
Received: October 11, 2022. Revised: December 14, 2022. 532

International Journal of Intelligent Engineering and Systems, Vol.16, No.1, 2023 DOI: 10.22266/ijies2023.0228.46

Design a Lightweight Authentication Encryption Based on Stream Cipher and

Chaotic Maps with Sponge Structure for Internet of Things Applications

Rana Saad Mohammed1*

1Department of Computer Science, Education college, Mustansiriyah University, Baghdad, Iraq

*Corresponding author’s Email: drranasaad@uomustansiriyah.edu.iq

Abstract: The design of a cipher system is essential and required with the development of the technology era. The internet

of things concept is modern technology requiring lightweight, secure algorithms to investigate the requirement of the light

device. Furthermore, IoT devices have limited resources (IoT devices should minimize battery life, limited memory size,

and response time). A stream cipher system is faster than a block cipher system and has an easy feature with hardware and

software implementation. This paper designs a lightweight authentication encryption algorithm based on stream cipher and

chaotic maps with sponge structure for IoT applications. Currently, the suggested approach uses text data for encryption

and authorization. Additionally, the suggested algorithm will be able to use it with image data in the future. Analysis results

of the proposed algorithm based on NIST randomness tests, execution time, memory space, and functional features. The

results are compared with other previous works which used sponge structure (e.g. Ascon, Elephant, ISAP, Photon-Beetle,

and Xoodyak, etc.). Randomness tests show that the proposed system is random and secure with investigate all the

functional features except the parallelization feature which will work it in the future. And also it has good fast speed and

less memory space.

Keywords: Lightweight, Authentication encryption, CAESAR competition, NIST-LW competition, Stream cipher,

Chaotic map, Linear feedback shift register (LFSR), NonLinear feedback shift register (NFSR), Sponge structure, Internet

of things (IoT).

1. Introduction

The increasing demand for an internet of things

(IoT) in e-commerce and e-government. This demand

requires the efficiency and security of cryptography

algorithms. Cryptography faces the challenges of

providing lightweight features in speed and memory

with higher security. Cryptography has divided into

stream cipher and block cipher. Stream cipher is easier

to implement in hardware and software than block

cipher, and it also features quick encryption and

decryption operations with little to no error propagation

[1, 2].

Different designs of stream ciphers depend on their

structure: LFSR, NFSR, FCSR, PANAMA, random

shuffled, ARX, sponge structural, block cipher based

stream cipher, block cipher work mode based stream

cipher, fully homomorphic encryption systems, and

provable secure.

A lightweight stream cipher design is required to be

applicable in IoT applications. And also, creating

authenticated encryption algorithms based on stream

cipher is an open problem [3].

Stream ciphers can be designed using permutations

or sponge structures. It allows for any amount of data

in the input and output and uses a broad random

permutation.

Sponge structure becomes excellent flexibility and

can provide authentication property without adding an

authentication module. However, there is a problem

Received: October 11, 2022. Revised: December 14, 2022. 533

International Journal of Intelligent Engineering and Systems, Vol.16, No.1, 2023 DOI: 10.22266/ijies2023.0228.46

with cryptanalysis studies about this structure, and it is

better to develop it in the future.

A group of international cryptologic researchers

created the competition for authenticated encryption:

Security, applicability, and robustness (CAESAR) to

promote the creation of authenticated encryption

systems. In January 2013, the competition was

announced, and the final portfolio was released in

February 2019.

The final portfolio announced by the CAESAR

committee are Ascon and ACORN as lightweight

applications.

In March 2021, the national institute of standards

and technology (NIST) announced ten finalists as

ASCON, elephant, GIFT-COFB, grain128-AEAD,

ISAP, photon-beetle, romulus, sparkle, TinyJambu,

and Xoodyak.

These finalists have different structure. This paper

focused on sponge structure only as ASCON, elephant,

ISAP, photon-beetle, and Xoodyak.

In [4] classified the above winner finalists and the

other different algorithms that submitted into the

CAESAR and the NIST-LW competitions to evaluate

the degree to which they provide the relevant functional

features and security-related characteristics.

The six functional features are parallelization,

online, inverse-free, single-pass, N. misuse resist, and

Lightweight functional features as described in the

following section 5 with Table 5 summarizes the results.

The results show these different design of sponge

structures have weakened for investigate all of the

required functional features. All of them used fixed

permutations [3].

This paper tries to investigate most of these features

by design a lightweight authentication encryption

algorithm based on stream and chaotic maps with

sponge structure.

The category of this paper can be as follows:

introduction in section 1, related work in section 2,

fundamental components of the proposed system in

section 3, proposed authentication encryption system in

section 4, the analysis result in section 5, and

conclusion in the last section.

2. Related works

There are different designs of sponge structure [4]

as SpongeWrap [5], APE [6], CBEAM [7], Sp-AELM

[8], Lsap [9], Beetle [10], Spookchain [11], T-sponge

[12], TETsponge [13], CTR[14], ISAP[15], Beetle [16],

Cyclist [17], Duplex [19, 20].

Each of them has advantages and drawbacks. The

work [4] shows these drawbacks depend on the

investigate of functional features. The functional

features are parallelization, online, inverse-free, single-

pass, N. misuse resist, and lightweight functional

features.

The design SpongeWrap [5] investigated single

pass functional feature only. APE [6] investigated N.

misuse resist and ligthwight functional features only.

CBEAM [7] investigated ligthwight functional feature

only. Sp-AELM [8] nvestigated Online, ligthwight, and

RUP security functional features only.

The design Lsap [9] not investigated any of

functional features. Beetle [10] investigated Inverse-

free, Single-pass and lightweight functional features

only. Spookchain [11] investigated Online, lightweight,

and BBB security functional features only.

The design T-sponge [12] not investigated any of

functional features. TETsponge [13] investigated

single-pass functional features only. CTR [14]

investigated Parallelizable, Inverse-free, and

Lightweight functional features only. ISAP [15]

investigated Inverse-free, single-pass, Lightweight, and

RUP Security functional features only.

The design Beetle [16] investigated Inverse-free,

single-pass, and Lightweight functional features only.

Cyclist [17, 18] investigated Inverse-free, single-pass,

Lightweight, and RUP Security functional features

only. Duplex [19] investigated Inverse-free functional

feature only.

The design duplex (ASCON) [20] investigated

Online, inverse-free, Single-pass, N. misuse resist, and

Lightweight functional features only.

There are two categories of attacks [21-25] on

Ascon: forgery and key recovery attacks. Key recovery

attacks concentrate on the initialization step, whereas

forgery attacks concentrate on the finalization step. The

other papers modified Ascon as in [26-29].

3. Fundamental components of the proposed

system

This paper describes the essential components of

the proposed system as follows:

3.1 Feedback shift register (FSR) [3]

Among the many parts of a stream cipher is the

feedback shift register (FSR). It is now separated into

linear feedback shift registers (LFSR) and nonlinear

feedback shift registers (NFSR). LFSR divides into bit-

oriented and word-oriented.

Received: October 11, 2022. Revised: December 14, 2022. 534

International Journal of Intelligent Engineering and Systems, Vol.16, No.1, 2023 DOI: 10.22266/ijies2023.0228.46

Programmers, mathematicians, engineers, and

other professionals all use the term finite state machine

(FSM) to refer to a mathematical model of any system

with a finite number of conditional states of existence.

It is an abstract machine that has a finite number of

states and can only ever be in one of them at once.

Additionally, the FSM has the ability to switch between

states in response to some inputs. The states, initial

state, and inputs of an FSM are listed.

In NFSR, a type of stream cipher takes NFSR as an

essential component. In order to offer security, it makes

use of both nonlinear feedback (polynomial) and

nonlinear output. FSM, nonlinear filter, or nonlinear

combiner are techniques used with chaos map and

LFSR to get nonlinear properties. And also, NFSR uses

a nonlinear function to get nonlinear properties.

This paper takes some chaotic functions that have

random and nonlinear properties.

3.2 Chaotic map

The study of chaotic systems, which have

unpredictable appearances and irregular behaviors, is a

subfield of mathematics. With sensitive beginning

conditions, ergodic and regulated parameters, and

irregular-like behavior similar to traditional crypto-

systems' characteristics, chaotic crypto-systems had

secured correspondences [30][31].

There are papers insert chaotic maps into cipher

system as in [32-38].

Arnold map can be as follows:

[
𝑥𝑛+1

𝑦𝑛+1
] = [

1 𝑎
𝑏 𝑎𝑏 + 1

] [
𝑥𝑛

𝑦𝑛
] 𝑚𝑜𝑑(𝑛) (1)

Where:

n=1,2, 3, …, N-1 (2)

𝑥𝑛, 𝑦𝑛: are the position of samples in the N×N matrix.

𝑥𝑛+1, 𝑦𝑛+1 is the transformed position after the cat map.

a, b: are the positive integers of control parameters.

Henon map can be represented as follows:

𝑥𝑛+1 = 1 + 𝑏𝑦𝑛 − 𝑎𝑥𝑛
2 (3)

𝑦𝑛+1 = 𝑥𝑛 (4)

It can be chaotic if a=1.4 and b=0.3.

While Standard map can be represented as

follows:

𝑥𝑛+1 = 𝑥𝑛 + 𝑘 𝑠𝑖𝑛 𝑦𝑛 𝑚𝑜𝑑 2 (5)

 𝑦𝑛+1 = 𝑦𝑛 + 𝑥𝑛+1 𝑚𝑜𝑑 2 (6)

Where [0,2π] is the range for 𝑥𝑛 and 𝑦𝑛. When the

parameter k has a value greater than or equal to 18.9 (k

≥18.9), this map is regarded as chaotic.

3.3 SPECK block cipher for initialization step [39]

Speck is a lightweight block cipher released by

national security agency (NSA) in June 3013. Speck

has performance implementation in hardware and

software. The operations of speck are Bitwise XOR (),

addition modulo 2n (⊞), and Left and Right Circular

Shifts, Sj and S-j, by j bits, respectively, are all

contained in one round of Speck.

The following algorithm of Speck cipher:

Algorithm 1: Speck cipher (SpeckAlgorithm1)

Definition:

n = word size (16, 24, 32, 48, or 64)

m = number of key words

T = number of round

if n = 16 then (, ) = (7,2)

 otherwise (, ) = (8,3)

x,y = plaintext words

l[m-2].. l[0],k[0] = key words

------------------ key expansion ------------------

for i = 0..T-2

l[i+m-1] = (k[i] ⊞ 𝑆−l[i])  i

k[i+1] = 𝑆 k[i]  l[i+m-1]

end for

------------------- encryption ---------------------

for i = 0..T-1

x = (𝑆−x ⊞ y)  k[i]

y = 𝑆y  x

end for

4. Proposed authenticated encryption based

stream cipher

The proposed design is using LFSR with FSM

using sponge structure and chaotic maps to recover the

problems reviewed in the previous section. For

example, forgery and key recovery attacks break the

Ascon by focusing on the initialization phase,

finalization phase, S-box, and permutation.

This section, we design an authentication

encryption system that enhances the initialization and

finalization phases and uses dynamic substitution and

permutation.

Received: October 11, 2022. Revised: December 14, 2022. 535

International Journal of Intelligent Engineering and Systems, Vol.16, No.1, 2023 DOI: 10.22266/ijies2023.0228.46

Fig. 1 shows the proposed authentication

encryption system based on a sponge structure. It

consists of four phases: The initialization, the

Association data, the Encryption, and the finalization.

Each phase constructs from the round function of speck

block cipher, LFSR, FSM, and random chaotic map.

While Fig. 2 shows the proposed initialization

phase and Fig. 3 shows the general proposed function f

of these phases. This function has three inputs and three

outputs. Each phase has different inputs and outputs but

the same function f.

The following figures and algorithms depict the

work of the proposed encryption authentication system

in detail.

4.1 Initialization phase

At first, get the key and initial vector (IV), each

with 128 bits. Then, apply the round function of a speck

cipher ten times. Each output of a round saves as a state

in LFSR. The outcomes of the initialization phase are:

Ioutput1=St, (7)

Ioutput2=St+5 the output (y) of StanardMap of

equation 6, (8)

Ioutput3=St+8 (9)

They are go to the next phase (Association data).

The LFSR feedback by Ioutput2 to update St+9 and

shifting the LFSR.

Algorithm 2: Initialization phase (InitAlgorithm2)

Input: Key 128 bit, IV 128 bit

Output: Ioutput1, Ioutput2, Ioutput3

Begin

For t=1 to 10

 S[t]=0

For r= 1 to 32

Round[r]=SpeckAlgorithm1(Key,IV)

For s= 23 to 32

S[s-22]=round[s]

Ioutput1=S[1]

Ioutput2=S[6]  StanardMap(y)

Ioutput3=S[9]

 For t= 1 to 9

 S[t]=S[t+1]

 S[10]= Ioutput2

End

4.2 Association data phase

In the second phase, get the three outputs of the

previous step (Ioutput1, Ioutput2, Ioutput3), each with

128 bits. Update Ioutput1 by XORing with 128 bits of

association data (Ai). Where 1<= i <= n. If length

A>128, then padding and split into blocks (n), each

block 128 bits. Then, apply the proposed function fi (n)

times. The outcomes of the Association data phase

(Aoutput1, Aoutput2, Aoutput3) go to the next phase

(Encryption) if i>n.

Algorithm 3: Associarion data (AssoAlgorithm3)

Input: A[1…n], Ioutput1, Ioutput2, Ioutput3

Output:Aoutput1[1…n],Aoutput2[1…n],

Aoutput3[1…n]

Begin

Aoutput1[1]= Ioutput1; Aoutput2[1]= Ioutput2;

Aoutput3[1]= Ioutput3;

For i=1 to n

Input1[i]= A[i]  Aoutput1[i]

Input2[i]= Aoutput2[i]

Input3[i]= Aoutput3[i]

FAlgorithm11(Input1[i],Input2[i],Input3[i],

Aoutput1[i+1], Aoutput2[i+1], Aoutput3[i+1])

End for

End

4.3 Encryption phase on the sender side

In the third phase, get the three outputs of the

previous step (Aoutput1, Aoutput2, Aoutput3), each

with 128 bits. Update Aoutput1 by XORing with 128

bits of plaintext (Pj). Where 1<= j <= m. If length

P>128, then padding and split into blocks (m), each

block 128 bits. Then, apply the proposed function fj (m)

times. The outcomes of the Encryption phase (Eoutput1,

Eoutput2, Eoutput3) go to the next phase (finalization)

if j>m.

Algorithm 4: Encryption phase (EncAlgorithm4)

Input: P[1…m], Aoutput1, Aoutput2, Aoutput3

Output: C[1…m], Eoutput1[1…n], Eoutput2[1…n],

Eoutput3[1…n]

Begin

Eoutput1[1]= Aoutput1; Eoutput2[1]= Aoutput2;

Eoutput3[1]= Aoutput3;

For j=1 to m

Input1[j]= P[j]  Eoutput1[j]

C[j]= Input1[j]

Input2[j]= Eoutput2[j]

Received: October 11, 2022. Revised: December 14, 2022. 536

International Journal of Intelligent Engineering and Systems, Vol.16, No.1, 2023 DOI: 10.22266/ijies2023.0228.46

Input3[j]= Eoutput3[j]

FAlgorithm11(Input1[j], Input2[j], Input3[j],

Eoutput1[j+1], Eoutput2[j+1], Eoutput3[j+1])

End for

End

4.4 Finalization phase on the sender side

In the fourth phase, get the three outputs of the

previous step (Eoutput1, Eoutput2, Eoutput3), each

with 128 bits. Get the first tag (T1) from Eoutput1.

Then, apply the proposed function f one time. The

outcome of the finalization phase is the second tag (T2)

by XORing the function outputs (Foutput1, Foutput2,

and Foutput3).

Algorithm 5: Finalization encryption phase

(FinEnAlgorithm5)

Input: Eoutput1, Eoutput2, Eoutput3

Output: T1, T2

Begin

Input1= Eoutput1

Input2= Eoutput2

Input3= Eoutput3

T1= Input1

FAlgorithm11(Input1, Input2, Input3, Foutput1,

Foutput2, Foutput3)

T2= Foutput1 Foutput2  Foutput3

End for

End

4.5 Decryption phase on the receiver side

On the receiver side, use the same IV/Key with the

first and second phases (Initialization and Association

data). The decryption phase gets the three outputs of the

previous step (Aoutput1, Aoutput2, Aoutput3), each

with 128 bits. Update Aoutput1 by XORing with 128

bits of ciphertext (Cj). Where 1<= j <= m. Then, apply

the proposed function fj (m) times. The outcomes of the

Decryption phase (Doutput1, Doutput2, Doutput3) go

to the next phase (finalization) if j>m.

Algorithm 6: Decryption phase (DecAlgorithm6)

Input: C[1…m], Aoutput1, Aoutput2, Aoutput3

Output: P[1…m], Doutput1[1…n],

Doutput2[1…n],Doutput3[1…n]

Begin

Doutput1[1]= Aoutput1; Doutput2[1]= Aoutput2;

Doutput3[1]= Aoutput3;

For j=1 to m

Input1[j]= C[j]  Doutput1[j]

Input2[j]= Doutput2[j]

Input3[j]= Doutput3[j]

FAlgorithm11(Input1[j], Input2[j], Input3[j],

Doutput1[j+1], Doutput2[j+1], Doutput3[j+1])

End for

End

4.6 Finalization phase on the receiver side

The fourth phase is the same as finalization on the

sender side but different in the inputs. It gets the three

outputs of the previous step (Doutput1, Doutput2,

Doutput3), each with 128 bits. Get the first tag (T1)

from Doutput1. Then, apply the proposed function f

one time. The outcome of the finalization phase on the

receiver side is the second tag (T2) by XORing the

function outputs (Foutput1, Foutput2, and Foutput3).

Algorithm7: Finalization decryption phase

(FinDeAlgorithm7)

Input: Doutput1, Doutput2, Doutput3

Output: T1*, T2*

Begin

Input1= Doutput1

Input2= Doutput2

Input3= Doutput3

T1*= Input1

FAlgorithm11(Input1, Input2, Input3, Foutput1,

Foutput2, Foutput3)

T2*= Foutput1 Foutput2  Foutput3

4.7 Finalization phase on the receiver side

The fourth phase is the same as finalization on the

sender side but different in the inputs. It gets the three

outputs of the previous step (Doutput1, Doutput2,

Doutput3), each with 128 bits. Get the first tag (T1)

from Doutput1. Then, apply the proposed function f

one time. The outcome of the finalization phase on the

receiver side is the second tag (T2) by XORing the

function outputs (Foutput1, Foutput2, and Foutput3).

Algorithm7: Finalization decryption phase

(FinDeAlgorithm7)

Input: Doutput1, Doutput2, Doutput3

Output: T1*, T2*

Begin

Input1= Doutput1

Input2= Doutput2

Input3= Doutput3

T1*= Input1

Received: October 11, 2022. Revised: December 14, 2022. 537

International Journal of Intelligent Engineering and Systems, Vol.16, No.1, 2023 DOI: 10.22266/ijies2023.0228.46

Figure. 1 Proposed an authentication encryption system based on a sponge structure

Figure. 2 The proposed initialization phase

FAlgorithm11(Input1, Input2, Input3, Foutput1,

Foutput2, Foutput3)

T2*= Foutput1 Foutput2  Foutput3

End for

End

Received: October 11, 2022. Revised: December 14, 2022. 538

International Journal of Intelligent Engineering and Systems, Vol.16, No.1, 2023 DOI: 10.22266/ijies2023.0228.46

Figure. 3 The generally proposed function f

4.8 Function f

The function f has three inputs (Input1, Input2,

Input3) in parallel lines. Arnold chaotic map (the output

(x) of Eq. (1)) permutes the first input (Input1) and

splits the result into two halves, each with 64 bits

(left64 and right64). Left64 uses a round shift to the

right (ROSR) by 8-bit. Then apply the addition modulo

264 ⊞ and XOR processes with the right-side results.

Right64 uses a round shift to the left (ROSL) by 3-bit.

Then apply the XOR process with the left-side result.

At last, concatenation left64 with right64 to get

output1_128.

The Input2 XOR with Input3 to get output2_128.

They are then applying the XOR between output2_128

and output1_128. Henon chaotic map (the output (x) of

Eq. (3)) substitutes the outcome for obtaining the first

output of function f (Output1).

To update NFSR, at first, apply round shift

output2_128 to the left (ROSL) by 1 bit. Then XOR the

outcome with St+2 and Arnold chaotic map (the output

(y) of Eq. (2)). And we are continuing to use XOR, the

result with St+6, and the Henon chaotic map (the output

(y) of Eq. (4)) as feedback to update NFSR.

The second and third outputs of a function f are

Output2=St, and Output3=St+8 as input for the

following function if A or P length n > 128 or for the

next phase where A or P length n =128.

Received: October 11, 2022. Revised: December 14, 2022. 539

International Journal of Intelligent Engineering and Systems, Vol.16, No.1, 2023 DOI: 10.22266/ijies2023.0228.46

Table 1. Randomness test NIST of 1st seven methods with proposed method

 T
es

t
N

a
m

e

P
er

m
u

ta
ti

o
n

[6
]

 S
P

N

[7
]

S
p

o
n

g
e

[8
]

S
p

o
n

g
e

[9
]

S
P

N
 [

1
0

]

T
E

T
sp

o
n

g
e

[1
1

]

T
h

e
p

ro
p

o
se

d

a
lg

o
ri

th
m

P
er

m
u

ta
ti

o
n

[5
]

Frequency 0.345 0.745 0.434 0.873 0.518 0.898 0.272 0.873

Frequency within a Block 0.415 0.752 0.782 0.370 0.764 0.342 0.165 0.598

Run 0.650 0.357 0.712 0.759 0.569 0.899 0.343 0.758

Longest Run of Ones in a

Block
0.557 0.347 0.294 0.334 0.288 0.499 0.163 0.639

Binary Matrix Rank 0.333 0.270 0.202 0.573 0.177 0.706 0.508 0.576

Discrete Fourier Transform 0.795 0.641 0.195 0.112 0.193 0.394 0.155 0.889

Non-Overlapping Template

Matching
0.761 0.919 0.293 0.954 0.953 0.119 0.793 0.843

Overlapping Template

Matching
0.001 0.192 0.888 0.253 0.197 0.952 0.794 0.793

Linear Complexity 0.151 0.548 0.809 0.926 0.767 0.323 0.957 0.766

Serial 0.267 0.899 0.088 0.489 0.296 0.434 0.642 0.861

Approximate Entropy 0.509 0.473 0.348 0.432 0.169 0.272 0.232 0.571

Cumulative Sums Forward 0.735 0.148 0.883 0.943 0.291 0.959 0.198 0.844

Cumulative Sums Reverse 0.678 0.486 0.735 0.337 0.966 0.481 0.594 0.844

Random Excursions 0.806 0.707 0.826 0.463 0.880 0.858 0.968 0.931

Random Excursions Variant 0.311 0.474 0.231 0.481 0.371 0.614 0.573 0.502

4.8.1. Definition of non-linear feedback shift register

(NFSR) in function f

NFSR consists of LFSR with FSM and chaotic

maps.

Definition of LFSR in f function

The 𝐹2128 elements are used by the LFSR in

function f. Ten 128-bit values, S1 through S10, make

up the initial state at time t = 1. With the following

recurrence, a new value is computed at each step:

FSM= FSMalgorithm8; (10)

st+10 = st+2 ⊕ (FSM<<<1) ⊕ ArnoldMap(y) (11)

st+10 = st+10 ⊕ (st+6 ⊕ HenonMap(y)), (12)

where t ≥ 1 and a shift in the register. For a

representation of the LFSR, see Fig. 3. The LFSR and

the following feedback polynomial are related:

π(X) = X10 + X8 + X4 + 1 ∈ 𝐹2128 [X] (13)

Received: October 11, 2022. Revised: December 14, 2022. 540

International Journal of Intelligent Engineering and Systems, Vol.16, No.1, 2023 DOI: 10.22266/ijies2023.0228.46

Table 2. Randomness test NIST of 2nd eight methods with proposed method

 T
es

t
N

a
m

e

S
A

L
E

 [
1

2
]

S
P

N
 [

1
3

]

S
p

o
n

g
en

t
[1

4
]

K
ec

ca
k

-p
 [

1
5

]

S
P

N
 [

1
6

]

X
o

o
d

o
o

 [
1

7
]

S
P

N
 [

1
9

]

A
sc

o
n

 [
2

0
]

T
h

e
p

ro
p

o
se

d

a
lg

o
ri

th
m

Frequency 0.300 0.247 0.982 0.712 0.188 0.670 0.565 0.377 0.873

Frequency within a

Block
0.379 0.217 0.178 0.671 0.104 0.485 0.557 0.234 0.598

Run 0.787 0.180 0.139 0.651 0.503 0.330 0.122 0.22 0.758

Longest Run of Ones in a

Block
0.264 0.534 0.336 0.174 0.572 0.100 0.395 0.349 0.639

Binary Matrix Rank 0.733 0.511 0.644 0.718 0.109 0.677 0.680 0.189 0.576

Discrete Fourier

Transform
0.564 0.681 0.880 0.856 0.369 0.618 0.293 0.245 0.889

Non-Overlapping

Template Matching
0.559 0.552 0.867 0.888 0.510 0.389 0.647 0.449 0.843

Overlapping Template

Matching
0.363 0.957 0.031 0.344 0.202 0.203 0.410 0.322 0.793

Linear Complexity 0.801 0.209 0.138 0.872 0.140 0.462 0.502 0.234 0.766

Serial 0.872 0.500 0.118 0.563 0.914 0.373 0.798 0.263 0.861

Approximate Entropy 0.112 0.405 0.553 0.356 0.422 0.483 0.492 0.37 0.571

Cumulative Sums

Forward
0.440 0.459 0.911 0.195 0.196 0.135 0.353 0.432 0.844

Cumulative Sums

Reverse
0.408 0.585 0.908 0.567 0.102 0.511 0.801 0.324 0.844

Random Excursions 0.705 0.545 0.253 0.236 0.424 0.594 0.233 0.558 0.931

Random Excursions

Variant
0.191 0.710 0.660 0.346 0.382 0.573 0.111 0.308 0.502

The sequence of 128-bit (st)t≥1 is periodic and has a

maximum period of (21280 − 1) since is a primitive

polynomial.

4.8.2. Definition of FSM in function f

The finite state machine (FSM) is a component with

two 128-bit registers, input2 and input3, to get 256 bits

of memory. The FSM receives two 128 bits from the

LFSR state as inputs at each step, changes the memory

bits, and outputs 128 bits. Following is the FSM

algorithm, where ⊞ is addition modulo 2128 :

Algorithm 8: FSM (FSMalgorithm8)

Input: Input2 and Input3 each with 128 bit;

Output: FSMoutput with length 128 bit.

Begin

Left128=ROSR(Input3,16);

Left128=Left128 ⊞ Input2;

Right128=ROSL(Input2,6);

FSMoutput= Right128  Left128;

Received: October 11, 2022. Revised: December 14, 2022. 541

International Journal of Intelligent Engineering and Systems, Vol.16, No.1, 2023 DOI: 10.22266/ijies2023.0228.46

End

4.8.3. Proposed permutation and substitution algorithms

in function f using chaotic maps

Algorithm 9: Permutation (PboxAlgorithm9)

Input: Input1 with length 128 bit.

Output: Input1P with length 128 bit.

Begin

1. Read Input1 as a vector with a length 128 bit.

2. Choose an initial value (x, y) as the secret key and

apply the Arnold map in Eq. (1) and Eq. (2).

3. Get the vector index from 1st output (128) values of

Arnold map (xi) from Eq. (1).

4. Permute the vector from step2 by ascending, which

sort by the index from step 3.

5. Get the permuted text values with length 128 as

P_Input1.

End

Algorithm 10: Substitution (SboxAlgorithm10)

Input: XOutput with length 128 bit.

Output: Output1 with length 128 bit.

Begin

1. choose an initial value (x, y) as a secret key and apply

the Henon map in Eq. (3) and Eq. (4).

2. Get the vector of S-box with values from 1st output

(128) values of Henon map (xi) from Eq. (3).

3. Read XOutput length 128 and get the value as the

index of vector S-box.

4. Find the substitute value from the S-box vector.

5. Get the substituted values of the text with length 128

as Output1.

End

Algorithm 11: Function f (FAlgorithm11)

FAlgorithm11(Input1, Input2, Input3, output1, output2,

output3)

Input: Input1, Input2, Input3

Output: output1, output2, output3

Begin

Input1P=PboxAlgorithm9(Input1[i], ArnoldMap(x))

InputL64=L(Input1P,64); InputR64=R(Input1P,64);

Left64=ROSR(InputL64,8);

Left64=Left64 ⊞ InputR64;

Right64=ROSL(InputR64,3);

Right64= Right64  Left64;

Output1_128= Left64 ll Right64;

Output2_128= FSMalgorithm8(Input2, Input3);

XOutput= Output1_128  Output2_128;

Output1= SboxAlgorithm10 (XOutput,

HenonMap(x));

Output2_128=ROSL(Output2_128,1);

Output2_128= (Output2_128  St+2) 

ArnoldMap(y);

Output2_128=(Output2_128  St+6) 

HenonMap(y);

For t= 1 to 9

 S[t]=S[t+1]

S[10]= Output2_128

Output3=st+8;

Output2=st;

End

Table 3. Execution time

Algorithm Mode/design

Executi

on

Time

(Sec.)

Permutation [5] SpongeWrap 0.620

Permutation [6] APE 0.567

SPN [7] CBEAM 0.508

Sponge [8] Sp-AELM 0.477

Sponge [9] Lsap 0.738

SPN [10] Beetle 0.530

TETsponge [11] Spookchain 0.478

SALE [12] T-sponge 0.630

SPN [13] TETsponge 0.841

Spongent [14] CTR 0.453

Keccak-p [15] ISAP 0.532

SPN [16] Beetle 0.463

Xoodoo [17] Cyclist 0.385

SPN [19] Duplex 0.788

Ascon [20] Duplex 0.183

The proposed

algorithm
Duplex 0.37

Received: October 11, 2022. Revised: December 14, 2022. 542

International Journal of Intelligent Engineering and Systems, Vol.16, No.1, 2023 DOI: 10.22266/ijies2023.0228.46

4.9 Authentication encryption and verified

decryption algorithms

At first the sender applies four phases: initialization,

association data, encryption, and finalization phases to

send the concatenation of ciphertext blocks and two

authentication tag.

C[1]∥C[2]∥C[3]∥ … ∥C[m]∥T1∥T2.

At receiver side, he also applies four phases:

initialization, association data, decryption, and

finalization phases to get two verified tags T1*∥T2*. If

T1*= T1 and T2*=T2 then get plaintext blocks

P[1]∥P[2]∥P[3]∥ … ∥P[m].

Algorithm 12: Authentication encryption at the

sender side (SenderAgorithm12)

Input: Key 128 bit, IV 128 bit

Output: : C[1]∥C[2]∥C[3]∥ … ∥C[m]∥T1∥T2

Begin

1. InitAlgorithm2(key, IV, Ioutput1, Ioutput2,

Ioutput3);

2.AssoAlgorithm3(A[1…n], Ioutput1, Ioutput2,

Ioutput3,Aoutput1[1…n],Aoutput2[1…n],

Aoutput3[1…n]);

3.EncAlgorithm4(P[1…m], Aoutput1, Aoutput2,

Aoutput3, C[1…m], Eoutput1[1…n], Eoutput2[1…n],

Eoutput3[1…n]);

4.FinEnAlgorithm5(Eoutput1, Eoutput2, Eoutput3,T1,

T2);

End

Algorithm 13: Verified decryption at the receiver

side (VerifiedDeAgorithm13)

Input: key, IV, C[1]∥C[2]∥C[3]∥ … ∥C[m]∥T1∥T2

Output: : P[1]∥P[2]∥P[3]∥ … ∥P[m]

Begin

1.InitAlgorithm2(key, IV, Ioutput1, Ioutput2,

Ioutput3);

2.AssoAlgorithm3(A[1…n], Ioutput1, Ioutput2,

Ioutput3,Aoutput1[1…n],Aoutput2[1…n],

Aoutput3[1…n]);

3.DecAlgorithm6(C[1…m], Aoutput1, Aoutput2,

Aoutput3, P[1…m], Doutput1[1…n], Doutput2[1…n],

Doutput3[1…n]);

4.FinDeAlgorithm6(Doutput1, Doutput2,

Doutput3,T1*, T2*);

5.If (T1*=T1) & (T2*=T2) then return P[1…m]

End

5. Security and functional features

A. Security properties

A.1 The initialization phase

The proposed system initializes a key using a

lightweight one-round speck of speck block cipher 32

times to fill ten states of LFSR. Then, Stanard chaotic

Map (y) uses in the update of NFSR for the next phase

(Association data) by XORing it with the sixth state

st+5. In contrast, e.g. Ascon does not have the

characteristics above of using the processes in the key

initialization: XOR, addition modulo 2n, round shift to

left/right, random chaotic, and update NFSR (FSM and

LFSR).

A.2 The generated of Tag

In the finalization phase, our proposal generates

two tags (T1 and T2). It verifies the receiver side more

than e.g. ASCON, which has one tag.

Table 4. Memory space

Algorithm Mode/design

Memory

space

Kilo byte

(kb)

Permutation [5] SpongeWrap 0.883

Permutation [6] APE 0.867

SPN [7] CBEAM 0.995

Sponge [8] Sp-AELM 0.850

Sponge [9] Lsap 0.778

SPN [10] Beetle 0.805

TETsponge [11] Spookchain 0.869

SALE [12] T-sponge 0.723

SPN [13] TETsponge 0.916

Spongent [14] CTR 0.958

Keccak-p [15] ISAP 0.932

SPN [16] Beetle 0.895

Xoodoo [17] Cyclist 0.778

SPN [19] Duplex 0.854

Ascon [20] Duplex 0.71875

The proposed

algorithm
Duplex 0.738281

Received: October 11, 2022. Revised: December 14, 2022. 543

International Journal of Intelligent Engineering and Systems, Vol.16, No.1, 2023 DOI: 10.22266/ijies2023.0228.46

Table 5. The sponge algorithms with their features

Algorithm Mode/design

P
a

ra
ll

el
iz

a
b

le

o
n

li
n

e

In
v

er
se

-f
re

e

In
cr

e
m

e
n

ta
l

A
E

S
in

g
le

-p
a

ss

N
.

m
is

u
se

 r
e
si

st

L
ig

h
tw

ei
g

h
t

B
B

B
 s

ec
u

r
it

y

R
U

P
 s

ec
u

ri
ty

Permutation [5] SpongeWrap - - - - √ - - - -

Permutation [6] APE - - - - - √ √ - -

SPN [7] CBEAM - - - - - - √ - -

Sponge [8] Sp-AELM - √ - - - - √ - √

Sponge [9] Lsap - - - - - - - - -

SPN [10] Beetle - - √ - √ - √ - -

TETsponge [11] Spookchain - √ - - - - √ √ -

SALE [12] T-sponge - - - - - - - - -

SPN [13] TETsponge - - - - √ - - - -

Spongent [14] CTR √ - √ - - - √ - -

Keccak-p [15] ISAP - - √ - √ - √ - √

SPN [16] Beetle - - √ - √ - √ - -

Xoodoo [17] Cyclist - - √ - √ - √ - √

SPN [19] Duplex - - √ - - - - - -

Ascon [20] Duplex - √ √ - √ √ √ - -

The proposed

algorithm

Duplex - √ √ √ √ √ √ √ √

A.3 The substitution (Sbox) and permutation (Pbox)

The proposed system has a unique and dynamic

Sbox and Pbox for each use of a chaotic map for each

one of Sbox and Pbox, respectively. In contrast, e.g.

Ascon has fixed Sbox and permutation. This weak

point causes several attacks on Ascon.

A.4 Function f

The system can repeat our function f depending on

the block number of Association data A(n) and

plaintext P(m). the proposed function f can

automatically update the NFSR (LFSR AND FSM),

Sbox, Pbox, chaotic maps, and two Tags. So our

function f has a flexible property with any size of A or

P and automatically updates the sponge structure

compared with e.g. Ascon.

A.5 Randomness NIST tests

The proposed algorithm investigates the security

with good results of 100 tests of NIST randomness of

the result ciphertext are shown in Tables 1 and 2.

The Table 1 shows that the p-values of the proposed

algorithm with other spongy methods and shows that

the proposed has good results and most of them are

equal or greater than the p-values of the other spongy

methods. This gives the randomness property, which

makes the attacks difficult.

A.6 Execution time and memory space

The proposed algorithm investigates the security

with good speed and memory level by using stream

cipher and chaotic maps with sponge structure for IoT

applications.

The execution time offers in a Table 3. While Table

4 shows the Memory space. The tables show that the

proposed has good execution time and memory space.

That means the proposed algorithm is adequate for IoT

applications.

B. Functional features

Authentication encryption schemes also need the

following crucial characteristics in order to be

categorized for efficient or not [4]:

B.1 Parallelizability

An authentication encryption scheme is

parallelizable if execute of the one block encryption

does not need the encryption of other block. Decryption

Received: October 11, 2022. Revised: December 14, 2022. 544

International Journal of Intelligent Engineering and Systems, Vol.16, No.1, 2023 DOI: 10.22266/ijies2023.0228.46

fits under the same definition.

B.2 Online

There are two types of encryption schemes: online

and offline. An online encryption system allows the

computation of the ith blocks of ciphertext after seeing

the first i plaintext blocks. On the other hand, the offline

outputs the tag until all message blocks have been

processed. An advantage of an online system is that the

recipient can carry out authentication and decryption of

ciphertext block on the receiving end.

B.3 Inverse free

An authentication encryption scheme is inverse free

If there is no need to execute the inverse of encryption

or decryption.

Since the same code and circuit can be used for

several functions, implementation costs are low.

If inverses are required, an authentication

encryption system incurs additional implementation

costs.

B.4 Incrementality

If, given a tag for a particular plaintext M and a

previously computed ciphertext, encrypting a different

plaintext M0 that differs from M only marginally is

significantly quicker than encrypting M0 from scratch,

then the authentication encryption method exhibits

incrementality.

B.5 Single-pass

single-pass means process the plaintext just once to

give confidentiality and integrity. It makes a scheme

more effective than processing the data more than once.

B.6 Lightweight

This decides whether the plan is appropriate for

devices with limited resources.

B.7 Release of unverified plaintext (RUP)

An authentication encryption technique should

avoid disclosing the decrypted data before the

verification procedure when performing decryption.

B.8 Security beyond birth bound (BBB)

The birthday bound for most authentication

encryption systems, where 𝜎 is the ciphertext block

length and n is the block length, is 𝑂(
𝜎2

2𝑛) , and it

guarantees security up to that point.

Table 5 shows the functional features of a proposed

method compared with other previous authentication

encryption schemes. The proposed method investigates

all features except the parallelization feature which can

be investigated in the future work.

From the Table 5 shows the proposed method has

online feature since it generates sequence of ciphertext

block for each plaintext block individually and

concatenate with two tags.

The proposed method has inverse free feature since

it has the same code to execute encryption or

decryption and this given low costs.

The proposed method has incrementality feature

since it exploits chaotic maps which gives different

ciphertext of any significantly changes in the plaintext.

The proposed method has single pass feature since

it processes the plaintext just once to give

confidentiality and integrity.

The proposed method has lightweight feature since

it has low memory and time. So it appropriates for

devices with limited resources.

The proposed method satisfies the release of

unverified plaintext (RUP) feature where using

technique [44] for storing and releasing only one or

only few intermediate state to process a long ciphertext

with a low buffer size without storing any part of an

unverified plaintext and any intermediate tag.

At last the proposed investigates the security

beyond birth bound (BBB) feature where block length

n=128 and it guarantees security up to 𝑂(
𝜎2

2128), where

𝜎 is the length of the ciphertext block.

6. Conclusion

Lightweight authentication encryption is a system

that can be applied in the internet of things (IoT)

applications. But the previous works show that they

have weak points with different attacks and functional

features. In addition, it requires more confusion and

diffusion. This paper designs an authentication

encryption algorithm based on stream cipher and

chaotic maps with sponge structure for IoT applications

to get the confusion/diffusion properties and

investigate the functional features. The proposed

design has nonlinearity and randomly properties based

on NFSR (LFSR with FSM and chaotic maps) to get

good two authentication tags compared with e.g. Ascon.

Randomness tests show that the proposed system is

random and secure with investigate all the functional

features except the parallelization feature which will

work it in the future. And also it has good fast speed

and less memory space.

Conflicts of interest

The author declares no conflict of interest.

Received: October 11, 2022. Revised: December 14, 2022. 545

International Journal of Intelligent Engineering and Systems, Vol.16, No.1, 2023 DOI: 10.22266/ijies2023.0228.46

Author contributions

The author has the following contribution:

conceptualization methodology, software, validation,

formal analysis, investigation, resources, data curation,

writing original draft preparation, writing review and

editing, visualization, funding acquisition.

Acknowledgements

We thank Mustansiriyah University for it helps to

us with our research.

References

[1] M. Oudah and A. Maolood, “Lightweight

Authentication Model for IoT Environments

Based on Enhanced Elliptic Curve Digital

Signature and Shamir Secret Share”, International

Journal of Intelligent Engineering and Systems,

Vol. 15, No. 5, pp. 81-90, 2022, doi:

10.22266/ijies2022.1031.08.

[2] N. Hermawan, E. Winarko, A. Ashari, and Y.

Akhmad, "High Secure Initial Authentication

Protocol based on EPNR Cryptosystem for

Supporting Radiation Monitoring System",
International Journal of Intelligent Engineering

and Systems, Vol. 14, No. 5, pp. 1-14, 2021, doi:

10.22266/ijies2021.1031.01.

[3] L. Jiao, Y. Hao, and D. Feng, “Stream cipher

designs: a review”, Springer, Science China

Information Sciences, Vol. 63, No. 131101, pp. 1-

25, 2020.

[4] M. A. Jimale, M. R. Z'aba, L. B. Kiah, M. Y. Idris,

N. Jamil, M. S. Mohamad, and M. S. Rohmad,

“Authenticated Encryption Schemes: A

Systematic Review”, IEEE Access, Vol. 10, pp.

14739-14766, 2022.

[5] Bertoni, G., Daemen, J., Peeters, M., and V.

Assche, G. “Duplexing the Sponge: Single-Pass

Authenticated Encryption and Other

Applications”, In: Proc. of Springer 18th

International Conf. On Selected Areas in

Cryptography (SAC 2011), Toronto, ON, Canada,

Vol. 7118, pp. 320-377, 2011.

[6] E. Andreeva, B. Bilgin, A. Bogdanov, A. Luykx,

B. Mennink, N. Mouha, and K. Yasuda, “APE:

Authenticated Permutation-Based Encryption for

Lightweight Cryptography”, In: Proc. of Springer

21st International Conf. on FSE 2014, London,

UK, March 3-5, pp. 168-186, 2014.

[7] M. Saarinen, “CBEAM: Efficient Authenticated

Encryption from Feebly One-Way ϕ Functions”,

In: Proc. of Springer Topics in Cryptology – CT-

RSA 2014, San Francisco, CA, USA, February 25-

28, pp. 251-269, 2014.

[8] M. Agrawal, D. Chang, and S. Sanadhya, “A New

Authenticated Encryption Technique for Handling

Long Ciphertexts in Memory Constrained

Devices”, International Journal of Applied

Cryptography, Vol. 3, No. 3, pp. 236-261, 2017.

[9] C. Dobraunig, M. Eichlseder, S. Mangard, F.

Mendel, and T. Unterluggauer. “ISAP_Towards

Side-Channel Secure Authenticated Encryption”,

IACR Transactions on Symmetric Cryptology, Vol.

2017, No.1, pp. 80-105, 2017.

[10] A. Chakraborti, N. Datta, M. Nandi, and K.

Yasuda, “Beetle Family of Lightweight and

Secure Authenticated Encryption Ciphers”, IACR

Transactions on Cryptographic Hardware and

Embedded Systems, Vol. 2018, No. 2, pp. 218–241,

May, 2018.

[11] G. Cassiers, C. Guo, O. Pereira, T. Peters, and F.

Standaert, “SpookChain: Chaining a Sponge-

Based AEAD with Beyond-Birthday Security”, In:

Proc. of Springer 9th International Conf. on

Security, Privacy, and Applied Cryptography

Engineering (SPACE 2019), Gandhinar, India, pp.

67-85, December 3-7, 2019.

[12] J. Degabriele, C. Janson, and P. Struck, “Sponges

Resist Leakage: The Case of Authenticated

Encryption”, In: Proc. of Springer 25th

International Conf. on the Theory and Application

of Cryptology and Information Security (Advances

in Cryptology- ASIACRYPT 2019), Kobe, Japan,

pp. 209-240, December 8-12, 2019.

[13] C. Guo, O. Pereira, T. Peters, and F. Standaert,

“Towards Low-Energy Leakage-Resistant

Authenticated Encryption from the Duplex

Sponge Construction”, IACR Transactions on

Symmetric Cryptology, Vol. 2020, No. 1, pp. 6–42,

May, 2020.

[14] T. Beyne, Y. L. Chen, C. Dobraunig, and B.

Mennink, “Elephant v1.1”, NIST, Jan. 17, 2021.

[15] C. Dobraunig, “ISAP v2.0”, NIST, Jan. 17, 2021.

[16] Z. Bao, “PHOTON-Beetle Authenticated

Encryption and Hash Family”, NIST, Jan. 17, 2021.

[17] J. Daemen, S. Hoffert, M. Peeters, G. Assche, and

R. Keer, “Xoodyak, a Lightweight Cryptographic

Scheme”, NIST, Feb. 11, 2021.

[18] S. Vaudenay, “Security flaws induced by CBC

padding applications to SSL, IPSEC, WTLS'', In:

Proc. of Springer International Conf. on the

Received: October 11, 2022. Revised: December 14, 2022. 546

International Journal of Intelligent Engineering and Systems, Vol.16, No.1, 2023 DOI: 10.22266/ijies2023.0228.46

Theory and Applications of Cryptographic

Techniques (Advances in Cryptology-

EUROCRYPT 2002). Amsterdam, The

Netherlands, pp. 534-545, 2002.

[19] M. Kelly, A. Kaminsky, M. Kurdziel, M.

Lukowiak, and S. Radziszowski, “Customizable

sponge-based authenticated encryption using 16-

bit S-boxes'', In: Proc. of IEEE International Conf.

on MILCOM 2015 - IEEE Military

Communications, Tampa, FL, USA, pp. 43-48,

2015.

[20] C. Dobraunig, M. Eichlseder, F. Mendel, and M.

Schläffer. Ascon v2. NIST. Feb. 3, 2021.

[21] C. Dobraunig, M. Eichlseder, F. Mendel, and M.

Schlaffer, “Cryptanalysis of Ascon”, In: Proc. of

Springer International Conf. on Topics in

Cryptology – CT-RSA 2015, San Francisco, CA,

USA, pp. 371–387, April 21-23, 2015.

[22] C. Tezcan, “Truncated, Impossible, and

Improbable Differential Analysis of ASCON”, In:

Proc. of 2nd International Conf. on Information

Systems Security and Privacy - ICISSP, Rome,

Italy, pp. 325-332, 2016.

[23] K. Ramezanpour, P. Ampadu, and W. Diehl, "A

Statistical Fault Analysis Methodology for the

Ascon Authenticated Cipher", In: Proc. of IEEE

International Conf. on Hardware Oriented

Security and Trust (HOST), McLean, VA, USA,

pp. 41-50, 2019.

[24] K. Ramezanpour, P. Ampadu, W. Diehl, “SCARL:

Side-Channel Analysis with Reinforcement

Learning on the Ascon Authenticated Cipher”,

arXiv:2006.03995, pp. 1-25, 2020.

[25] C. Tezcan, “Analysis of Ascon, DryGASCON,

and Shamash Permutations”, International

Journal of Information Security Science, Vol. 9,

No. 3, pp. 172-187, 2020.

[26] K. N. Ambili and J. Jose, “Reinforcing

Lightweight Authenticated Encryption Schemes

against Statistical Ineffective Fault Attack”,

cryptoeprint:2022/041, pp. 1-18, 2022.

[27] K. Bhargavi, C. Srinivasan, and K. Lakshmy,

“Panther: A Sponge Based Lightweight

Authenticated Encryption Scheme”, In: Proc. of

Springer 22nd International Conf. on Cryptology in

India (Progress in cryptology-INDOCRYPT 2021),

Jaipur, India, pp. 49–70, Dec. 12-15, 2021.

[28] C. Palli, N. Jampala, and T. A. Naidu, "Sponge

based lightweight authentication mechanism for

RFID tags", In: Proc. of IEEE 4th International

Conf. on Security and Privacy (ISEA-ISAP), pp. 1-

7, 2021.

[29] M. R. Z’aba, N. Jamil, M. S. Rohmad, H. A. Rani,

and S. Shamsuddin, “The CiliPadi Family of

Lightweight Authenticated Encryption, v1.2”,

Malaysian Journal of Mathematical Sciences

15(S) December, pp. 1–23, 2021.

[30] E. L. Mohaisen and R. S. Mohammed, "Improving

Salsa20 Stream Cipher Using Random Chaotic

Maps", In: Proc. of IEEE 3rd International Conf.

on Engineering Technology and its Applications

(IICETA), pp. 1-6, 2020.

[31] A. H. Mohammed, A. K. Shibeeb, and M. H.

Ahmed, "Image Cryptosystem for IoT Devices

Using 2-D Zaslavsky Chaotic Map", International

Journal of Intelligent Engineering and Systems,

Vol. 15, No. 2, pp. 543-553, 2022, doi:

10.22266/ijies2022.0430.48.

[32] E. Mohaisen and R. Mohammed, “Stream Cipher

Based on Chaotic Maps”, In: Proc. of IEEE

International Conf. of Computer and Applied

Sciences (CAS), pp. 256 – 261, Baghdad, Iraq,

2019.

[33] E. A. Albahrani, A. A. Maryoosha, and S. H. Lafta,

“Block image encryption based on modified

playfair and chaotic system”, ELSEVIER, Journal

of Information Security and Applications, Vol. 51,

April 2020.

[34] N. H. Ghayad and E. A. Albahrani, “A

Combination of Two-Dimensional Hénon Map

and Two-Dimensional Rational Map as Key

Number Generator”, In: Proc. of IEEE

International Conf. of Computer and Applied

Sciences (CAS), pp. 107-112, Baghdad, Iraq, 2019.

[35] R. N. Jawad and E. A. Albahrani, “New Key

Generation Algorithm based on Dynamical

Chaotic Substitution Box”, In: Proc. of IEEE Al-

Mansour International Conf. on New Trends in

Computing, Communication, and Information

Technology (NTCCIT), pp. 93-98, 2019.

[36] R. S. Mohammed, K. K. Jabbar, H. A. Hilal,

“Image encryption under spatial domain based on

modify 2D LSCM chaotic map via dynamic

substitution-permutation network”, International

Journal of Electrical and Computer Engineering

(IJECE), Vol. 11, No. 4, pp. 3070-3083, 2021.

[37] E. Mohaisen and R. Mohammed, “Improving

Salsa20 Stream Cipher Using Random Chaotic

Maps”, In: Proc. of IEEE 3rd International Conf.

on Engineering Technology and its Applications

(IICETA), Najaf, Iraq, pp. 1-6, 2021.

[38] R. N. Jawad and E. A. Albahrani, “A New Cipher

Received: October 11, 2022. Revised: December 14, 2022. 547

International Journal of Intelligent Engineering and Systems, Vol.16, No.1, 2023 DOI: 10.22266/ijies2023.0228.46

Based on Feistel Structure and Chaotic Maps”,

Baghdad Science Journal, Vol. 16, No. 1, pp. 270-

280, 2019.

[39] A. Bossert, S. Cooper, and A. Wiesmaier, “A

comparison of block ciphers SIMON, SPECK, and

KATAN”, Sematic Scholar, pp.1-17, 2016.

