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Abstract: The absence of P waves through electrocardiogram (ECG) tracing causes atrial fibrillation (AF) affecting 

around 1% of the global population. In recent years, wearable and portable devices have made mobile healthcare 

much closer to reality. The main purpose of this article is to develop an automatic AF detection system based on 

short single lead ECG signals. Also, AF is one kind of arrhythmia that change the rhythms in the heart and have the 

potential to alter the characteristics of morphology in ECG tracings. For feature extraction, heart rate variability 

(HRV) and frequency analysis are adopted. The novel contribution of this work is to deploy a modified Moth Flame 

Optimization algorithm for detecting AF in a short ECG recording. The obtained results were validated with the 

available public data set comprised of short ECG recordings by genetic algorithm and modified moth flame 

optimisation algorithm. For N versus A classification, accuracy varies from 94.2% to 97% under noise levels ranging 

from 0 to 30 dB. For N versus A versus O, maximum accuracy of 84.3% is obtained. The obtained experimental 

results suggest that HRV is efficient and robust for AF detection for relatively short ECG recording. 

Keywords: Atrial fibrillation, ECG, Modified moth flame optimisation, Genetic algorithm. 

 

 

1. Introduction 

Atrial fibrillation (AF) disorder affects more 

than 5% of people aged over 65 in the world. AF is 

more in men compared to women. This AF is one 

kind of arrhythmia that might lead to heart stroke 

and even heart failure. Therefore, AF can be 

controlled and managed only with a timely 

diagnosis. The ion channel functions of 

cardiomyocytes (Remodelling) are adopted as a 

pathological condition for the patient's atrium after 

persistent AF. Experienced cardiologists in the 

clinical practice inspect manual tracing of ECG. The 

disadvantage of manual tracing of ECG is time 

consumption. Holter monitors acquire a long-term 

recording of ECG; that is very hard to locate the 

abnormal episodes by cardiologists. To overcome 

this problem, the development is needed for a robust 

as well as efficient decision-making system for 

automatic detection of atrial fibrillation (ADAF) 

required. Almost all decision support systems use 

inputs as ECG signals. These input signals were 

translated into useful features using an algorithm, 

and one final result is outputted for clinicians. Sahoo 

et al. [1] reviewed non-episodic ECG using different 

features of data analytics. In work [2], a new ECG 

monitoring system is developed with the use of 

portable self-designed low cost arduino sensor 

device. Ferri, et al [3] developed a new method for 

dry electrodes on textiles. The monitoring of health 

has actively included wearable technology. They 

make it possible to continuously monitor health 

indicators, creating countless opportunities. The 

development of algorithms for disease prediction, 

prevention, and intervention can benefit from 

wearable technology. Li, et al [4] utilized a flexible 

electro-optic polymer modulator for improving an 

ECG signal acquisition. Yao, et al [5] deployed an 
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effective coating strategy based electron conjunction 

for enhancing the stability and conductance. Chen, 

et al [6] implemented a Feed Forward Neural 

Network (FFNN) mechanism for developing an 

automated atrial fibrillation detection system. Here, 

the wavelet transform and sliding window based 

filtering techniques are applied for preprocessing the 

input ECG signals, which helps to reduce the level 

of noise. Yildirim, et al [7] developed a new deep 

learning approach for accurately detecting the 

cardiac arrhythmia from the ECG signals. In paper 

[8], a new classification approach, named as, 

Asymmetric Domain Adaptation Neural Network 

(ADANN) has been developed to improve the 

performance of AF detection system. Here, a 

Denoising Auto-Encoder (DAE) mechanism is 

utilized to resolve the data shift problem. Jiang, et al 

[9] used a multi-scale feature fusion model for 

detecting an AF from the ECG signals. Marshili, et 

al [10] formulated an optimized framework for the 

detection of AF from ECG signals. The contribution 

of this paper was to obtain an increased detection 

accuracy, reduced memory usage and time 

consumption. Zhang, et al [11] introduced a spatial 

temporal attention based convolutional recurrent 

neural network mechanism for detecting multiclass 

arrhythmia from the given ECG signals. In paper 

[12], a standard Artificial Neural Network (ANN) 

mechanism is employed to identify an AF with the 

help of portable devices. Ganapathy, et al [13] 

developed an automated AF detection system using 

ECG signals, where the dynamic symbolic 

assignment is also proposed to properly differentiate 

the normal rhythm from the AF. Since quick 

intervention in the effective detection of AF might 

prevent serious effects brought on by a development 

of the condition, machine learning has greatly 

contributed to the development of real-time 

monitoring of AF. The automatic classification of 

AF has progressed significantly due to technological 

innovations and artificial intelligence technology. 

The feature extraction and classification are the two 

components of the conventional ECG classification 

system. In the existing works, various optimization 

and classification methodologies are employed for 

developing an automated ECG signal processing 

system. Traditional models have several significant 

problems due to advances in artificial intelligence. 

Prior to combining machine learning algorithms for 

classification, conventional algorithms should first 

design feature extraction techniques to extract 

valuable information. Information loss may occur as 

a result of this process. The classification results 

could appear to have greater faults when the 

extracted features can't accurately reflect the data. 

Furthermore, it heavily depends on ample prior 

expert knowledge and adequate medical diagnostics 

processing abilities. On this premise, developing a 

good optimization [14-18] and classification 

technique is also essential, yet getting the best 

outcomes is challenging. 

Numerous studies have demonstrated that 

adding optimization techniques [19-22] and machine 

learning features to the classifier would enhance 

system performance and produce more accurate 

classification results. Although the aforementioned 

research can successfully resolve the classification 

issue for AF, we can see that different neural 

networks can successfully extract complicated 

nonlinear characteristics from the original data 

without the need for human involvement. However, 

it is still challenging to learn the reasoning process 

behind the ECG signal features with the high 

accuracy needed for monitoring. Based on the 

survey, the following problems faced by the existing 

works are studied, which includes high 

misprediction, zero-frequency problem, overlapping, 

does not suitable for large datasets, and higher 

training time. Therefore the proposed work 

motivates to develop a novel optimization and 

classification models for an automated AF detection. 

The major research objectives of this paper are as 

follows: 

• To attain an improved classification 

accuracy, the different types of signal 

features such as HRV based features, and 

spectral features are extracted. 

• To optimally choose the most relevant 

parameters from the list of available features, 

an enhanced moth flame optimization 

algorithm is developed. 

• To accurately identify and predict the AF 

from the given ECG signals based on its 

optimal features, the Support Vector 

Machine (SVM) classification algorithm is 

developed. 

• To validate and test the performance of the 

proposed system, an extensive simulation 

and comparative analyses are carried out in 

this paper.  

The original contribution of this proposed work 

is to develop a highly efficient and competent 

methodology for detecting AF from the given ECG 

signals. In this framework, the HRV based feature 

extraction methodology has been utilized to analyze 

the dynamic characteristics of the heart activities. 

Since, the HRV model is highly robust in nature, 

which also helps to obtain an increased detection 

accuracy and confidence. Moreover, the moth flame 
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optimization mechanism is used to optimally select 

the features from the set of available features, which 

increases the training rate and reduces the false 

prediction rate of classification. Then, an enhanced 

SVM model is applied to accurately detect the AF 

by training the optimized set of features. When 

compared to the other existing AF detection 

methodologies, the proposed AAFD has the major 

benefits of high detection accuracy, optimized 

performance, reduced complexity, increased training 

speed, and minimized time consumption.  

2. Materials and methods 

This research work aims to develop an efficient 

and robust AAFD method of data processing that is 

gathered from either wearable or portable devices 

under high noise environments. The data collected 

from those devices are generally vulnerable. It can 

have anticipated that the recording signals are 

available in smaller slices rather than a clean section 

of long signal. Furthermore, portable devices cannot 

attach to the patients and will not work similarly to 

the wearable fashion. The recording length usually 

depends on the patient's behaviour; therefore, it is 

unmanageable to process data for the developers. 

The morphological characteristics such as PR/ST 

intervals and QRS complex length are 

physiologically sound and clinically relevant but 

these features were not preferred as they were not 

suitable for the above-mentioned scenarios. R peak 

in ECG signal is usually the dominant fiducial point 

as it is the most unaffected feature compared with 

all other features. If there is no identification of R 

peaks in any segment of ECG, then it is difficult for 

the characteristics waves or other fiducial points to 

provide useful information. R peak can be detected 

with high accuracy and confidence for both low and 

moderate noise levels. Therefore, we considered 

HRV based features for dynamic characteristics of 

heart activities due to their robustness under noisy 

scenarios. The overall framework of the proposed 

method is depicted in Fig. 1. 

2.1 Data description 

The required data for this work is taken from the 

publicly available dataset which is released in 2017 

by Computing in Cardiology Challenge (CinC). It 

consists of short ECG recordings (total number of 

8528 recordings) of lengths ranging from 9 seconds 

to more than 1 minute that is measured with a single 

lead. Clinical cardiologists label these recordings as 

normal rhythm (N), atrial fibrillation (AF), other 

arrhythmias (O) and noisy (~). Table 1 and figure 2 

show the dataset distribution and sample recordings. 

The classified dataset recording contains about 60% 

as normal rhythm, 9% as episodes of AF, and 28% 

as arrhythmias other than atrial fibrillation. The rest 

of the 3% data has been identified as being too noisy. 

2.2 Feature extraction 

2.2.1. HRV based features 

The first step used for the detection of R peak is  

 

 

 
Figure. 1 The proposed method overall framework 
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Figure. 2 Sample recordings for all four classes 

 
Table 1. Dataset distribution of the sample recordings 

Type # Recordings % portion 

Normal Rhythm (N) 5076 59.52% 

Atrial Fibrillation (AF) 758 8.89% 

Other Arrhythmias (O) 2415 28.32% 

Noisy (~) 279 3.27% 

Total 8528 100% 

 

 
Figure. 3 HRV from ECG: (a) original signal (Top) (b) 

Inter pulse intervals as an unevenly spaced signal 

(Bottom) 

 

to extract HRV based features. The average HR 

(beats/min) is calculated as 𝐻𝑅 = 60 ×
𝑁.𝑓

𝐿
. Where 

N is the number of R peaks, f is the sampling signal 

frequency in Hz, and L is the length of the recording. 

N number of R peaks having N-1 intervals and the 

sequence of RRI is in order: 𝑅𝑅𝐼 =
[𝑅𝑅1, 𝑅𝑅2, … . . 𝑅𝑅𝑁−1] . Heart rate variability 

(HRV) is the variation in heart rate from beat-to-

beat or the R–R interval duration, becoming a 

popular clinical and investigational tool. The 

frequency-domain in HRV relates to the energy 

distribution and autonomous nervous system (ANS) 

activities. The power spectrum density (PSD) of 

HRV contains a power-law relationship that can be 

obtained by plotting the logarithm of PSD against 

the logarithm of the frequency. This PSD interprets 

sympathetic-vagal balance. Fig. 3 despites the 

original ECG signal and RRI sequence as a function 

of time.  

The normalised energy distribution for any given 

signal s(t) on the time axis as (∫ |𝑠(𝑡)|2𝑑𝑡 = 1
∞

−∞
), 

we have: 

 

(∫ 𝑡2|𝑠(𝑡)|2𝑑𝑡
𝑅

). (∫ 𝑓2|�̂�(𝑓)|2𝑑𝑓
𝑅

) ≤
1

16𝜋2  (1) 

 

Where �̂�(𝑓) is the Fourier transform of s(t). The 

signals obtained from RRI sequences are 

compactable in the time domain, but the energy 

concentration signal is much poor in the 

corresponding frequency domain. 

For the above-mentioned reasons, the estimation 

of the RRI sequences with high energy 

concentrations is used, and the direct power 

spectrum density is waived in this research work. 

The advantage of these Poincare plots is 

characterising the detailed dynamic information 

conceded. The first-order difference of RRI is 

denoted as dRR where dRRi = RRi+1 – RRi.  For the 

Hankel matrix (A) defined as [a1, a2, a3, ……, an], is: 

 

𝐻 =

[
 
 
 
 
 
 

𝑎1 𝑎2 𝑎3 … 𝑎𝑛

𝑎2 𝑎3 𝑎4 … 𝑎1

. . . . .

. . . . .

. . . . .
𝑎𝑛−1 𝑎𝑛 𝑎1 … 𝑎𝑛−2 
𝑎𝑛 𝑎1 𝑎2 … 𝑎𝑛−1 ]

 
 
 
 
 
 

            (2) 
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The speciality of the Hankel matrix is each 

ascending skew-diagonal from left to right is a 

constant called Hermitian symmetry. Further, this 

matrix is diagonalised by a unitary matrix U: 

 

𝐻 = 𝑈 ∗ 𝐷𝑈                               (3) 

 

The diagonal matrix D consists of all the 

eigenvalues of H that are arranged along its diagonal 

line and * denotes the conjugate transpose. It was 

observed that the spectral radius of square matrix H 

is also central symmetry and the largest absolute 

value of its eigenvectors constituting U bases in the 

Fourier domain. Therefore, all the eigenvalues are 

arranged in ascending order. The matrix U is a 

permutation matrix which is a binary square matrix 

that consists of one entry of 1 exactly in each row 

and each column and elsewhere 0s. The rows and 

columns present in U and U* were permuted 

correspondingly. The feature map is symmetrical, 

and the structural irregularities are characterised. 

The matrix U contains a non-zero entry in the ith 

column is denoted as Ii, 𝑖 ∈ 1, 2, … . . ,
𝑛

2
; the Hankel 

distance (HankDist) is defined as 

 

𝑯𝒂𝒏𝒌𝑫𝒊𝒔𝒕 =
4

𝑛2
∑ |𝐼𝑖 − 𝑖|

[
𝑛

2
]

𝑖=1
                (4) 

 

The feature maps that contain non-zero entries 

are purely sinusoidal sequences that lie along the 

diagonal and anti-diagonal lines. The obtained 

matrix series of such Hankdist will be zero. For 

irregularly scattered feature maps, the HankDist is 

large. The HankDist is computed for both RRI and 

dRR. The standard descriptors [5] in the Poincare 

plot that contains SD1, SD2 and 𝑆𝐷𝑟𝑎𝑡𝑖𝑜 = 𝑆𝐷1 𝑆𝐷2⁄  

are linear descriptor of the RRI sequence. For RRI 

consecutive pairs like (RR1, RR2), are plotted 

against RRi. The data points from the normal RRI in 

the constructed Poincare plot lie along the straight-

line y = x, and these data points are used to form an 

ellipse. The long axis (SD1) of the ellipse replicates 

the long-term dispersion. In contrast, the short axis 

(SD2) replicates the short-term distribution of the 

fluctuation of RRI, so also the dynamics of heart 

activity. To extract SD1 and SD2 the data points are 

rotated 45° in the clockwise direction. Denote (x, 

y)T = (RRi, RRi+1)T where i = 1, 2, ….., N-1 then: 

 

[
𝑥′

𝑦′] = [
𝑐𝑜𝑠

𝜋

4
𝑠𝑖𝑛

𝜋

4

−𝑠𝑖𝑛
𝜋

4
𝑐𝑜𝑠

𝜋

4

] . [
𝑥
𝑦]                (5) 

The new data points were donated with (𝑥′, 𝑦′)𝑇 

whereas the variance along x' axes is computed as 

SD1, and 𝑆𝐷2
2 = 2. 𝑉𝑎𝑟(𝑅𝑅) − 𝑆𝐷1

2 . The Poincare 

plot is discovered as a nonlinear analysis tool, but 

the descriptors (SD1, SD2) are a linear combination 

of the basic statistics of the original RRI sequence. 

The second-order statistics are applied to the 

original RRI series to determine not being nonlinear. 

However, the above descriptors were invariant, 

implying the limited ability to reflect the order 

structure in RRI. The area occupied by 3 

consecutive RRI pairs is used for the calculation of 

'generation' (after possible delay-embedding). The 

area occupied by ((RRi, RRi+1) → (RRi+1, RRi+2) → 

(RR i+2; RR i+3)) is denoted with A(i), we have: 

 

𝐴(𝑖) = |

𝑅𝑅𝑖 𝑅𝑅𝑖+1 1
𝑅𝑅𝑖+1 𝑅𝑅𝑖+2 1
𝑅𝑅𝑖+2 𝑅𝑅𝑖+2 1

|                  (6) 

 

And CCM is the normalised area that is occupied: 

 

𝐶𝐶𝑀 =
1

𝐾𝜋𝑆𝐷1.𝑆𝐷2  
. ∑ 𝐴(𝑖)𝐾

𝑖=1                 (7) 

 

Apart from RRI, the power spectrum distribution 

(PSD) characteristics with frequency interpretation 

of components are expectable [5]. But this PSD 

from the difference of RRI sequences (δRR) shows 

that it failed to provide significant variation w.r.t 

white noise. But it is observed that δRR is capable to 

distinguish AF from normal rhythm. 

2.2.2. Spectral feature 

One main disadvantage of HRV based features 

is that they only contain information on heart 

activities in the sketch. ECG contains detailed 

morphology. It is vulnerable to noise; therefore, it is 

better not to characterise the characteristic waves 

(CW) in the time domain, but the frequency domain 

has a relatively stable structure. The estimation of 

Welch PSD is simply a minor modification to the 

periodogram method. The estimation of reduced 

variance is obtained in Welch PSD compared to the 

periodogram method with the expense of lowering 

frequency resolution. Assume one uniform ECG 

sample signal of total length N. This signal is 

divided into M segments equally with each length L 

with or without overlapping. The overlapping is 

denoted with D; we have: 

 

𝐿 + (𝑀 − 1)(𝐿 − 𝐷) = 𝑁                 (8) 

 

A windowed discrete fourier transform (DFT) is 

calculated for each segment Xk(i), where i = 0, 1, 

….., L-1, is as follows: 
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�̂�𝑘(𝑛) =
1

𝐿
 ∑ 𝑋𝑘 (𝑖)𝑊(𝑖)𝑒−2𝛱𝑗𝑖

𝑛

𝐿𝐿−1
𝑖=0  ,  

𝑘 = 1,2,… ,𝑀                           (9) 

Where W(i) denotes the window function that 

aims to reduce the frequency leakage. Finally, the 

spectral estimation is scaled into [
−1

2
,
1

2
] which is the 

normalised average of all the M periodograms 

above: 

 

𝑝 ̂ (
𝑛

𝐿
) =

1

𝑀
 ∑

|𝐿.�̂�𝑘(𝑛)| 2

𝑊0

𝑀
𝑘=1  , 𝑛 = 1,2,.  .  .  ,

𝐿

2
  (10) 

here W0 is the energy of the window function: 

 

𝑊0 = ∑ |𝑊(𝑖)|2𝐿−1
𝑖=0                      (11) 

 

The frequency resolution is thus reduced from 
𝑁

2
 

to 
𝐿

2
. However, the estimation's variance is reduced 

by a factor of up to M. The order of magnitude of N 

in our case is about 103 ‒ 104. If M's order of 

magnitude is about 101, considering the sampling 

frequency is 300 Hz (so the power spectrum will be 

distributed in 0-150 Hz), we still have a resolution 

level of about 1 frequency point/Hz. 

2.2.3. Selection of features 

This work uses maximum-relevance-min-

redundancy (MRMR) which is based on mutual 

information. As the name indicates, this model can 

maximise relevance while minimising the 

redundancies between the features and the targets 

(labels). The mutual information is used to estimate 

the relevance and redundancy. The set of all the 

original features and the set of the selected features 

are denoted with Ω and S respectively. The feature 

selection is used to discover the optimal subset S of 

cardinality m which is: 

 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑆⊆𝛺

𝐼(𝑆𝑚, 𝑡)   (12) 

 

Where t as the targets (labels), I (. , .) as the 

mutual information estimation and | . |  as the 

cardinality operator. A straightforward selection 

procedure that uses an exhaustive search is 

considered an impractical choice to find out 

combinatorial subset S. Also, the mutual 

information is difficult to estimate for the high 

dimensional variable.  

2.2.3.1. Feature selection with modified moth flame 

optimisation algorithm 

To avoid local optimisation and find the global 

update, the moth flame optimisation algorithm is 

further modified with a levy flight mechanism. Now, 

this algorithm expands the search scope, and hence 

this algorithm is named as modified moth flame 

optimisation algorithm. The improved formula is: 

 

S(Mi, Fj) = Di. e
bt. cos(2πt)  + L(d). Fj      (13) 

 

Where Mi and Fj are ith moth and jth flame 

respectively. Di is the distance between the ith moth 

and jth flame. The current iteration number is 

denoted with t. The spiral flight of the moth updates 

its position with the addition of the levy flight 

mechanism, which expands the search range and 

prevents the moth from falling into local 

optimisation. The levy flight formula is as follows. 

 

𝐿𝑒𝑣𝑦(𝑥) = 0.01
𝑟1𝛿

|𝑟2|
1
𝜑

                   (14) 

 

Where r1 and r2 are the random numbers 

between [0,1], φ is a constant 1.5, and the δ formula 

is as follows: 

 

𝛿 = (
𝜏(1+𝜑) 𝑠𝑖𝑛(

𝜋𝜑

2
)

𝜏(
1+𝜑

2
)𝜑2

(
𝜑−1

2
)
)

1

𝜑

                  (15) 

 

The modified moth flame optimisation algorithm 

is as follows: 

Algorithm 1: Modified moth flame optimisation 

code 

1: Initialisation of the Moths  

2: For I =1: N 

3:       For j = 1:D then  

4:          MOi, j = random position between given 

bounds;  

5:      end  

6: O = Fitness value 

7: end  

8: C = 1  

9: While   M𝑂𝑖 = | 𝐹𝑂𝑗 - M𝑂𝑖 | ∗ 𝑒 𝑏𝑡 cos(2𝜋𝑡) + 𝐹𝑂𝑗 

10:       If       𝐶_𝑖𝑡𝑒𝑟 ≤ 𝑇_𝑖𝑡𝑒𝑟  

11:          MOi = Fitness value ( MOi )  

12:      Elseif      𝐶_𝑖𝑡𝑒𝑟 == 1  

13:            FO = Quick Sort (MO) 

14:            𝑂𝐹𝑂= Quick Sort (𝑂𝑀𝑂) 

15:     Else 

16:          FO = Quick Sort (M𝑂𝐶 , M𝑂𝐶𝑖𝑡𝑒𝑟 )  
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17:          𝑂𝐹𝑂 = Quick Sort(𝑀𝑂𝐶𝑖𝑡𝑒𝑒𝑟−1 , 𝑀𝑂𝐶𝑖𝑡𝑒𝑟 )  

18:     End  

19:     Update b and t 

20:      M𝑂𝑖 = | 𝐹𝑂𝑗 - M𝑂𝑖 | ∗ 𝑒 𝑏𝑡 cos (2𝜋𝑡) + 𝐹𝑂𝑗  

21:      Update the number of flames  

22:       𝑁 = 𝑐𝑒𝑖𝑙 (𝑁 − 𝐶𝑖𝑡𝑒𝑟  ∗
𝑁−1

𝑇𝑖𝑡𝑒𝑟
 ) 

23:      𝐶𝑖𝑡𝑒𝑟 = 𝐶𝑖𝑡𝑒𝑟 +1  

24: End 

25: Exit 

2.2.4. Feature optimisation 

In this instigation, the fitness function used must 

satisfy the simultaneous maximisation of relevance 

(RV) and minimisation of redundancy (RD). 

Therefore, the fitness function (F) was directly 

proportional to RV and inversely proportional to RD.  

 

⇒ 𝐹 ∝ 𝑅𝑉   𝑎𝑛𝑑  𝐹 ∝
1

𝑅𝐷
  

𝐹 = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑆⊆𝛺,|𝑆|=𝑚

(𝑅𝑉 − 𝑅𝐷)    𝑜𝑟 
𝑅𝑉

𝑅𝐷
        (16) 

 

Relevance RV and redundancy RD are defined as 

follows: 

𝑅𝑉 =
1

|𝑆|
 ∑ 𝐼(𝑖, 𝑡)𝑖𝜖𝑆                    (17) 

𝑅𝐷 =
1

|𝑆|2
∑ 𝐼(𝑖, 𝑗)𝑖,𝑗𝜖𝑆                   (18) 

2.2.5. Additional noise resistance test 

The data set contains 279 recordings under noisy 

class readings, around 3.27%, which is a relatively 

smaller proportion that can be easily excluded. The 

robustness of this model against noise is 

investigated by introducing the different intensities 

added artificially. Fig. 5 shows the original sample 

recording and noise corrupted versions. The signal 

to noise ratio (SNR) for the existing original noise 

recordings does not have a reliable estimation, so 

original signals are taken as clean signals. Then we 

use all the energy from the original recordings to 

compute Ps, and white noise of power Pn is added. 

The SNR is: 

 

𝑆𝑁𝑅 = 10. 𝑙𝑜𝑔
𝑃𝑠

𝑃𝑛
𝑑𝐵                   (19) 

 

And the whole framework depicted in Fig. 1 will 

be performed under each noise level. 

The obtained feature values corresponding to all 

the noise levels were trained. Genetic algorithm 

(GA) and modified moth flame optimisation 

algorithm (MMFOA) are used as classifiers. The test 

data set is separately not available publicly.  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure. 5 NOISE TEST (a) SNR = ∞ dB (original signal), (b) SNR = 30 dB, (c) SNR = 20 dB, and (d) SNR = 10 dB 
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Therefore, the performance of classifiers was tested 

using k-fold cross-validation (k = 10). Then 30% of 

data of each subset (N, A, O) are reserved. Only 

70% of data was involved in training and validation. 

The performances on the remaining 30% of data are 

reported to demonstrate the generalisation ability. 

All the computations are performed on Matlab2021a 

for 10 times, and averaged values are reported. 

3. Results and discussions 

3.1 Descriptive analysis 

The pre-processing of each recording was 

carried out to obtain the feature vector. The power 

spectrum density and HRV based features were 

estimated from 0 Hz to 80 Hz. A 41-dimension 

feature vector was obtained after pre-processing. All 

the top-ranked features under noise levels are almost 

linear descriptors from the HRV analysis. At a high 

noise level (SNR = 10dB), the signals were 

disturbed, leading to slight variation in the different 

rankings. The performance metrics decrease as the 

noise level increases. The results obtained from the 

top 10 features were compared with all features.  

The top 10 features selected by MMF-MRMR 

associated with each noise level are tabulated in 

Table 2. Under different noise levels, it is observed 

that the top-ranked features are linear and nonlinear 

descriptors based on HRV analysis. When SNR = 10 

dB, the noise might disturb the RRI and lead to a 

different ranking. After selecting the top 10 features 

with a model-free feature selection scheme, the 

remaining low ranked features were eliminated. As  

 
Table 2. Top 10 features selected by MMF-MRMR 

Ran

k 

SNR=∞d

B 

SNR=30d

B 

SNR=20d

B 

SNR

=10d

B 

1 AFEV AFEV AFEV RRme

an 

2 CCM SDratio CCM CCM 

3 SDratio CCM SDratio SDrati

o 

4 RRmean RRmean HANKRR RRST

D 

5 PSD4.6- 6.9 RRSTD RRmean PSD6.

9- 9.2 

6 RRSTD HANKRR PSD6.9- 9.2 PSD2.

3- 4.6 

7 HANKRR PSD6.9- 9.2 PSD9.2- 11.5 AFEV 

8 PSD6.9- 9.2 PSD9.2- 11.5 PSD11.5- 

13.8 

PSD9.

2- 11.5 

9 PSD9.2- 

11.5 

PSD11.5- 

13.8 

PSD13.8-

16.1 

PSD2.

3- 4.6 

10 PSD11.5- 

13.8 

PSD2.3- 4.6 PSD16.1- 

18.4 

PSD1

1.5- 13.8 

the noise level increases, the performance metrics 

decrease slightly for almost all classification 

problems. The results obtained with the artificial test 

set were tabulated in table 4 for various noises, 

features and classification. For this analysis, the 

different types of existing techniques such as BT, 

SVM, and GA-MRMR are compared with the 

proposed model. These are all the standard meta-

heuristics optimization based classification 

mechanisms used for detecting AF from the ECG 

signals. Moreover, these techniques have the major 

problems of increased over-fitting, training 

complexity, high time consumption, and slow 

convergence. Therefore, the proposed AAFD 

framework outperforms the other models with 

increased performance values. Also, these results 

were compared with different classifiers from the 

literature [23]. It is observed that, under all noise 

conditions, MMFOA is superior in terms of its 

performance and can be widely adopted for 

wearable devices.  

3.2 Descriptive analysis 

Sensitivity, Specificity, and Accuracy are well-

defined and reported for two-class classification  

 

problems. 𝑆𝑒𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                 (20) 

 

𝑆𝑝𝑒𝑐 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                       (21) 

 

𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                 (22) 

 

For two-class classification problems, the 

maximum accuracy is obtained for N/A recordings 

compared with both O/A and N/O recordings for the 

MMF-MRMR classifier. It is observed that the N/A 

recordings having the highest accuracies of 96.4% 

and 97% for GA-MRMR and MMF-MRMR 

respectively are obtained due to the sensitivity of 

nonlinear descriptors to arrhythmias. The results of 

this work are compared with BT and SVM [33] 

classifiers and found the accuracy of MMF-MRMR 

is more for all two-class classification problems than 

for the other three classifiers. The accuracies 

degrade with the increment in the SNR. For 10 dB 

SNR, the accuracy obtained is 95.3% using all 

features. For N/A top 10 features, the maximum and 

minimum accuracies are 96.7% and 94.5%, 

respectively. Also, it is observed that for O/A and 

N/O classification problems, the accuracy is 

dropped by about 5‒9%. For the three-class 

classification problem, we defined the A as a 

positive class and N and O as negative classes and 
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counterparts of Sen and Spec are defined as the 

quotient of true positive/negative examples and all 

positive/negative examples and reported. For N/O/A, 

the highest accuracy of 84.3% is achieved with high 

specificities. The performance metrics of this class  
 

 

Table 3. Comparison of classifier and classification performances on the test set under different configurations for 

different tasks 
 

SNR 

 

FEATURE

S 

 

CLASSIFIE

R 

N/A O/A N/O N/O/A 

Acc Sen Spe

c 

Acc Sen Spe

c 

Acc Sen Spe

c 

Acc Sen Spe

c 

 

 

∞dB 

 

All 

BT  96.

6 

83.

2 

98.6 89.

0 

69.

3 

95.3 84.

7 

68.

1 

92.5 81.

8 

64.

6 

98.1 

SVM   95.

3 

74.

3 

98.5 89.

1 

67.

5 

95.9 82.

7 

62.

5 

92.3 79.

7 

63.

2 

98.2 

GA-MRMR 96.

4 

79.

7 

99.1 92.

0 

75.

3 

98.1 85.

2 

68.

3 

94.9 82.

8 

71.

6 

99.3 

MMF-

MRMR 

97.

0 

82.

0 

99.3 92.

8 

77.

0 

98.7 86.

5 

70.

4 

95.4 84.

3 

73.

4 

99.4 

 

Top 10 

BT  95.

9 

83.

7 

97.7 89.

6 

76.

2 

93.8 80.

7 

63.

5 

88.9 78.

2 

72.

0 

96.7 

SVM   96.

2 

82.

6 

98.2 89.

7 

74.

6 

94.4 80.

3 

61.

6 

89.2 78.

2 

73.

0 

97.3 

GA-MRMR 96.

5 

85.

0 

98.3 90.

7 

77.

6 

95.1 81.

6 

63.

9 

91.3 80.

1 

75.

9 

98.2 

MMF-

MRMR 

96.

7 

86.

5 

98.3 91.

6 

79.

9 

95.6 82.

8 

66.

2 

91.6 82.

6 

78.

2 

98.2 

 

 

30d

B 

 

All 

BT  96.

6 

83.

2 

98.6 89.

3 

70.

5 

95.3 84.

7 

68.

3 

92.5 82.

0 

69.

3 

97.9 

SVM   95.

8 

76.

3 

98.8 90.

0 

72.

6 

95.5 82.

7 

64.

9 

91.2 80.

2 

68.

6 

98.0 

GA-MRMR 96.

4 

78.

4 

99.1 91.

4 

72.

1 

97.8 85.

0 

67.

4 

94.3 82.

5 

68.

4 

98.8 

MMF-

MRMR 

96.

9 

81.

3 

99.3 92.

2 

73.

0 

98.4 86.

1 

69.

1 

95.1 84.

4 

72.

1 

99.0 

 

Top 10 

BT  96.

3 

83.

3 

98.3 89.

8 

76.

3 

94.0 80.

6 

62.

2 

89.4 78.

5 

72.

8 

96.9 

SVM   96.

4 

83.

6 

98.3 89.

6 

75.

0 

94.2 80.

0 

59.

7 

89.7 78.

0 

73.

5 

97.2 

GA-MRMR 96.

3 

84.

2 

98.2 90.

7 

76.

5 

95.1 81.

2 

61.

9 

90.3 80.

5 

75.

2 

98.1 

MMF-

MRMR 

96.

6 

85.

8 

98.3 91.

5 

78.

6 

95.6 82.

0 

63.

9 

90.6 82.

7 

77.

3 

98.2 

 

 

20d

B 

 

All 

BT  96.

3 

82.

2 

98.4 89.

7 

70.

4 

95.9 83.

8 

66.

3 

92.2 81.

1 

66.

0 

98.1 

SVM   95.

3 

74.

3 

98.4 89.

5 

69.

7 

95.7 81.

9 

64.

5 

90.2 79.

3 

65.

7 

98.1 

GA-MRMR 96.

2 

76.

4 

98.9 91.

3 

70.

5 

97.4 84.

2 

65.

4 

93.3 82.

7 

68.

2 

98.7 

MMF-

MRMR 

96.

4 

77.

4 

99.2 91.

9 

72.

4 

97.8 85.

1 

67.

1 

94.1 84.

3 

69.

7 

99.0 

 

Top 10 

BT  96.

2 

84.

0 

98.0 90.

1 

74.

9 

94.9 79.

8 

60.

6 

88.9 77.

5 

72.

7 

97.0 

SVM   95.

9 

82.

4 

97.9 88.

6 

72.

5 

93.6 78.

7 

58.

9 

88.1 76.

4 

71.

0 

96.9 

GA-MRMR 96.

3 

83.

7 

98.2 89.

6 

74.

4 

94.8 80.

1 

60.

9 

89.9 80.

6 

72.

4 

98.0 

MMF-

MRMR 

96.

6 

84.

9 

98.3 90.

7 

76.

2 

95.3 81.

5 

62.

9 

90.6    

83.

2 

73.

6 

98.0 
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problem decrease slightly with the increase in the 

noise levels under all classifier configurations. The 

accuracy is comparable even after eliminating 80% 

of the low-ranked features and considering only the 

top 20% features. This validates our model-free 

feature selection based on mutual information. 

Considering only the top 10 features decreases the 

computational effect and inference time in ECG. 

Therefore, this algorithm can be anticipated for 

adoption in wearable devices.  

4. Conclusion 

This proposed work's novel contribution is the 

creation of a highly effective and qualified 

methodology for detecting AF from the provided 

ECG signals. The dynamic properties of the cardiac 

activity have been analysed in this framework using 

the HRV-based feature extraction methodology. The 

HRV model's high level of robustness contributes to 

improved detection confidence and accuracy. 

Additionally, the moth flame optimization process is 

utilised to choose the features from the collection of 

accessible features in the best way possible, which 

boosts training rates and lowers classification false 

prediction rates. Then, using the refined collection 

of characteristics, an improved SVM model is used 

to precisely detect the AF. The proposed AAFD 

algorithm detects AF even for short recordings of 

ECG. The long-term ECG recording for diagnosis is 

practically impossible as they experience various 

noises and artifacts. The validation of this algorithm 

is done on a publicly released dataset which 

comprises short ECG recordings from portable 

devices acquired under unstructured environments. 

This algorithm gives superior accuracy and 

specificity, making it compete with the prototype for 

preliminary screening. This research work is well-

supported the effectiveness of the HRV based 

nonlinear features used for AF detection with short 

ECG recordings. Considering the existence of 

arrhythmias other than AF, cascading classification 

can be a direction of future work.  

Conflicts of Interest 

The authors declare that they have no conflict of 

interest. 

Author Contributions 

Methodology and software, SU; formal analysis 

and validation, MT; writing- original draft 

preparation, SU; Supervision, MT. 

References 

[1] S. K. Sahoo, W. Lu, S. D. Teddy, D. Kim, and 

M. Feng, “Detection of atrial fibrillation from 

non-episodic ECG data: a review of methods”, 

In: Proc. of 2011 Annual International 

Conference of the IEEE Engineering in 

Medicine and Biology Society, pp. 4992-4995, 

2011. 

[2] Y. Maithani, A. Singh, B. Mehta, and J. Singh, 

“PEDOT: PSS treated cotton-based textile dry 

electrode for ECG sensing”, Materials Today: 

Proceedings, 2022. 

[3] J. Ferri, R. Llinares, I. Segarra, A. Cebriánv, E. 

G. Breijo, and J. Millet, “A new method for 

manufacturing dry electrodes on textiles. 

Validation for wearable ECG monitoring”, 

Electrochemistry Communications, Vol. 136, p. 

107244, 2022. 

[4] H. Li, Z. Lin, Y. Wang, Z. An, S. Zhang, Z. 

Zhang, “Demonstration of a flexible electro-

optic polymer modulator with a low half-wave 

Voltage for ECG signals acquisition”, Optics & 

Laser Technology, Vol. 153, p. 108253, 2022. 

[5] B. Yao, L. S. D. Vasconcelos, Q. Cui, A. 

Cardenas, Y. Yan, and Y. Du, “High-stability 

conducting polymer-based conformal 

electrodes for bio-/iono-electronics”, Materials 

Today, Vol. 53, pp. 84-97, 2022. 

[6] Y. Chen, C. Zhang, C. Liu, Y. Wang, and X. 

Wan, “Atrial Fibrillation Detection Using a 

Feedforward Neural Network”, Journal of 

Medical and Biological Engineering, Vol. 42, 

pp. 63-73, 2022. 

[7] Ö. Yıldırım, P. Pławiak, R. S. Tan, and U. R. 

Acharya, “Arrhythmia detection using deep 

conVolutional neural network with long 

duration ECG signals”, Computers in Biology 

and Medicine, Vol. 102, pp. 411-420, 2018. 

[8] N. Ammour, “Atrial fibrillation detection with 

a domain adaptation neural network approach”, 

In: Proc. of 2018 International Conference on 

Computational Science and Computational 

Intelligence (CSCI), pp. 738-743, 2018. 

[9] F. Jiang, C. Hong, T. Cheng, H. Wang, B. Xu, 

and B. Zhang, “Attention-based multi-scale 

features fusion for unobtrusive atrial fibrillation 

detection using ballistocardiogram signal”, 

BioMedical Engineering OnLine, Vol. 20, pp. 

1-21, 2021. 

[10] I. A. Marsili, L. Biasiolli, M. Masè, A. Adami, 

A. O. Andrighetti, and F. Ravelli, 

“Implementation and validation of real-time 

algorithms for atrial fibrillation detection on a 



Received:  September 8, 2022.     Revised: December 4, 2022.                                                                                        445 

International Journal of Intelligent Engineering and Systems, Vol.16, No.1, 2023           DOI: 10.22266/ijies2023.0228.38 

 

wearable ECG device”, Computers in Biology 

and Medicine, Vol. 116, p. 103540, 2020. 

[11] J. Zhang, A. Liu, M. Gao, X. Chen, X. Zhang, 

and X. Chen, “ECG-based multi-class 

arrhythmia detection using spatio-temporal 

attention-based conVolutional recurrent neural 

network”, Artificial Intelligence in Medicine, 

Vol. 106, p. 101856, 2020. 

[12] D. Marinucci, A. Sbrollini, I. Marcantoni, M. 

Morettini, C. A. Swenne, and L. Burattini, 

“Artificial neural network for atrial fibrillation 

identification in portable devices”, Sensors, Vol. 

20, p. 3570, 2020. 

[13] N. Ganapathy, D. Baumgärtel, and T. M. 

Deserno, “Automatic detection of atrial 

fibrillation in ECG using co-occurrence 

patterns of dynamic symbol assignment and 

machine learning”, Sensors, Vol. 21, p. 3542, 

2021. 

[14] M. Dehghani, Z. Montazeri, A. Dehghani, R. A. 

R. Mendoza, H. Samet, and J. M. Guerrero, 

“MLO: Multi leader optimizer”, Int. J. Intell. 

Eng. Syst, Vol. 13, pp. 364-373, 2020, doi: 

10.22266/ijies2020.1231.32. 

[15] F. A. Zeidabadi, M. Dehghani, and O. P. Malik, 

“TIMBO: Three influential members based 

optimizer”, International Journal of Intelligent 

Engineering and Systems, Vol. 14, pp. 121-128, 

2021, doi: 10.22266/ijies2021.1031.12. 

[16] F. A. Zeidabadi, M. Dehghani, and O. P. Malik, 

“RSLBO: Random Selected Leader Based 

Optimizer”, International Journal of Intelligent 

Engineering and Systems, Vol. 14, pp. 529-538, 

2021, doi: 10.22266/ijies2021.1031.46. 

[17] M. Sumanl, V. P. Sakthivel, and P. D. Sathya, 

“Squirrel search optimizer: nature inspired 

metaheuristic strategy for solving disparate 

economic dispatch problems”, International 

Journal of Intelligent Engineering and Systems, 

Vol. 13, pp. 111-121, 2020, doi: 

10.22266/ijies2020.1031.11. 

[18] S. A. Doumari, H. Givi, M. Dehghani, and O. P. 

Malik, “Ring toss game-based optimization 

algorithm for solving various optimization 

problems”, International Journal of Intelligent 

Engineering and Systems, Vol. 14, pp. 545-554, 

2021, doi: 10.22266/ijies2021.0630.46. 

[19] P. D. Kusuma and M. Kallista, “Stochastic 

Komodo Algorithm”, International Journal of 

Intelligence Engineering and Systems, Vol. 15, 

pp. 156-166, 2022, doi: 

10.22266/ijies2022.0831.15. 

[20] P. D. Kusuma and A. Dinimaharawati, “Fixed 

Step Average and Subtraction Based 

Optimizer”, International Journal of Intelligent 

Engineering and Systems, Vol. 15, 2022, doi: 

10.22266/ijies2022.0831.31. 

[21] F. A. Zeidabadi, S. A. Doumari, M. Dehghani, 

and O. P. Malik, “MLBO: Mixed Leader Based 

Optimizer for Solving Optimization Problems”, 

International Journal of Intelligent Engineering 

and Systems, Vol. 14, pp. 472-479, 2021, doi: 

10.22266/ijies2021.0831.41. 

[22] F. A. Zeidabadi and M. Dehghani, “Poa: Puzzle 

optimization algorithm”, Int. J. Intell. Eng. Syst, 

Vol. 15, pp. 273-281, 2022, doi: 

10.22266/ijies2022.0228.25. 

[23] Z. Mei, X. Gu, H. Chen, and W. Chen, 

“Automatic atrial fibrillation detection based on 

heart rate variability and spectral features”, 

IEEE Access, Vol. 6, pp. 53566-53575, 2018. 


