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Abstract: An energy management system (EMS) for hydrogen fuel cell hybrid electric vehicles (FCHEV) based on 

artificial intelligent (AI) technique is presented in this paper. In order to achieve a fast dynamic response and 

maintain high efficiency of energy storage resources, the fuzzy logic controller (FLC) and artificial neural networks 

(ANNs) are utilized for purpose of intelligently managing the system's power flow. Moreover, the feed-forward 

wavelet neural network linked with proportional-integral (PI) controller named (WNN-PI) and the recurrent wavelet 

neural network linked with PI controller named (RWNN-PI) are tuned by particle swarm optimization (PSO) 

algorithm, both are aimed at the operating of the resources at high efficiency with respect to their mechanism 

performance, meeting the load power demands efficiently, and reducing hydrogen usage. Finally, a comparison of 

the simulation outcomes is presented to choose the best of the proposed AI controllers where the results showed 

optimum power flow between power sources and load power of FCHEV then as consequence, the BAT and UC are 

run in a safe manner and extend their lifetime, also, the average efficiency of the FC stack has been increased, and 

the amount of usage of hydrogen fuel is reduced. The simulation of AI EMS has been carried out by 

MATLAB/Simulink R2022a, with various vehicle driving cycles by the advanced vehicle simulator (ADVISOR). 

Keywords: Artificial intelligent, Recurrent wavelet neural network, EMS, PSO algorithm. 

 

 

1. Introduction 

Globally, with the intensification of technology 

and the globalization of the population, energy 

sources have become a need for everyday living. 

However, the dangers of this conventional energy 

exploitation have hardly ever been considered. For 

instance, the enormous number of automobiles in 

use globally has caused serious issues for the 

environment and people. Therefore, intensifying 

research for providing new approaches now to 

create energy sources that are less harmful to the 

environment, safer and more economical. Moreover, 

recently researchers and developers focused on 

reducing energy usage based on alternative vehicle 

technology. 

Particularly, technology using fuel cells (FC) is 

regarded as an environmentally friendly energy 

source. Due to its longevity and environmentally 

benign emissions, it is regarded as green energy [1]. 

Transportation via fuel cell electric vehicles 

(FCEVs), fuel cell hybrid electric vehicles 

(FCHEVs) and battery electric vehicles (BEVs) 

have gained popularity. However, BEVs that use the 

battery pack as the main power has some drawbacks 

such as the short driving range [2], the battery 

requires hours to fully charge [3] and high cost and 

weight of BEVs due to their large battery packs [4]. 

Meanwhile, FCEVs have also some disadvantages 

such as dynamic response is slow as well as a high 

hydrogen cost, and the inability to recharge by the 

principle of regenerative braking energy [5]. 

The best solution to solve the drawbacks of both 

BEVs and FCEVs is to use a hybridization system 

of fuel cells (FC), batteries (B), and ultracapacitors 

(UC) in FCHEVs [6]. A developing successful 

energy management system is essential for 

controlling the power flow in order to use hydrogen 
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adequately and the auxiliary power sources 

efficiently respond to power demand [7,8]. The 

EMS uses artificial intelligence (AI) as well as an 

advanced controller for regulating the 

charge/discharge periods of the BAT and UC, 

ensuring optimal power flow between the energy 

resources within the efficient operation of the entire 

FCHEV, reducing the fuel consumption of the FC 

and also for expending lifetime of the FC, BAT and 

UC. 

Numerous literary works addressed assessing 

and enhancing the performance of FCHEVs; the 

bulk tended to concentrate on EMSs. Moreover, 

optimization algorithms have attracted attention to 

EMS of hybrid electric vehicles and show 

outstanding features for improving the responses of 

EMS [10-12]. In [13] the authors present an online 

adaptive prognostics-based health management 

strategy for FCHEV; where the optimization 

problem has been developed for selecting the FLC 

parameters based on the state of charge (SOC) of the 

battery, the power demand, the fuel consumption as 

well as the fuel cell degradation. However, this 

strategy is rule-based and then able to produce a 

certified economy of fuel usage, but this does not 

ensure that it will attain the best optimal power flow. 

Also, even though GA is utilized in this method, it is 

not very adaptable, and the outcomes might change 

greatly under different driving situations. 

Equivalent consumption minimization strategy 

(ECMS) is a control method for energy management 

of HEV as reported by [9]. This control minimizes 

energy consumption with consideration of the 

battery SOC, through the process of optimizing the 

torque split between the motor and engine. 

Moreover, ECMS can be implemented in adaptive 

or non-adaptive applications also being optimal 

control in terms of the cost function, for both battery 

aging, as well as fuel consumption by the Ah 

throughput method, is used to quantify battery aging. 

In general, it is feasible to find near-optimal 

solutions using ECMS. But since it identifies an 

optimum costate via repeated simulations, such 

approaches are problematic to apply to real 

applications. Also, the [14] presents the ECMS 

practical technique for predicting a suitable costate 

based on deep Q-networks (DQNs), a reinforcement 

learning algorithm that employs a deep neural 

network to assess performance and choose the best 

control parameter or costate. Although, the 

significant benefits of deep Q-networks, it is 

restricted because of an issue known as the "curse of 

dimensionality," which may happen because of the 

discretization of states and control variables. 

The method used in [15] to regulate the flow of a 

hybrid system in response to variations in the load 

demand and battery SOC is the intelligent energy 

management system based on the adaptive neuro-

fuzzy inference system ANFIS/Simulink toolbox. 

[16] conducted comparison results between FLC and 

ANFIS intelligent techniques to find out which sort 

of these intelligent systems should be employed for 

enhancing the SOC profile of the series-parallel 

plug-in hybrid electric vehicle. Overall, ANFIS can 

be applied and controlled within stable data, but it is 

challenging to control and work with load profiles 

that experience significant fluctuations, such as real 

vehicle driving cycles (e.g., UDDS, OCC or FTP). 

Consequently, AI is used as advanced and 

accurate techniques in EMS over all kinds of EVs, 

including wavelet strategies. Whereby, [17] presents 

a frequency decoupling-based energy management 

strategy (EMS) for electrical hybrid vehicles with 

fuel cells, batteries, and ultracapacitors (FCHEV) by 

employing fuzzy control approach. This method 

decomposes the frequency into three ranges by 

using Harr wavelet transform and an adaptive-fuzzy 

filter. Resulting in, increase fuel efficiency, 

prolonged fuel cell lifespan as well a 7.94% 

decrease in fuel consumption over the ECMS. [18] 

reported a real-time predictive energy management 

technique for the FCHEV. In order to forecast future 

velocity, an LSTM neural network is proposed, and 

based on that the wavelet transform algorithm is 

utilized. 

Authors in [23] present a wavelet neural network 

parallel with PID controller as dynamic and 

recurrent dynamic methods (DWNN-PID and 

RDWNN-PID) tuned by PSO algorithm for 

controlling the speed of BLDC motor with a 

comparative study where results that the DWNN-

PID is more efficient than other controllers. 

This paper’s key objective is to implement 

intelligent EMS for FCHEV. Where the proposed 

architecture of plug-in FCHEV, combines FC 

PEMFC type as the main power source with the 

BAT and UC as secondary power sources with a 

controller that works under any driving cycles. 

Overall, the major contributions of this work are 

listed below: 

 

• Involves AI EMS by FLC and ANNs for 

controlling the FC converter and advanced 

controller for controlling the BAT converter by 

using wavelet neural networks as feed-forward 

method (WNN-PI) and recurrent method of 

wavelet neural network (RWNN-PI), for 

regulating the charge/discharge periods of the 

BAT and UC, and also ensure optimal power 

flow between the energy resources within the 
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effective operation of overall FCHEV system. 

• Maintain the 300 volts as the set desired level of 

the DC-bus voltage. 

• Verify that the supplying for switching 

converters of the FC and BAT is with 

appropriate signals to guarantee that the hybrid 

FC system responds to entire load dynamics. 

• The suggested design is tested across three 

vehicle driving cycles to see how reliable it is 

when used with various drive cycles.  

• The FC, BAT, and UC are modeled based on 

their manufacturer datasheets. As a consequence, 

the properties of the power sources have thus 

been obtained as close to their real 

characteristics. 

• Providing a comparative outcomes study to 

choose the best among these AI controllers. 

• Providing a PSO algorithm that could use to 

tune many different parameters of applications 

controller. 

The remainder of this paper is organized as follows. 

Section 2 presents the FCHEV architecture, power 

sources model and strategy of power flow. Section 3 

illustrates the description of intelligent control for 

the FC and BAT converters. In section 4 simulation 

results and discussions of all proposed controllers. 

Finally, the conclusion of the intelligent EMS is 

presented in section 5. 

 

 

 

Figure. 1 The developed plug-in FCHEV configuration of the proposed EMS 
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2. Methodology 

2.1 Architecture of the proposed FCHEV 

The configurations of FCHEV are divided into 

three categories which are: Active, semi-active and 

passive [6]. The proposed topology architecture is 

semi-active, hence structured as the UC is linked 

directly to the DC-bus without a converter, the FC is 

connected to the DC-bus via a unidirectional DC-

DC converter and a bidirectional DC-DC converter 

connects BAT to the DC-bus.  

Fig. 1 shows the block diagram of the proposed 

topology with the main control diagram. The 

boost/buck converter is set to be controlling the 

BAT output voltage. Hence, step up/down the 

voltage of BAT in order to keep the DC-bus at 300 

volts. BAT converter is bidirectional which able to 

invest the power of sudden braking to recharge the 

BAT but first, the UC is recharged before the BAT 

due to the UC features that respond quickly to rapid 

changes in power demands [19]; BAT converter 

controlled by wavelet strategies parallel with PI 

controllers which are named (WNN-PI and RWNN-

PI) both are tunning online by POS algorithm. 

While the FC converter is a boost type which 

controlled by EMS that has one of two controllers 

(FLC or ANNs). Overall, the control structure is 

objective at covering the desired power load of the 

vehicle efficiently which yields the best control over 

hydrogen consumption, improvements in the FC 

responsiveness and efficiency of FC runs, an 

extension of the FC and BAT lifespan, and a 

reduction in the size of the FC stack system, which 

in turn lowers the FC cost. The main block diagram 

of the controller EMS strategy is shown above, 

which extremely demonstrates that converters are 

controlled by the reference duty cycle. In order to 

find the reference duty cycles, an AI controller is 

required for obtaining the system reference values 

and adjust the system to the desired value under an 

optimal power flow of the FCHEV. Due to the 

vehicle's abrupt acceleration and deceleration, a 

Low Pass Filter (LPF) has been utilized to reduce 

the load profile high frequencies. 

2.2 Power sources model parameters  

Our proposed FCHEV model intended to 

establish the power sources with the same properties 

as their manufacturer datasheets, which in turn made 

the Simulink "SimPowerSystem" model of power 

sources accurate and as same as their actual qualities. 

 

Figure. 2 Power profile of the UDDS 

 

 

Thus, the performance results of the system are 

realistic as possible in the real world. Moreover, the 

power sources (FC, UC, and BAT) are designed 

based on the load profile. In order to assess the 

design, three drive cycles have been employed. 

Urban-dynamometer-driving-schedule (UDDS), 

orange county bus cycle (OCC) and federal test 

procedure (FTP), these drive cycles are captured by 

the ADVISOR analysis program. The basic driving 

cycle used is UDDS for analysing FCHEV 

performance since has the greatest variations in peak 

power usage compared to the other driving cycle 

standards. Therefore, the proposed FCHEV is able 

to function under different driving cycles. 

Consequently, guarantees that the proposed 

intelligent EMS is a trustworthy and predictable 

system. Fig. 2 illustrates the UDDS power profile. 

The maximum power load for UDDS, as seen in 

Fig. 2, is 10.940kW, assuming that the maximum 

power load is approximate 11kW delivered over a 

time span of 1400 seconds. As a result, the power 

requirements of the FC, BAT, and UC have been 

created to handle the entire load. Models for power 

sources were created by using their datasheets (UC 

[20], BAT [21] and FC [22]): 

 

• Ultracapacitor: The type is Maxwell 1200F, 

2.7V/cell Boostcap®BCAP1200 UC. DC-bus of 

the proposed FCHEV is 300 volts and as the 

structure that UC connected directly to DC-bus 

then UC should have 300 volts output voltage. 

Therefore, 1200F, 2.7V/cell use 120 connected 

in series (n cells) which is able to produce 11kW 

in 10 seconds. 

• Battery: The type is Valence Technology U-

Charge U1-12XP lithium-ion BAT. Four cells 

are connected in series. The nominal voltage of 

each series is 12.6V, then a 48V is easily 
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reached without going above the converter duty 

cycle's stable dynamic range. 40Ah is the 

maximum capacity of BAT. As a consequence, 

the battery system can deliver 4.937kW. 

• Fuel cell: The type is Hydrogenics 12.5kW 

HyPM-HD12 PEMFC. Used 65 cells; FC 

converter efficiency is considered to be 88%. As 

a consequence, the FC is capable of supplying 

around 7.95kW, which is sufficient to meet the 

average power load of 7kW. 

2.3 Optimal power flow strategy rules  

The following factors need to be taken into account 

in order to regulate the output power of the FC and 

fulfil all of the FCHEV's operational requirements in 

terms of power flow. Expressed the maximum fuel 

cell power as (Pfc_max) = 9kW, optimal fuel cell 

power as (Pfc_opt) = 1.6kW and minimum fuel cell 

power as (Pfc_min) = 0.5kW. Table 1 shows the rules 

of optimizes the power flow under three modes of 

(BATSOC). As mentioned in Fig. 1 the EMS has two 

inputs which are the power of FC (Pfc) and the state 

of charge for the battery (BATSOC). To get the 

reference current for feeding the FC boost converter 

by developing controllers, EMS fulfils the output 

power of the FC. This optimizes the power flow and 

prevents abrupt changes in the load power on the FC 

and BAT. 
 

Table 1. Optimal power flow rules 

BATSOC is lower than 65% 

IF the Pload 
Pfc to 

Load By 
BAT&UC States 

Pload > Pfc_max Pfc_max UC Discharging 

Pfc_max <Pload> Pfc_opt Pfc_max ------ 

Pfc_opt <Pload> Pfc_min Pfc_opt BAT Charging 

Pfc_min <Pload> 0 Pfc_min BAT Charging 

Braking mode (-Pload) ------ 
BAT Charging by 

(Pfc_opt)+(-Pload) 

BATSOC is between 60% and 85% 

Pload > Pfc_max Pfc_max 
BAT&UC 

Discharging 

Pfc_max <Pload> Pfc_opt Pfc_max ------ 

Pfc_opt <Pload> 0 Pfc_opt BAT Charging 

Braking mode (-Pload) ------ 
BAT Charging by 

(Pfc_min)+(-Pload) 

BATSOC is above 85% 

Pload > Pfc_max Pfc_max 
BAT&UC 

Discharging 

Pfc_max <Pload> Pfc_opt Pfc_max ------ 

Pfc_opt <Pload> 0 Pfc_min BAT Discharging 

Braking mode (-Pload) ------ 

BAT&UC 

Charging by  

(-Pload) 

 

Algorithm 1: Generate ANNs by MATLAB Code 

Step.1:  

Initialize Net Type "feedforwardnet" 

 No. of hidden layers 

 Neurons of each layer 

 
code

. 
> Net=feedforwardnet([30 20 15 10]); 

Step.2:  

divide data 

 70% for t training 

 15% for testing, 

 15% for validation 

 
code

. 
> 

Net.divideParam.trainRatio=0.7; 

Net.divideParam.testRatio=0.15; 

Net.divideParam.valRatio=0.15; 
 

Step.3:   Set Learning Rate=0.001 

 code

. 

> Net.trainParam.lr=0.001;  

Step.4:   Set Performance and Gradient goal 

 code

. 
> 

Net.trainParam.min_grad=1e-20; 

Net.trainParam.goal=1e-30; 

Step.5:   No. of epochs = 1000 

 code

. 

> Net.trainParam.epochs=1000; 

Step.6:   train Net by Input/output data of FLC 

 code

. 

> Net=train(Net,inputdata,outpudata) 

Step.7:  Export Net to the Simulink Environment 

 code

. 

> gensim(Net) 

 

3. Intelligent control system models for FC 

and BAT converters 

The BAT and FC current boundaries are 

determined and controlled by the proposed 

controllers (PI-PSO, WNN-PI, RWNN-PI, and the 

developed (EMS by FLC and ANNs)), in order to 

guarantee the proper times for the charge and 

discharge of the BAT/UC and no reverse current 

feed to the FC. The (𝑖𝐹𝐶
∗ )  is send to a single-

quadrature converter since the FC only responds to 

steady-state load power, whereas the (𝑖𝐵𝐴𝑇
𝑟𝑒𝑓

) of the 

BAT is fed to a two-quadrature converter. 

4. Intelligent control system models for FC 

and BAT converters 

The BAT and FC current boundaries are 

determined and controlled by the proposed 

controllers (PI-PSO, WNN-PI, RWNN-PI, and the 

developed (EMS by FLC and ANNs)), in order to 

guarantee the proper times for the charge and 
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                                 (a)                                                             (b)                                                           (c)  

Figure. 3 FLC membership (a) is load power, (b) is BAT state of charge and (c) is the FC output power reference 

 

 

Table 2. FLC rules 

Input 
IF (PLoad)  H M L VL -P H M L VL -P H M L VL -P 

AND (BATSOC) H H H H H M M M M M L L L L L 

Output THEN (Pfc) H M L VL VL H M L VL VL H H M L L 

 

 

discharge of the BAT/UC and no reverse current 

feed to the FC. The (𝑖𝐹𝐶
∗ )  is send to a single-

quadrature converter since the FC only responds to 

steady-state load power, whereas the (𝑖𝐵𝐴𝑇
𝑟𝑒𝑓

) of the 

BAT is fed to a two-quadrature converter. 

4.1 Architecture FLC of FC converter 

The output of the EMS-FLC is the FC reference 

power (Pfc). Inputs include (BATSOC) and (PLoad). 

A set of if-then rules based on the Table 1 rules have 

been utilized in FLC membership functions. A 

trapezoidal membership function (trapmf) is utilized 

to create FLC, and Mamdani's fuzzy inference 

approach is employed for defuzzification, as 

illustrated in Fig. 3 the developed FLC membership. 

Table 2 shows the FLC rules. 

Where: H = high, M = medium, L = low, VL = very 

low and -P = negative power. 

4.2 Architecture ANNs of FC converter 

For training, the ANNs require input and output 

data. Therefore, the EMS has been developed by 

using the FLC scheme first in order to collect the 

necessary input/output data. 

The following are the parameters of the ANNs 

for EMS: The training technique is "Levenberg-

Marquardt" and the network used is 

"feedforwardnet." Four hidden layers have been 

employed, with the neurons of each layer being (30, 

20, 15, 10). The training target error (MSE) is 10-30. 

15% for testing, 15% for validation, and 70% of the 

data for training. Algorithm 1 shows the procedure 

of building the ANNs by MATLAB script codes.  

4.3 Architecture WNN of BAT converter 

By comparing the difference between the DC 

link voltage signal (V_Actual) and the DC-bus 

reference voltage signal (VDC_ref), the wavelet linked 

with PI controller attempts to manage the current 

boundary of the BAT that is based on the (𝑖𝐵𝐴𝑇
𝑚𝑎𝑥). In 

order to adjust the translation parameters of the 

connection weights in the WNN (a's, b's, w's) and 

the parameter (kp & ki) of the PI controller online 

using the Simulink model of hybrid FCEV, the 

Recurrent and Feed-forward wavelet neural network 

are utilized with the PSO learning method. Also, 

using a PI controller optimized by using PSO to 

obtain the (𝑖𝐵𝐴𝑇
𝑚𝑎𝑥). The PSO method uses the Integral 

of Squared Error (ISE) criteria and the overshoot 

(Mp) criterion to figure out the cost fitness for an 

optimal value. 

 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = min(𝐼𝑆𝐸) + min (𝑀𝑝)    (1) 

 

ISE = ∫ e2(t)dt                            (2) 

 

Mp = max(V) − (Vref)                  (3) 

 

𝑒(𝑖) = D(i) − y(i)                   (4) 

 

Where e(i) is the error that can be obtained by 

subtracting the wanted value D(i) from the actual 

value of the model y(i). Where V is the measured 

voltage and Vref is the reference value (300 volts). 

Then, each swarm particle's current location x i (t) 

and speed v i (t) should be keep updating by using 

Eq. (5): 

 

vi
k+1 = w ∗ vi

k + c1 ∗ R1 ∗ (lbesti − xi
k) + 

c2 ∗ R2 ∗ (gbesti − xi
k)           (5) 
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Adjusting the current position by Eq. (6): 

 

xi
k+1 = xi

k + vi
k+1                         (6) 

 

A group of daughter wavelets are combined linearly, 

the result is a generalized wavelet ψa,b: 

 

𝜓𝑎,𝑏 = 𝜓 (
𝑥−𝑏

𝑎
)                          (7) 

 

Then final output of the wavelet is: 

 

𝑦 = ∑ 𝑤𝑁𝜓𝑎𝑁,𝑏𝑁

𝑁
𝑛=1                  (8) 

 

As shown in Fig. 1 after comparing these 

currents which are processed by the PI-PSO 

controller to modify the d1 and d2 of the BAT 

converter's power switching signal. The proposed 

RWNN-PI is known as “partially feedback”. Where 

comprises three layers: the hidden layer has four 

neurons, the input layer has two inputs and the 

output layer has one output as shown in Fig. 4. 

While the WNN-PI is same as the RWNN-PI 

structure except the neurons is eight and without 

feedback signal. Both are aimed to find ( 𝑖𝐵𝐴𝑇
𝑟𝑒𝑓

). 

Algorithm 2 shows the PSO steps for finding the 

wavelet and PI parameters by MATLAB script 

codes. 

 
 

Algorithm 2: PSO to find optimum values for 

(WNN/RWNN) and PI parameters. 

Step.1: 

Initialization PSO 

 No. of birds n= 15, No. birds_steps =15   

 Dimension of the problem (dim) 

 for 
WNN-PI = 

26 
RWNN-PI = 14 

 PSO parameters c1 & c2 = 1.4 

  Inertia w =0.8 

 > fitness=0*ones(n,bird_setp); 

Step.2: 

Initialize the parameter 

 R1 & R2 = rand(n,dim); 

 > current_fitness =0*ones(n,1); 

Step.3: Initializing swarm and velocities and 

position 

  current_position = abs(10*(rand(n,dim)-

.5)); 

 > velocity = .3*randn(n,dim); 

  local_best_position = current_position; 

Step.4: Evaluate initial population 

Step.5: 

> for i = 1:n 

 PI=current_position(i,:); 

  Set all (a's, b's, w’s) and (kp & ki) 

  b1-4 = PI(1-4); and same for a's, w’s 

and (kp & ki) 

Initialize sim options (Simulink) 

 simopt=simset('solver','ode45','SrcWork

space','Current','DstWorkspace','Curre

nt');   

 [tout,xout,yout]=sim('mutatafaRWNN',[

0 1400],simopt); % 1400 sec. is UDDS 

  Compute the error 

 sys_overshoot=max(V_Actual)-300; 

 m=abs(e); 

 error=sum(m); 

 F=error+sys_overshoot; 

 current_fitness(i)=F;   

 end 

Step.6: 

Velocity Update   

> 

velocity = w *velocity + 

c1*(R1.*(local_best_position-

current_position))+c2*(R2.*(globl_bes

t_position-current_position)); 

Step.7: Swarm Update 

Step.8: Evaluate anew swarm: Back to Step.5:   

Step.9: 
Select the optimum values and send them 

to Simulink. 

 > b1-4 = globl_best_position(n,1-4); 

   Same for a's, w’s and (kp & ki) 

 
Table 3. RWNN parameters tuned using PSO 

RWNN 

Dilation 

parameters 

RWNN 

Translation 

parameters 

RWNN 

Weights 

parameters 

a1 11.0776 b1 -0.7579 w1 14.7592 

a2 -21.9609 b2 0.4560 w2 11.2434 

a3 6.8087 b3 7.8331 w3 -0.1116 

a4 13.3339 b4 3.9727 w4 29.1614 

 

 

Outcomes of the proposed PSO algorithm after 

running the model (n= 15, No. birds_steps =15 so  

225 times run are fulfilled). The optimal values for 

the PI controller parameters are (kp = 25.9874 & ki 

= 1.1762) and the RWNN parameters (a's, b's, w's) 

are listed in Table 3. 

5. Simulation results and discussions 

This section shows the simulation results for AI 

EMS that is evaluated under three drive cycles 

UDDS, OCC and FTP via three control 

methodologies (CMs) which are named: 

 

1- Control methodology-1 (CM-1): FC by FLC and 

BAT by feed-forward wavelet neural network 

(WNN-PI). 
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2- Control methodology-2 (CM-2): FC by ANNs 

and BAT by feed-forward wavelet neural 

network (WNN-PI). 

3- Control methodology-3 (CM-3): FC by ANNs 

and BAT via recurrent wavelet neural network 

(RWNN-PI). 

 

The AI EMS has been evaluated by (CM-1) 

during UDDS first then the input and output data of 

the FLC scheme has been used to train the proposed 

ANNs to see its performance under different drive 

cycles (OCC and FTP). It is noted that the results of 

the FLC and ANNs at UDDS are very close due to 

the ANNs trained on the same drive cycle (UDDS) 

and because the trained network is well trained and 

a small mean square error was attained.  

The DC voltage bus fluctuation due to the changes 

in the load power demand as shown in Fig. 5 the 

DC-bus voltage under UDDS. Whereas all the 

proposed control methodologies have limited the 

DC-bus; which are adjust the voltage of the DC link 

at the reference level (300 volts). The (CM-1, CM-2 

and CM-3) successfully kept the DC-bus at an 

acceptable level since the designed DC-bus voltage 

level is set between 290 to 320V. But, the (CM-3) 

keeps DC-bus to the nearest level of 300 volts more 

than (CM-1 and CM-2); where DC-bus by (CM-3) is 

between 295.9V-305.2V (Mean value is 301V), and 

DC-bus by (CM-1 and CM-2) is between 295.88V-

306.3V (Mean value is 301.7V), and between 

295.2V-307.2V (Mean value is 301.8V) 

respectively . 

The suggested control techniques (CM-1, CM-2 

and CM-3) effectively satisfy the AI EMS of 

FCHEV's requirements during the UDDS and 

successfully meet the rules of Table 1 for 

charging/recharging the BAT and UC. Hence, FC 

power is steady-state under load power demand and 

without responding to sudden load changes; the 

BAT provides a medium-frequency component to 

the load power demand which led to assists the FC 

to cover the remaining load power required; the UC 

power is delivering the high-frequency components 

to load power demand for handling rapid load 

changes as shown in Fig. 6 the delivering power of 

the resources (FC, BAT and UC) during UDDS by 

CM-3. Overall, optimum power flow achieved of 

FCHEV which in return the BAT and UC are run in 

a safe manner and extend their lifetime, as well as, 

reducing the H2 (Hydrogen) usage. While the FC 

power under OCC and FTP drive cycles has 

overshot as shown in Fig. 7 the FC power under the 

OCC drive cycle there is overshooting once reaches 

over the second 1400 because the FLC of CM-1 is 

designed according to UDDS, therefore faced this 

problem at the cycles OCC and FTP, but the CM-3 

is successfully running the FC under the different 

drive cycles without any overshot as shown in Fig. 8 

and Fig. 9 the FC power under OCC and FTP 

effectively, during the whole cycle pried time 2500 
 

 
Figure. 4 RWNN-PI structure tuned by PSO 
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Figure. 5 DC-bus under UDDS load 

 

 
                                   (a)                                                         (b)                                                            (c )  

Figure. 6 Power delivered by the sources during UDDS (a) BAT power, (b) UC power and (c) FC power 

 

 

 
Figure. 7 FC power during OCC 

 

 
Figure. 8 FC power during OCC 
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Figure. 9 FC power during FTP 

 

seconds of the FTP observed no overshot. This is 

because the ANNs is a predictable system and the 

RWNN-PI is more efficient than WNN-PI.  

Moreover, the duty cycle values of the 

converters are acceptable whereby all are not above 

90% by the proposed control methodologies. 

However, the duty cycles by CM-3 are more 

efficient and stable than (CM-1) as shown in Fig. 10. 

The designed AI EMS which is based on the 

three control methodologies is maintained the SOC 

for both BAT and UC as described in Table 1, 

where the SOC set to be between (60%-85%). 

Hence, the SOC for the BAT is between (67.1%-

74.82%) and UC is between (83.26%-86.84%) 

during UDDS which are controlled by (CM-3) as 

shown in Fig. 11. AI EMS strives to guarantee that 

the BAT and UC have sufficient charge for the 

FCHEV acceleration periods. Meanwhile, reducing 

H2 use by optimizing the energy flow between the 

resources power and the load power demand. 

According to Fig. 11, it is clearly observed that 

the UC has the fastest response; in terms of charging 

and discharging. Consequently, the FC and BAT 

voltage are under their desired region, the FC 

voltage range is between (43.74V-49.44V) as shown 

in Fig. 12 also BAT voltage is stable and within a 

small range between 50.15V and 52.69V without 

endangering the BAT to discharge or charge 

excessively as shown in Fig. 13. 

 

 

   
                                (a)                                                              (b)                                                             (c)  

Figure. 10 Converters duty cycle during UDDS (a) FC boost cycle, (b) BAT buck cycle and (c) BAT boost cycle 
 

 

 
Figure. 11 The SOC (%) of BAT and UC during UDDS 

 

 
 Figure. 12 FC voltage during UDDS 
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Overall, CM-3 efficiently reduces fuel 

consumption utilization, which leads to an 

improvement in FC stack efficiency. Fig. 14 shows 

the H2 fuel consumption (lpm). The FC stack 

efficiency during UDDS, which is managed by CM-

3, is shown in Fig. 15. In addition, Table 4 depicts 

the average FC stack efficiency and mean value of 

H2 fuel consumption (lpm) throughout the three 

driving cycles in comparison to the proposed control 

approaches (CM-1, CM-2 and CM-3). 

 
 

 
Figure. 13 BAT voltage during UDDS 

 

 
Figure. 14 H2 fuel consumption during UDDS 

 

 
Figure. 15 FC stack efficiency during UDDS 

 

               
                                                  (a)                                                                                             (b) 

              
                                                    (c)                                                                                            (d)  

Figure. 16 Converters input/output currents for BAT (a and b) respectively and for FC (c and d) respectively during 

UDDS 
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Table 4. Average FC stack efficiency (%) and mean value 

of H2 consumption (lpm) during three drive cycles 

CMs Results of UDDS 

CM-1 
Average FC efficiency 86% 

Mean value of H2 use 23.97 lpm 

CM-2 
Average FC efficiency 86.42% 

Mean value of H2 use 23.98 lpm 

CM-3 
Average FC efficiency 87.4% 

Mean value of H2 use 23.72 lpm 

CMs Results of OCC 

CM-1 
Average FC efficiency 87.2% 

Mean value of H2 use 22.1 lpm 

CM-2 
Average FC efficiency 87.24% 

Mean value of H2 use 22 lpm 

CM-3 
Average FC efficiency 87.8% 

Mean value of H2 use 21.23 lpm 

CMs Results of FTP 

CM-1 
Average FC efficiency 74% 

Mean value of H2 use 21.84 lpm 

CM-2 
Average FC efficiency 78.4% 

Mean value of H2 use 19.77 lpm 

CM-3 
Average FC efficiency 86.19% 

Mean value of H2 use 17.85 lpm 

 

 

The significant noteworthy that the CM-3 

increased the average efficiency of the FC stack by 

16.74% over the CM-1 and decreased the amount of 

hydrogen fuel consumption (lpm) mean value by 

22.35% during the FTP driving cycle. Also, the CM-

3 maintained the DC-bus voltage during OCC and 

FTP more than the other proposed control 

methodologies (CM-1 and CM-2) whereby at OCC 

the DC-bus by (CM-3) is between 298.5V-311.1V 

(Mean value is 301.9V), and DC-bus by (CM-1 and 

CM-2) is between 297.9V-324.3V (Mean value is 

304.7V), and between 297.2V-314.2V (Mean value 

is 302.8V) respectively. And at FTP the DC-bus by 

(CM-3) is between 299.8V-309.1V (Mean value is 

300.2V), and DC-bus by (CM-1 and CM-2) is 

between 296V-321.6V (Mean value is 307.4V), and 

between 298.2V-318.2V (Mean value is 302.8V) 

respectively. 

Furthermore, the current of the converters by 

CM-3 is demonstrated as does not surpass their 

output rating currents during the highest load 

demand of all driving cycles as shown in Fig. 16 the 

converters current during UDDS, where the max 

input current to converters (BAT is 80A and FC is 

161.2A) and the max output current from the 

converters (BAT is 10.79A and FC is 20.7A). 

The results comparison of the simulation among 

various AI EMS schemes has indicated that CM-3 is 

the powerful technique for the perfect power flow of 

the proposed FCHEV with remarkably exceptional 

improvements compared to other control 

methodologies (CM-1 and CM-2). Thus, ANNs 

shows outperform more than FLC over all the 

driving cycles as well as an excellent performance 

of RWNN-PI more than WNN-PI. Therefore, the 

proposed AI EMS and PSO algorithm can be 

employed by future software developers as a novel 

artificial intelligence control approach to address the 

development of emerging technologies in hybrid 

electric vehicles. Additionally, future work will 

focus on verification experiments by the proposed 

CM-3 for AI EMS to compare the simulation results 

with experimental results.  

6. Conclusion 

This paper provides an energy management 

system based on an artificial intelligent controller to 

manage the power flow of a fuel cell hybrid electric 

vehicle that integrates three power sources FC, BAT 

and UC. A comparison of the simulation outcomes 

is provided among various AI EMS that aimed 

toward choosing the best control methodology 

which in return reduces the FCHEV powertrain 

hydrogen fuel consumption and improves system 

efficiency. Hence, the proposed AI EMS schemes 

considered the output characteristics of the power 

resources, as well as their dynamic responsiveness 

and restrictions. As a result, the UC is the highest 

response to load power demand variations during 

both phases of acceleration and deceleration while 

the FC system delivers steady-state load power and 

the BAT provides a medium-frequency component 

to the load power demand which led to assists the 

FC to cover the remaining load power required. 

The simulation results prove that CM-3 the more 

effective to satisfy the aim of this study among the 

others CM-1 and CM-2, especially at OCC and FTP 

driving cycles. Where CM-3 provides optimum 

power flow between power sources and load power 

of FCHEV. As a consequence, the BAT and UC are 

run in a safe manner and extend their lifetime. 

Moreover, the average efficiency of the FC stack 

has been increased, and the amount of hydrogen fuel 

consumption has been decreased; the duty cycle 

values of the converters are less than 90%, stable as 

well as the BAT and FC converter input/output 

current does not surpass their output rating currents, 

as a result, the switches of both converters have a 

longer lifespan. Overall, the CM-3 shows that ANNs 

and RWNN-PI are reliable in this proposed AI EMS 

which can be employed over different driving cycles. 
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