 
an approach based on artificial neural networks 
was adopted [21,22] whereas in our research the 
wear analysis was carried out. The results obtained 
were nearly matching with previous results with 
minor variation and that could be likely because of 
instruments error and material’s physical 
properties [3,23]. 

Ball bearing is the most important component 
of any machine. The failure of ball bearing can be 
studied with different approach [1,9,13,24] such as 
reliability analysis of ball bearing, wear depth 
analysis, failure diagnosis of ball bearing, wear 
analysis  and many more. In our case, the results 
show the predictable damage of ball bearing which 

may be useful while selecting bearing for specific 
applications. Wear scars of ball materials of ball 
bearings are presented Fig. 6. The Al2O3 balls 
shows less wear and less area of contact while 
compared with chrome steel. 

 
Fig. 6. Wear Scars of chrome steel ball and Al2O3 ball 

 
An additive also helps to reduce wear [25], 

however; it is not possible to maintain the flow of 
lubricant in real working situations. Ball material 
adhesion was discovered to be the predominant 
wear process in both uncoated and coated 
raceways [26] which is as similar to present 
research on Al2O3 ball materials. Previous 
investigations have shown that the addition of a 
chemically active ingredient in the oil can cause 
faster fatigue of rolling contacts, even when there 
is little sliding, however The addition most likely 
lowers fatigue life by increasing the number of 
possible surface nuclei for pits throughout its 
chemical (re)activity [25]. The impacts of angular 
misalignment variability on wear of angular 
contact ball bearing in the spindle system were 
studied. An increased spindle speed increases wear 
depth but reduces wear depth dispersion [24], 
therefore wear analysis were carried out in the 
present research which gives initial prediction of 
wear.  
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5. CONCLUSION   
 
The artificial neural network model for 

measuring the wear of different ball bearing 
materials was created in this study to analyse the 
wear of different ball bearing materials. A 
supervised learning neural network model was 
developed for ball bearing wear analysis with three 
parameters such as time, sliding speed and load 
under sliding condition of three ball material. 
Following a series of tests, the built artificial neural 
network was used to assess the accuracy of trials 
based on their outcomes. Confirmation tests have 
been completed satisfactorily in both dry and wet 
situations. Wear of balls is higher in dry 
circumstances, whereas wear of balls is lower in 
wet situations for the corresponding materials. 
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