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Abstract: The design of a cipher system is essential and required with the development of the technology era. The internet 

of things concept is modern technology requiring lightweight, secure algorithms to investigate the requirement of the light 

device. Furthermore, IoT devices have limited resources (IoT devices should minimize battery life, limited memory size, 

and response time). A stream cipher system is faster than a block cipher system and has an easy feature with hardware and 

software implementation. This paper designs a lightweight authentication encryption algorithm based on stream cipher and 

chaotic maps with sponge structure for IoT applications. Currently, the suggested approach uses text data for encryption 

and authorization. Additionally, the suggested algorithm will be able to use it with image data in the future. Analysis results 

of the proposed algorithm based on NIST randomness tests, execution time, memory space, and functional features. The 

results are compared with other previous works which used sponge structure (e.g. Ascon, Elephant, ISAP, Photon-Beetle, 

and Xoodyak, etc.). Randomness tests show that the proposed system is random and secure with investigate all the 

functional features except the parallelization feature which will work it in the future. And also it has good fast speed and 

less memory space.  

Keywords: Lightweight, Authentication encryption, CAESAR competition, NIST-LW competition, Stream cipher, 

Chaotic map, Linear feedback shift register (LFSR), NonLinear feedback shift register (NFSR), Sponge structure, Internet 

of things (IoT).    

 

 

1. Introduction 

The increasing demand for an internet of things 

(IoT) in e-commerce and e-government. This demand 

requires the efficiency and security of cryptography 

algorithms. Cryptography faces the challenges of 

providing lightweight features in speed and memory 

with higher security. Cryptography has divided into 

stream cipher and block cipher. Stream cipher is easier 

to implement in hardware and software than block 

cipher, and it also features quick encryption and 

decryption operations with little to no error propagation 

[1, 2]. 

Different designs of stream ciphers depend on their 

structure: LFSR, NFSR, FCSR, PANAMA, random 

shuffled, ARX, sponge structural, block cipher based 

stream cipher, block cipher work mode based stream 

cipher, fully homomorphic encryption systems, and 

provable secure.  

A lightweight stream cipher design is required to be 

applicable in IoT applications. And also, creating 

authenticated encryption algorithms based on stream 

cipher is an open problem [3]. 

Stream ciphers can be designed using permutations 

or sponge structures. It allows for any amount of data 

in the input and output and uses a broad random 

permutation. 

Sponge structure becomes excellent flexibility and 

can provide authentication property without adding an 

authentication module. However, there is a problem 
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with cryptanalysis studies about this structure, and it is 

better to develop it in the future.  

A group of international cryptologic researchers 

created the competition for authenticated encryption: 

Security, applicability, and robustness (CAESAR) to 

promote the creation of authenticated encryption 

systems. In January 2013, the competition was 

announced, and the final portfolio was released in 

February 2019. 

The final portfolio announced by the CAESAR 

committee are Ascon and ACORN as lightweight 

applications.  

In March 2021, the national institute of standards 

and technology (NIST) announced ten finalists as 

ASCON, elephant, GIFT-COFB, grain128-AEAD, 

ISAP, photon-beetle, romulus, sparkle, TinyJambu, 

and Xoodyak. 

These finalists have different structure. This paper 

focused on sponge structure only as ASCON, elephant, 

ISAP, photon-beetle, and Xoodyak. 

In [4] classified the above winner finalists and the 

other different algorithms that submitted into the 

CAESAR and the NIST-LW competitions to evaluate 

the degree to which they provide the relevant functional 

features and security-related characteristics.  

The six functional features are parallelization, 

online, inverse-free, single-pass, N. misuse resist, and 

Lightweight functional features as described in the 

following section 5 with Table 5 summarizes the results. 

The results show these different design of sponge 

structures have weakened for investigate all of the 

required functional features. All of them used fixed 

permutations [3].  

This paper tries to investigate most of these features 

by design a lightweight authentication encryption 

algorithm based on stream and chaotic maps with 

sponge structure. 

The category of this paper can be as follows: 

introduction in section 1, related work in section 2, 

fundamental components of the proposed system in 

section 3, proposed authentication encryption system in 

section 4, the analysis result in section 5, and 

conclusion in the last section. 

2. Related works 

There are different designs of sponge structure [4] 

as SpongeWrap [5], APE [6], CBEAM [7], Sp-AELM 

[8], Lsap [9], Beetle [10], Spookchain [11], T-sponge 

[12], TETsponge [13], CTR[14], ISAP[15], Beetle [16], 

Cyclist [17], Duplex [19, 20].  

Each of them has advantages and drawbacks. The 

work [4] shows these drawbacks depend on the 

investigate of functional features. The functional 

features are parallelization, online, inverse-free, single-

pass, N. misuse resist, and lightweight functional 

features.  

The design SpongeWrap [5] investigated single 

pass functional feature only. APE [6] investigated N. 

misuse resist and ligthwight functional features only. 

CBEAM [7] investigated ligthwight functional feature 

only. Sp-AELM [8] nvestigated Online, ligthwight, and 

RUP security functional features only. 

The design Lsap [9] not investigated any of 

functional features. Beetle [10] investigated Inverse-

free, Single-pass and lightweight functional features 

only. Spookchain [11] investigated Online, lightweight, 

and BBB security functional features only. 

The design T-sponge [12] not investigated any of 

functional features. TETsponge [13] investigated 

single-pass functional features only. CTR [14] 

investigated Parallelizable, Inverse-free, and 

Lightweight functional features only. ISAP [15] 

investigated Inverse-free, single-pass, Lightweight, and 

RUP Security functional features only. 

The design Beetle [16] investigated Inverse-free, 

single-pass, and Lightweight functional features only. 

Cyclist [17, 18] investigated Inverse-free, single-pass, 

Lightweight, and RUP Security functional features 

only. Duplex [19] investigated Inverse-free functional 

feature only. 

The design duplex (ASCON) [20] investigated 

Online, inverse-free, Single-pass, N. misuse resist, and 

Lightweight functional features only. 

There are two categories of attacks [21-25] on 

Ascon: forgery and key recovery attacks. Key recovery 

attacks concentrate on the initialization step, whereas 

forgery attacks concentrate on the finalization step. The 

other papers modified Ascon as in [26-29]. 

3. Fundamental components of the proposed 

system  

This paper describes the essential components of 

the proposed system as follows: 

3.1 Feedback shift register (FSR) [3] 

Among the many parts of a stream cipher is the 

feedback shift register (FSR). It is now separated into 

linear feedback shift registers (LFSR) and nonlinear 

feedback shift registers (NFSR). LFSR divides into bit-

oriented and word-oriented.  
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Programmers, mathematicians, engineers, and 

other professionals all use the term finite state machine 

(FSM) to refer to a mathematical model of any system 

with a finite number of conditional states of existence. 

It is an abstract machine that has a finite number of 

states and can only ever be in one of them at once. 

Additionally, the FSM has the ability to switch between 

states in response to some inputs. The states, initial 

state, and inputs of an FSM are listed. 

In NFSR, a type of stream cipher takes NFSR as an 

essential component. In order to offer security, it makes 

use of both nonlinear feedback (polynomial) and 

nonlinear output. FSM, nonlinear filter, or nonlinear 

combiner are techniques used with chaos map and 

LFSR to get nonlinear properties. And also, NFSR uses 

a nonlinear function to get nonlinear properties.  

This paper takes some chaotic functions that have 

random and nonlinear properties.       

3.2 Chaotic map  

The study of chaotic systems, which have 

unpredictable appearances and irregular behaviors, is a 

subfield of mathematics. With sensitive beginning 

conditions, ergodic and regulated parameters, and 

irregular-like behavior similar to traditional crypto-

systems' characteristics, chaotic crypto-systems had 

secured correspondences [30][31]. 

There are papers insert chaotic maps into cipher 

system as in [32-38]. 

Arnold map can be as follows: 

  

[
𝑥𝑛+1

𝑦𝑛+1
] = [

1 𝑎
𝑏 𝑎𝑏 + 1

] [
𝑥𝑛

𝑦𝑛
] 𝑚𝑜𝑑(𝑛)                  (1) 

 

Where: 

n=1,2, 3, …, N-1                                                (2) 

𝑥𝑛, 𝑦𝑛: are the position of samples in the N×N matrix. 

𝑥𝑛+1, 𝑦𝑛+1 is the transformed position after the cat map. 

a, b: are the positive integers of control parameters.  

Henon map can be represented as follows: 
 

𝑥𝑛+1 = 1 + 𝑏𝑦𝑛 − 𝑎𝑥𝑛
2                                          (3) 

    

𝑦𝑛+1 = 𝑥𝑛                                                              (4) 

 

It can be chaotic if a=1.4 and b=0.3. 

While Standard map can be represented as 

follows: 
 

𝑥𝑛+1 = 𝑥𝑛 + 𝑘 𝑠𝑖𝑛 𝑦𝑛 𝑚𝑜𝑑 2                        (5) 

 

 𝑦𝑛+1 = 𝑦𝑛 + 𝑥𝑛+1 𝑚𝑜𝑑 2                              (6) 

 

Where [0,2π] is the range for 𝑥𝑛 and 𝑦𝑛. When the 

parameter k has a value greater than or equal to 18.9 (k 

≥18.9), this map is regarded as chaotic. 

3.3 SPECK block cipher for initialization step [39] 

Speck is a lightweight block cipher released by 

national security agency (NSA) in June 3013. Speck 

has performance implementation in hardware and 

software. The operations of speck are Bitwise XOR (), 

addition modulo 2n (⊞), and Left and Right Circular 

Shifts, Sj and S-j, by j bits, respectively, are all 

contained in one round of Speck.  

The following algorithm of Speck cipher: 

 

Algorithm 1: Speck cipher (SpeckAlgorithm1) 

Definition: 

n = word size (16, 24, 32, 48, or 64) 

m = number of key words  

T = number of round  

if n = 16 then (, ) = (7,2)  

      otherwise (, ) = (8,3)  

x,y = plaintext words 

l[m-2].. l[0],k[0] = key words 

------------------ key expansion ------------------ 

for i = 0..T-2 

l[i+m-1]  = (k[i] ⊞ 𝑆−l[i])  i 

k[i+1] =  𝑆 k[i]  l[i+m-1] 

end for 

------------------- encryption --------------------- 

for i = 0..T-1 

x = (𝑆−x ⊞ y)  k[i] 

y = 𝑆y  x 

end for 

4. Proposed authenticated encryption based 

stream cipher  

The proposed design is using LFSR with FSM 

using sponge structure and chaotic maps to recover the 

problems reviewed in the previous section. For 

example, forgery and key recovery attacks break the 

Ascon by focusing on the initialization phase, 

finalization phase, S-box, and permutation. 

This section, we design an authentication 

encryption system that enhances the initialization and 

finalization phases and uses dynamic substitution and 

permutation. 
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Fig. 1 shows the proposed authentication 

encryption system based on a sponge structure. It 

consists of four phases: The initialization, the 

Association data, the Encryption, and the finalization. 

Each phase constructs from the round function of speck 

block cipher, LFSR, FSM, and random chaotic map.  

While Fig. 2 shows the proposed initialization 

phase and Fig. 3 shows the general proposed function f 

of these phases. This function has three inputs and three 

outputs. Each phase has different inputs and outputs but 

the same function f.    

The following figures and algorithms depict the 

work of the proposed encryption authentication system 

in detail.  

4.1 Initialization phase  

At first, get the key and initial vector (IV), each 

with 128 bits. Then, apply the round function of a speck 

cipher ten times. Each output of a round saves as a state 

in LFSR. The outcomes of the initialization phase are:  

 
Ioutput1=St,                                                         (7) 

 

Ioutput2=St+5 the output (y) of StanardMap of 

equation 6,                                                                   (8) 

 

Ioutput3=St+8                                                      (9) 

 

They are go to the next phase (Association data). 

The LFSR feedback by Ioutput2 to update St+9 and 

shifting the LFSR.   

 

Algorithm 2: Initialization phase (InitAlgorithm2) 

Input: Key 128 bit, IV 128 bit 

Output: Ioutput1, Ioutput2, Ioutput3 

Begin  

For t=1 to 10 

  S[t]=0 

For r= 1 to 32 

Round[r]=SpeckAlgorithm1(Key,IV)  

For s= 23 to 32 

S[s-22]=round[s]    

Ioutput1=S[1] 

Ioutput2=S[6]  StanardMap(y) 

Ioutput3=S[9] 

  For t= 1 to 9 

    S[t]=S[t+1] 

 S[10]= Ioutput2 

End 

4.2 Association data phase  

In the second phase, get the three outputs of the 

previous step (Ioutput1, Ioutput2, Ioutput3), each with 

128 bits. Update Ioutput1 by XORing with 128 bits of 

association data (Ai). Where 1<= i <= n. If length 

A>128, then padding and split into blocks (n), each 

block 128 bits. Then, apply the proposed function fi (n) 

times. The outcomes of the Association data phase 

(Aoutput1, Aoutput2, Aoutput3) go to the next phase 

(Encryption) if i>n. 

 

Algorithm 3: Associarion data (AssoAlgorithm3) 

Input: A[1…n], Ioutput1, Ioutput2, Ioutput3 

Output:Aoutput1[1…n],Aoutput2[1…n], 

Aoutput3[1…n] 

Begin 

Aoutput1[1]= Ioutput1; Aoutput2[1]= Ioutput2; 

Aoutput3[1]= Ioutput3; 

For i=1 to n 

Input1[i]= A[i]  Aoutput1[i] 

Input2[i]= Aoutput2[i] 

Input3[i]= Aoutput3[i] 

FAlgorithm11(Input1[i],Input2[i],Input3[i], 

Aoutput1[i+1], Aoutput2[i+1], Aoutput3[i+1]) 

End for 

End 

4.3 Encryption phase on the sender side 

In the third phase, get the three outputs of the 

previous step (Aoutput1, Aoutput2, Aoutput3), each 

with 128 bits. Update Aoutput1 by XORing with 128 

bits of plaintext (Pj). Where 1<= j <= m. If length 

P>128, then padding and split into blocks (m), each 

block 128 bits. Then, apply the proposed function fj (m) 

times. The outcomes of the Encryption phase (Eoutput1, 

Eoutput2, Eoutput3) go to the next phase (finalization) 

if j>m. 

 

Algorithm 4: Encryption phase (EncAlgorithm4) 

Input: P[1…m], Aoutput1, Aoutput2, Aoutput3 

Output: C[1…m], Eoutput1[1…n], Eoutput2[1…n], 

Eoutput3[1…n] 

Begin 

Eoutput1[1]= Aoutput1; Eoutput2[1]= Aoutput2; 

Eoutput3[1]= Aoutput3; 

For j=1 to m 

Input1[j]= P[j]  Eoutput1[j] 

C[j]= Input1[j] 

Input2[j]= Eoutput2[j] 
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Input3[j]= Eoutput3[j] 

FAlgorithm11(Input1[j], Input2[j], Input3[j], 

Eoutput1[j+1], Eoutput2[j+1], Eoutput3[j+1]) 

End for 

End 

4.4 Finalization phase on the sender side 

In the fourth phase, get the three outputs of the 

previous step (Eoutput1, Eoutput2, Eoutput3), each 

with 128 bits. Get the first tag (T1) from Eoutput1. 

Then, apply the proposed function f one time. The 

outcome of the finalization phase is the second tag (T2) 

by XORing the function outputs (Foutput1, Foutput2, 

and Foutput3). 

 

Algorithm 5: Finalization encryption phase 

(FinEnAlgorithm5) 

Input: Eoutput1, Eoutput2, Eoutput3 

Output: T1, T2 

Begin 

Input1= Eoutput1 

Input2= Eoutput2 

Input3= Eoutput3 

T1= Input1 

FAlgorithm11(Input1, Input2, Input3, Foutput1, 

Foutput2, Foutput3) 

T2= Foutput1 Foutput2  Foutput3 

End for 

End 

4.5 Decryption phase on the receiver side 

On the receiver side, use the same IV/Key with the 

first and second phases (Initialization and Association 

data). The decryption phase gets the three outputs of the 

previous step (Aoutput1, Aoutput2, Aoutput3), each 

with 128 bits. Update Aoutput1 by XORing with 128 

bits of ciphertext (Cj). Where 1<= j <= m. Then, apply 

the proposed function fj (m) times. The outcomes of the 

Decryption phase (Doutput1, Doutput2, Doutput3) go 

to the next phase (finalization) if j>m.  

Algorithm 6: Decryption phase (DecAlgorithm6) 

Input: C[1…m], Aoutput1, Aoutput2, Aoutput3 

Output: P[1…m], Doutput1[1…n], 

Doutput2[1…n],Doutput3[1…n] 

Begin 

Doutput1[1]= Aoutput1; Doutput2[1]= Aoutput2; 

Doutput3[1]= Aoutput3; 

For j=1 to m 

Input1[j]= C[j]  Doutput1[j] 

Input2[j]= Doutput2[j] 

Input3[j]= Doutput3[j] 

FAlgorithm11(Input1[j], Input2[j], Input3[j], 

Doutput1[j+1], Doutput2[j+1], Doutput3[j+1]) 

End for 

End 

4.6 Finalization phase on the receiver side 

The fourth phase is the same as finalization on the 

sender side but different in the inputs. It gets the three 

outputs of the previous step (Doutput1, Doutput2, 

Doutput3), each with 128 bits. Get the first tag (T1) 

from Doutput1. Then, apply the proposed function f 

one time. The outcome of the finalization phase on the 

receiver side is the second tag (T2) by XORing the 

function outputs (Foutput1, Foutput2, and Foutput3). 

 

Algorithm7: Finalization decryption phase 

(FinDeAlgorithm7) 

Input: Doutput1, Doutput2, Doutput3 

Output: T1*, T2* 

Begin 

Input1= Doutput1 

Input2= Doutput2 

Input3= Doutput3 

T1*= Input1 

FAlgorithm11(Input1, Input2, Input3, Foutput1, 

Foutput2, Foutput3) 

T2*= Foutput1 Foutput2  Foutput3 

4.7 Finalization phase on the receiver side 

The fourth phase is the same as finalization on the 

sender side but different in the inputs. It gets the three 

outputs of the previous step (Doutput1, Doutput2, 

Doutput3), each with 128 bits. Get the first tag (T1) 

from Doutput1. Then, apply the proposed function f 

one time. The outcome of the finalization phase on the 

receiver side is the second tag (T2) by XORing the 

function outputs (Foutput1, Foutput2, and Foutput3). 
 

Algorithm7: Finalization decryption phase 

(FinDeAlgorithm7) 

Input: Doutput1, Doutput2, Doutput3 

Output: T1*, T2* 

Begin 

Input1= Doutput1 

Input2= Doutput2 

Input3= Doutput3 

T1*= Input1 
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Figure. 1 Proposed an authentication encryption system based on a sponge structure  

 

 

 
Figure. 2 The proposed initialization phase 

 

 

FAlgorithm11(Input1, Input2, Input3, Foutput1, 

Foutput2, Foutput3) 

T2*= Foutput1 Foutput2  Foutput3 

End for 

End 
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Figure. 3 The generally proposed function f 

 

 

4.8 Function f 

The function f has three inputs (Input1, Input2, 

Input3) in parallel lines. Arnold chaotic map (the output 

(x) of Eq. (1)) permutes the first input (Input1) and 

splits the result into two halves, each with 64 bits 

(left64 and right64). Left64 uses a round shift to the 

right (ROSR) by 8-bit. Then apply the addition modulo 

264 ⊞ and XOR processes with the right-side results. 

Right64 uses a round shift to the left (ROSL) by 3-bit. 

Then apply the XOR process with the left-side result. 

At last, concatenation left64 with right64 to get 

output1_128. 

The Input2 XOR with Input3 to get output2_128. 

They are then applying the XOR between output2_128 

and output1_128. Henon chaotic map (the output (x) of 

Eq. (3)) substitutes the outcome for obtaining the first 

output of function f (Output1).   

To update NFSR, at first, apply round shift 

output2_128 to the left (ROSL) by 1 bit. Then XOR the 

outcome with St+2 and Arnold chaotic map (the output 

(y) of Eq. (2)). And we are continuing to use XOR, the 

result with St+6, and the Henon chaotic map (the output 

(y) of Eq. (4)) as feedback to update NFSR.    

The second and third outputs of a function f are 

Output2=St, and Output3=St+8 as input for the 

following function if A or P length n > 128 or for the 

next phase where A or P length n =128. 
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Table 1. Randomness test NIST of 1st seven methods with proposed method 
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t 
N
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u
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o
n

 

[6
] 

 S
P
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[7
]  

S
p

o
n

g
e 

[8
] 

 

S
p

o
n

g
e 

[9
] 

S
P

N
 [

1
0

] 

 

T
E

T
sp

o
n

g
e 

[1
1

] 

T
h

e 
p

ro
p

o
se

d
 

a
lg

o
ri

th
m

 

P
er

m
u

ta
ti

o
n

 

[5
] 

Frequency 0.345 0.745 0.434 0.873 0.518 0.898 0.272 0.873 

Frequency  within a Block 0.415 0.752  0.782 0.370 0.764 0.342 0.165 0.598 

Run 0.650 0.357 0.712 0.759 0.569 0.899 0.343 0.758 

Longest Run of Ones in a 

Block 
0.557 0.347 0.294 0.334 0.288 0.499 0.163 0.639 

Binary Matrix Rank 0.333 0.270 0.202 0.573 0.177 0.706 0.508 0.576 

Discrete Fourier Transform 0.795 0.641 0.195 0.112 0.193 0.394 0.155 0.889 

Non-Overlapping Template 

Matching 
0.761 0.919 0.293 0.954 0.953 0.119 0.793 0.843 

Overlapping Template 

Matching 
0.001 0.192 0.888 0.253 0.197 0.952 0.794 0.793 

Linear Complexity 0.151 0.548 0.809 0.926 0.767 0.323 0.957 0.766 

Serial 0.267 0.899 0.088 0.489 0.296 0.434 0.642 0.861 

Approximate Entropy 0.509 0.473 0.348 0.432 0.169 0.272 0.232 0.571 

Cumulative Sums Forward 0.735 0.148 0.883 0.943 0.291 0.959 0.198 0.844 

Cumulative Sums Reverse 0.678 0.486 0.735 0.337 0.966 0.481 0.594 0.844 

Random Excursions 0.806 0.707 0.826 0.463 0.880 0.858 0.968 0.931 

Random Excursions Variant 0.311 0.474 0.231 0.481 0.371 0.614 0.573 0.502 

 
 
4.8.1. Definition of non-linear feedback shift register 

(NFSR) in function f 

NFSR consists of LFSR with FSM and chaotic 

maps.  

Definition of LFSR in f function 

The 𝐹2128  elements are used by the LFSR in 

function f. Ten 128-bit values, S1 through S10, make 

up the initial state at time t = 1. With the following 

recurrence, a new value is computed at each step: 

 

FSM= FSMalgorithm8;                             (10) 

 

st+10 = st+2 ⊕ (FSM<<<1) ⊕ ArnoldMap(y)  (11) 

 

st+10 = st+10 ⊕ (st+6 ⊕ HenonMap(y)),       (12) 

 

where t ≥ 1 and a shift in the register. For a 

representation of the LFSR, see Fig. 3. The LFSR and 

the following feedback polynomial are related: 

 

π(X) = X10 + X8 + X4 + 1 ∈ 𝐹2128  [X]              (13)           
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Table 2. Randomness test NIST of 2nd eight methods with proposed method 
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T
h

e 
p

ro
p

o
se

d
 

a
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Frequency 0.300 0.247 0.982 0.712 0.188 0.670 0.565 0.377 0.873 

Frequency  within a 

Block 
0.379 0.217 0.178 0.671 0.104 0.485 0.557 0.234 0.598 

Run 0.787 0.180 0.139 0.651 0.503 0.330 0.122 0.22 0.758 

Longest Run of Ones in a 

Block 
0.264 0.534 0.336 0.174 0.572 0.100 0.395 0.349 0.639 

Binary Matrix Rank 0.733 0.511 0.644 0.718 0.109 0.677 0.680 0.189 0.576 

Discrete Fourier 

Transform 
0.564 0.681 0.880 0.856 0.369 0.618 0.293 0.245 0.889 

Non-Overlapping 

Template Matching 
0.559 0.552 0.867 0.888 0.510 0.389 0.647 0.449 0.843 

Overlapping Template 

Matching 
0.363 0.957 0.031 0.344 0.202 0.203 0.410 0.322 0.793 

Linear Complexity 0.801 0.209 0.138 0.872 0.140 0.462 0.502 0.234 0.766 

Serial 0.872 0.500 0.118 0.563 0.914 0.373 0.798 0.263 0.861 

Approximate Entropy 0.112 0.405 0.553 0.356 0.422 0.483 0.492 0.37 0.571 

Cumulative Sums 

Forward 
0.440 0.459 0.911 0.195 0.196 0.135 0.353 0.432 0.844 

Cumulative Sums 

Reverse 
0.408 0.585 0.908 0.567 0.102 0.511 0.801 0.324 0.844 

Random Excursions 0.705 0.545 0.253 0.236 0.424 0.594 0.233 0.558 0.931 

Random Excursions 

Variant 
0.191 0.710 0.660 0.346 0.382 0.573 0.111 0.308 0.502 

 

 

The sequence of 128-bit (st)t≥1 is periodic and has a 

maximum period of (21280 − 1) since is a primitive 

polynomial.  

4.8.2. Definition of FSM in function f 

The finite state machine (FSM) is a component with 

two 128-bit registers, input2 and input3, to get 256 bits 

of memory. The FSM receives two 128 bits from the 

LFSR state as inputs at each step, changes the memory 

bits, and outputs 128 bits. Following is the FSM 

algorithm, where ⊞ is addition modulo 2128 : 

 

Algorithm 8: FSM (FSMalgorithm8) 

Input: Input2 and Input3 each with 128 bit; 

Output: FSMoutput with length 128 bit. 

Begin 

Left128=ROSR(Input3,16); 

Left128=Left128 ⊞ Input2; 

Right128=ROSL(Input2,6);     

FSMoutput= Right128  Left128;                              
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End 

4.8.3. Proposed permutation and substitution algorithms 

in function f using chaotic maps 

Algorithm 9: Permutation (PboxAlgorithm9) 

Input: Input1 with length 128 bit. 

Output: Input1P with length 128 bit. 

Begin 

1. Read Input1 as a vector with a length 128 bit. 

2. Choose an initial value (x, y) as the secret key and 

apply the Arnold map in Eq. (1) and Eq. (2).  

3. Get the vector index from 1st output (128) values of 

Arnold map (xi) from Eq. (1). 

4. Permute the vector from step2 by ascending, which 

sort by the index from step 3. 

5. Get the permuted text values with length 128 as 

P_Input1. 

End 

 

Algorithm 10: Substitution (SboxAlgorithm10) 

Input: XOutput with length 128 bit.  

Output: Output1 with length 128 bit.  

Begin 

1. choose an initial value (x, y) as a secret key and apply 

the Henon map in Eq. (3) and Eq. (4).  

2. Get the vector of S-box with values from 1st output 

(128) values of Henon map (xi) from Eq. (3). 

3. Read XOutput length 128 and get the value as the 

index of vector S-box. 

4. Find the substitute value from the S-box vector. 

5. Get the substituted values of the text with length 128 

as Output1. 

End 

 

Algorithm 11: Function f (FAlgorithm11) 

FAlgorithm11(Input1, Input2, Input3, output1, output2, 

output3)  

Input: Input1, Input2, Input3 

Output: output1, output2, output3 

Begin 

Input1P=PboxAlgorithm9(Input1[i], ArnoldMap(x)) 

InputL64=L(Input1P,64); InputR64=R(Input1P,64);          

Left64=ROSR(InputL64,8); 

Left64=Left64 ⊞ InputR64; 

Right64=ROSL(InputR64,3);     

Right64= Right64  Left64;                              

Output1_128= Left64 ll Right64; 

Output2_128= FSMalgorithm8(Input2, Input3); 

XOutput= Output1_128  Output2_128; 

Output1= SboxAlgorithm10 (XOutput, 

HenonMap(x)); 

Output2_128=ROSL(Output2_128,1); 

Output2_128= (Output2_128  St+2)  

ArnoldMap(y); 

Output2_128=(Output2_128  St+6)  

HenonMap(y); 

For t= 1 to 9 

   S[t]=S[t+1] 

S[10]= Output2_128 

Output3=st+8; 

Output2=st; 

End 
 

 

Table 3. Execution time 

Algorithm Mode/design 

Executi

on 

Time 

(Sec.) 

Permutation [5] SpongeWrap 0.620 

Permutation [6] APE 0.567 

SPN [7] CBEAM 0.508 

Sponge [8] Sp-AELM 0.477 

Sponge [9] Lsap 0.738 

SPN [10] Beetle 0.530 

TETsponge [11] Spookchain 0.478 

SALE [12] T-sponge 0.630 

SPN [13] TETsponge 0.841 

Spongent [14] CTR 0.453 

Keccak-p [15] ISAP 0.532 

SPN [16] Beetle 0.463 

Xoodoo [17] Cyclist 0.385 

SPN [19] Duplex 0.788 

Ascon [20] Duplex 0.183 

The proposed 

algorithm 
Duplex 0.37 
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4.9 Authentication encryption and verified 

decryption algorithms 

At first the sender applies four phases: initialization, 

association data, encryption, and finalization phases to 

send the concatenation of ciphertext blocks and two 

authentication tag. 

C[1]∥C[2]∥C[3]∥ … ∥C[m]∥T1∥T2.  

At receiver side, he also applies four phases: 

initialization, association data, decryption, and 

finalization phases to get two verified tags T1*∥T2*. If 

T1*= T1  and T2*=T2 then get plaintext blocks 

P[1]∥P[2]∥P[3]∥ … ∥P[m]. 

 

Algorithm 12: Authentication encryption at the 

sender side (SenderAgorithm12) 

Input: Key 128 bit, IV 128 bit 

Output: : C[1]∥C[2]∥C[3]∥ … ∥C[m]∥T1∥T2 

Begin 

1. InitAlgorithm2(key, IV, Ioutput1, Ioutput2, 

Ioutput3); 

2.AssoAlgorithm3(A[1…n], Ioutput1, Ioutput2, 

Ioutput3,Aoutput1[1…n],Aoutput2[1…n], 

Aoutput3[1…n]); 

3.EncAlgorithm4(P[1…m], Aoutput1, Aoutput2, 

Aoutput3, C[1…m], Eoutput1[1…n], Eoutput2[1…n], 

Eoutput3[1…n]); 

4.FinEnAlgorithm5(Eoutput1, Eoutput2, Eoutput3,T1, 

T2); 

End 

 

Algorithm 13: Verified decryption at the receiver 

side (VerifiedDeAgorithm13) 

Input: key, IV, C[1]∥C[2]∥C[3]∥ … ∥C[m]∥T1∥T2 

Output: : P[1]∥P[2]∥P[3]∥ … ∥P[m] 

Begin 

1.InitAlgorithm2(key, IV, Ioutput1, Ioutput2, 

Ioutput3); 

2.AssoAlgorithm3(A[1…n], Ioutput1, Ioutput2, 

Ioutput3,Aoutput1[1…n],Aoutput2[1…n], 

Aoutput3[1…n]); 

3.DecAlgorithm6(C[1…m], Aoutput1, Aoutput2, 

Aoutput3, P[1…m], Doutput1[1…n], Doutput2[1…n], 

Doutput3[1…n]); 

4.FinDeAlgorithm6(Doutput1, Doutput2, 

Doutput3,T1*, T2*); 

5.If (T1*=T1) & (T2*=T2) then return P[1…m]   

End 

 

 

5. Security and functional features  

A. Security properties 

A.1 The initialization phase 

The proposed system initializes a key using a 

lightweight one-round speck of speck block cipher 32 

times to fill ten states of LFSR. Then, Stanard chaotic 

Map (y) uses in the update of NFSR for the next phase 

(Association data) by XORing it with the sixth state 

st+5. In contrast, e.g. Ascon does not have the 

characteristics above of using the processes in the key 

initialization: XOR, addition modulo 2n, round shift to 

left/right, random chaotic, and update NFSR (FSM and 

LFSR). 

A.2 The generated of Tag 

In the finalization phase, our proposal generates 

two tags (T1 and T2). It verifies the receiver side more 

than e.g. ASCON, which has one tag.  
 

 

Table 4. Memory space 

Algorithm Mode/design 

Memory 

space 

Kilo byte 

(kb) 

Permutation [5] SpongeWrap 0.883 

Permutation [6] APE 0.867 

SPN [7] CBEAM 0.995 

Sponge [8] Sp-AELM 0.850 

Sponge [9] Lsap 0.778 

SPN [10] Beetle 0.805 

TETsponge [11] Spookchain 0.869 

SALE [12] T-sponge 0.723 

SPN [13] TETsponge 0.916 

Spongent [14] CTR 0.958 

Keccak-p [15] ISAP 0.932 

SPN [16] Beetle 0.895 

Xoodoo [17] Cyclist 0.778 

SPN [19] Duplex 0.854 

Ascon [20] Duplex 0.71875 

The proposed 

algorithm 
Duplex 0.738281 
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Table 5. The sponge algorithms with their features 

Algorithm Mode/design 
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Permutation [5] SpongeWrap - - - - √ - - - - 

Permutation [6] APE - - - - - √ √ - - 

SPN [7] CBEAM - - - - - - √ - - 

Sponge [8] Sp-AELM - √ - - - - √ - √ 

Sponge [9] Lsap - - - - - - - - - 

SPN [10] Beetle - - √ - √ - √ - - 

TETsponge [11] Spookchain - √ - - - - √ √ - 

SALE [12] T-sponge - - - - - - - - - 

SPN [13] TETsponge - - - - √ - - - - 

Spongent [14] CTR √ - √ - - - √ - - 

Keccak-p [15] ISAP - - √ - √ - √ - √ 

SPN [16] Beetle - - √ - √ - √ - - 

Xoodoo [17] Cyclist - - √ - √ - √ - √ 

SPN [19] Duplex - - √ - - - - - - 

Ascon [20] Duplex - √ √ - √ √ √ - - 

The proposed 

algorithm 

Duplex - √ √ √ √ √ √ √ √ 

 

 

A.3 The substitution (Sbox) and permutation (Pbox) 

The proposed system has a unique and dynamic 

Sbox and Pbox for each use of a chaotic map for each 

one of Sbox and Pbox, respectively. In contrast, e.g. 

Ascon has fixed Sbox and permutation. This weak 

point causes several attacks on Ascon. 

A.4 Function f 

The system can repeat our function f depending on 

the block number of Association data A(n) and 

plaintext P(m). the proposed function f can 

automatically update the NFSR (LFSR AND FSM), 

Sbox, Pbox, chaotic maps, and two Tags. So our 

function f has a flexible property with any size of A or 

P and automatically updates the sponge structure 

compared with e.g. Ascon.  

A.5 Randomness NIST tests 

The proposed algorithm investigates the security 

with good results of 100 tests of NIST randomness of 

the result ciphertext are shown in Tables 1 and 2.  

The Table 1 shows that the p-values of the proposed 

algorithm with other spongy methods and shows that 

the proposed has good results and most of them are 

equal or greater than the p-values of the other spongy 

methods. This gives the randomness property, which 

makes the attacks difficult. 

A.6 Execution time and memory space 

The proposed algorithm investigates the security 

with good speed and memory level by using stream 

cipher and chaotic maps with sponge structure for IoT 

applications.  

The execution time offers in a Table 3. While Table 

4 shows the Memory space. The tables show that the 

proposed has good execution time and memory space. 

That means the proposed algorithm is adequate for IoT 

applications.  
 

B. Functional features 

Authentication encryption schemes also need the 

following crucial characteristics in order to be 

categorized for efficient or not [4]: 

B.1 Parallelizability  

An authentication encryption scheme is 

parallelizable if execute of the one block encryption 

does not need the encryption of other block. Decryption 
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fits under the same definition.  

B.2 Online  

There are two types of encryption schemes: online 

and offline. An online encryption system allows the 

computation of the ith blocks of ciphertext after seeing 

the first i plaintext blocks. On the other hand, the offline 

outputs the tag until all message blocks have been 

processed. An advantage of an online system is that the 

recipient can carry out authentication and decryption of 

ciphertext block on the receiving end. 

B.3 Inverse free  

An authentication encryption scheme is inverse free 

If there is no need to execute the inverse of encryption 

or decryption.  

Since the same code and circuit can be used for 

several functions, implementation costs are low. 

If inverses are required, an authentication 

encryption system incurs additional implementation 

costs. 

 

B.4 Incrementality  

If, given a tag for a particular plaintext M and a 

previously computed ciphertext, encrypting a different 

plaintext M0 that differs from M only marginally is 

significantly quicker than encrypting M0 from scratch, 

then the authentication encryption method exhibits 

incrementality. 

B.5 Single-pass  

single-pass means process the plaintext just once to 

give confidentiality and integrity. It makes a scheme 

more effective than processing the data more than once.  

B.6 Lightweight  

This decides whether the plan is appropriate for 

devices with limited resources. 

B.7 Release of unverified plaintext (RUP)  

An authentication encryption technique should 

avoid disclosing the decrypted data before the 

verification procedure when performing decryption. 

B.8 Security beyond birth bound (BBB)  

The birthday bound for most authentication 

encryption systems, where 𝜎  is the ciphertext block 

length and n is the block length, is 𝑂(
𝜎2

2𝑛) , and it 

guarantees security up to that point. 

Table 5 shows the functional features of a proposed 

method compared with other previous authentication 

encryption schemes. The proposed method investigates 

all features except the parallelization feature which can 

be investigated in the future work. 

From the Table 5 shows the proposed method has 

online feature since it generates sequence of ciphertext 

block for each plaintext block individually and 

concatenate with two tags. 

The proposed method has inverse free feature since 

it has the same code to execute encryption or 

decryption and this given low costs. 

The proposed method has incrementality feature 

since it exploits chaotic maps which gives different 

ciphertext of any significantly changes in the plaintext. 

The proposed method has single pass feature since 

it processes the plaintext just once to give 

confidentiality and integrity. 

The proposed method has lightweight feature since 

it has low memory and time. So it appropriates for 

devices with limited resources. 

The proposed method satisfies the release of 

unverified plaintext (RUP) feature where using 

technique [44] for storing and releasing only one or 

only few intermediate state to process a long ciphertext 

with a low buffer size without storing any part of an 

unverified plaintext and any intermediate tag. 

At last the proposed investigates the security 

beyond birth bound (BBB) feature where block length 

n=128 and it guarantees security up to 𝑂(
𝜎2

2128), where 

𝜎 is the length of the ciphertext block. 

6. Conclusion 

Lightweight authentication encryption is a system 

that can be applied in the internet of things (IoT) 

applications. But the previous works show that they 

have weak points with different attacks and functional 

features. In addition, it requires more confusion and 

diffusion. This paper designs an authentication 

encryption algorithm based on stream cipher and 

chaotic maps with sponge structure for IoT applications 

to get the confusion/diffusion properties and 

investigate the functional features. The proposed 

design has nonlinearity and randomly properties based 

on NFSR (LFSR with FSM and chaotic maps) to get 

good two authentication tags compared with e.g. Ascon. 

Randomness tests show that the proposed system is 

random and secure with investigate all the functional 

features except the parallelization feature which will 

work it in the future. And also it has good fast speed 

and less memory space. 
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