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Abstract: In data engineering, multi-label learning (MLL) has emerged to classify the instances through a specific 

characteristic that associates with the set of class labels (CLs). Mostly, the learning design was adaptive and newer 

views may exist in a data stream (DS); so, MLL has to classify the features with newer CLs. To tackle this issue, the 

MLL with emerging new labels (MuENL) and handling high-dimensional DSs (MuENLHD) technique has been 

adopted which considers the CLs in the test data were similar to that in the learning data. But, it was not able to deal 

with the adaptive situation where multiple newer CLs exist since it can manage only a single newer CL in one iteration. 

Hence this article proposes an MLL with emerging multiple new labels (MuEMNL) and MuEMNLHD versions to 

combat the issues in a complex scenario wherein several newer CLs are found. The main idea of this technique is to 

split the newer CL group into many newer CLs independently for changing the complex scenario. In this technique, 

four different steps are executed: i) creates a linear classification model to adjust the pairwise CL sorting error and the 

categorization error on the given CLs, ii) develops a novel outlier identifier depending on the primary and test DS, iii) 

discovers the cluster for the MuEMNL and MuEMNLHD depending on the OPTICS clustering and iv) employs a 

classifier updating scheme to integrate newer CLs for designing a robust classifier. Finally, the experimental outcomes 

exhibit that these techniques on low-dimensional databases attain an overall mean precision of 67.08% and an overall 

F1-score of 64.02% compared to the classical MLL techniques. Similarly, these techniques on high-dimensional 

databases achieve mean precision of 64.6% and a mean F1-score of 63.1% compared to the classical MLL techniques. 

Keywords: Multi-label learning, MuENL, MuENLHD, OPTICS clustering, Pairwise label ranking, Linear classifier, 

Outlier identifier. 

 

 

1. Introduction 

In machine learning, each element is referred to 

as a unique feature vector associated with a particular 

CL. Each aspect could contain several CLs in 

multiple applications—for example, a photograph 

could have many subjects and a musical track could 

fall in several parts of the human brain [1-3]. In MLL, 

all items in standard supervised learning are marked 

by a specific characteristic if associated with a set of 

CLs [4]. The approach maintains the relevant CL 

groups for undefined characteristics. MLL has been 

widely employed in multiple concerns including 

computerized efficacy in audiovisual data [5]. Over 

the past decades, ML text categorization was assessed 

in numerous practical systems that could include 

newer CLs with possibly the best CLs in an expected 

DS structure. 

A learning methodology can reallocate and 

change a pre-trained structure to a different 

configuration in a complex world [6]. This 

methodology must be able to recreate a pre-trained 

structure in the ML design to newer features and new 

classifying systems for all newer CLs that were 

produced. There has been no ground truth (GT) for 

CLs in the adaptive MLL setup at every moment in 

the DS except for real learning data. Therefore, the 

main problems were to find and simulate newer CLs. 

In general, it was highly difficult to recognize the 

features of having a newer CL. Since newer CLs do 

not really exist in the prior data and mostly co-existed 
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with a few tremendous CLs, splitting functionality 

from those with well-known CLs with newer CLs 

was exceedingly hard. The failure was increased with 

an increase in newer CLs in a DS owing to an 

unsuitable classification. Thus, it was a challenging 

task to create suitable structures for increasing the 

classification ability in a DS. To address such a 

challenge, several MLL strategies have been reported 

with interesting methods to detect the associations 

between tagged and untagged features. 

From these perspectives, MuENwas presented   

[7] to identify and categorize the features with ENLs. 

This MuENL technique has different major phases: 

1) categorizing the features of recently identified CLs, 

2) detecting the existence of a newer CL, and 3) 

creating a new classification framework for all newer 

CLs which work collaboratively with the classifier 

for the identified CLs. Additionally, this technique 

has been updated to MuENLHD to cope with the 

sparse high-dimensional DSs by minimizing the 

dimensionality through a streaming kernel principal 

component analysis (PCA). Conversely, this 

technique was able to handle only a single newer CL 

in a particular step. Alternatively, if the test collection 

has many newer CLs in one step, then this technique 

will consider the multiple newer CLs as a single 

newer CL. This results in efficiency degradation. 

Therefore, in this paper, the MuEMNL and 

MuEMNLHD techniques are proposed to solve the 

challenges in an adaptive scenario where many newer 

CLs exist. In this technique, the newer CL group is 

split into multiple newer CLs independently for 

modifying the adaptive scenario. This technique 

executes four different phases: i) a linear 

classification model is created for optimizing the 

pairwise CL sorting error and the categorization error 

on the given CLs, ii) a novel outlier identifier is 

created depending on both primary and test DS, iii) 

the cluster for the MuEMNL and MuEMNLHD are 

discovered depending on the OPTICS algorithm and 

iv) a classifier updating scheme is used to combine 

newer CLs for designing a robust classifier. Thus, 

these techniques can lessen the classification loss for 

the future DS which has similar newer CL efficiently. 

The remaining portions of this paper are 

structured as: section 2 discusses the works 

associated with the MLL for different purposes. 

Section 3 describes the MuEMNL and MuEMNLHD 

techniques. Section 4 shows their experimental 

findings. Section 5 concludes the entire study and 

provides the potential improvement. 

2. Literature survey 

A multi-class extreme learning machine (ELM) 
was developed [8] by label properties (LLP) and 

applied to categorize the depositors for improving 

client relationships. But, the accuracy was not 

efficient. A View-label-specific feature (VLSF) was 

developed [9] for multi-view MLL. However, it was 

time-consuming since its computation burden was 

high for large-scale datasets. 
A novel technique was designed [10] to train 

label-specific characteristics for ML categorization 

(LSML) with inadequate tags. However, its 

efficiency was poor if the range of weighting 

parameters was very high. An incremental kernel 

(IK) ELM was suggested [11] for MLL with the use 

of new CLs. This model comprises a novelty 

identifier and an ML classifier. A novel incremental 

ML classification (i.e., MENL-IK) and its improved 

version (i.e., MENL-iIK) were designed for 

predicting a CL set for every instance, which includes 

output units incrementally and modify themselves in 

untagged instances. But, it has a high computational 

difficulty since the kernel size within this model 

structure was high. Also, the efficiency was sensitive 

to the buffer size.                        

 A new ML feature selection (MLFS) model was 

developed [12] for learning and exploiting local CL 

correlations. But, the accuracy of this model was very 

less. A discriminant MLL (DMLL) technique was 

developed [13] which imposes low-order patterns on 

each prediction of data belonging to similar CLs and 

highly independent patterns on the estimations of 

data belonging to various CLs. But, it needs to find a 

regional low-order CL pattern in ELM where the 

number of CLs was very huge. 

A novel model was designed [14] called MLL 

based on feature and label space dimension reduction 

(MLL-FLSDR). However, the linear regression 

framework was sensitive to outliers. A multi-label 

learning technique was designed [15] called LF-

LELC which considers the significance of CL vectors 

and builds the classification framework by the CL 

correlations. But, it does not handle the class-

imbalance problem which may affect learning 

efficiency. 

3. Proposed methodology 

In this section, the design of a robust classifier is 

described for MLs having newer and previous CLs. 

Additionally, OPTICS-based clustering is integrated 

for solving the issues while multiple newer CLs are 

appearing simultaneously in one iteration. Fig. 1 

shows the schematic representation of MuEMNL and 

MuEMNLHD techniques. 
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Figure. 1 Schematic overview of proposed multi-label learning technique 

 
Table 1. Lists of Notations 

Notations Description 

ℜ Input feature space 

ℛ0 Observed primary dataset in the 

learning task 

𝑟𝑡 Instances that contain a new CL at a 

period 𝑡 

ℛ𝑡 Available data trunk at 𝑡 

𝑐0 Previously known CLs in the 

primary training dataset 

𝑐  Index of the CLs collection 

𝑙  Maximum number of CLs collection 

𝑛  Number of clusters 

𝑌0 Primary CL matrix of ℛ0 

𝑦𝑡  CL vector of the test instance 𝑟𝑡 

𝒟𝑡(𝑟𝑡) Outlier identifier 

ℋ𝑡  Robust classifier 

ℎ𝑖(𝑟) Linear classifier on CL 𝑖 for 𝑟 

𝜔𝑖 Weight value of linear classifier on 

CL 𝑖 for 𝑟 

𝑏𝑖 Bias value of linear classifier on CL 

𝑖 for 𝑟 

𝐶1, 𝐶2  Variables 

𝜓  Dimension of random subset 

𝑔  Number of MuENLTree 

𝑠𝑡  Sampling weight 

𝐵𝑆𝑀𝑎𝑥   Maximum buffer storage 

𝑀𝑖𝑛𝐼𝑛𝑠  Input variable 

𝜀  Distance 

𝑆𝑧  Partition index for 𝑧𝑡ℎ cluster 

𝑅𝑃(𝑟𝑥), 𝑅𝑃(𝑟𝑦)  Ranges of the accessibility curve 

𝑅𝐵,𝑖   Set of instances having 𝑖𝑡ℎ newer 

CLs 

𝑅𝑈  Set of instances having expected 

CLs 

𝑝  Unknown allocation of the newer 

CL of 𝑅𝑡,𝑖 

𝑚  Number of instances in [𝑅𝐵,𝑖; 𝑅𝑈] 

 

Table 1 lists the notations used in this study. 

3.1 Problem definition 

This technique is depending on an open adaptive 

multi-learning configuration, it contains a primary 

tagged training dataset, and then the untagged test 

instance is obtained sequentially in a DS manner. 

Consider ℜ  is the input feature space, and ℛ0 =
[𝑟−𝑛+1, … , 𝑟−1, 𝑟0]⊤ ⊆ ℜ is denoted as the observed 

primary dataset in the learning task. After, the 

untagged test DS comprises an example 𝑟𝑡  that 

possibly contains a newer CL at a period 𝑡. Consider 

ℛ𝑡 , 𝑡 ∈ {1,2, … , 𝑇} is the available data trunk at 𝑡.  

Also, 𝑐0 = {1,2, … , 𝑙}  is denoted as the 

previously known CLs in the primary training dataset 

and 𝑐 is the index of the CLs collection. During the 

period 𝑡 , the actual 𝑐0  can be upgraded to 𝑐𝑡  and 

primary 𝑙  can be upgraded to 𝑙′ , 𝑙′  is the highest 

amount of CLs collection. Specifically, during 𝑡 , 

assuming there are 𝑛(𝑛 ≥ 0) identified newer CLs, 

the CL set is augmented with 𝑛 newer CLs, 𝑙′ = 𝑙 +
𝑛; 𝑐𝑡 = 𝑐𝑡−1 ∪ {𝑙′} . Consider 𝑌0 =
[𝑦−𝑛+1, … , 𝑦−1, 𝑦0] ∈ {−1,1}𝑙×𝑛  is the primary CL 

matrix of 𝑅0 and 𝑦𝑡 = [𝑦𝑡,1, … , 𝑦𝑡,𝑙] is the CL vector 

of the test example 𝑟𝑡  at 𝑡 . The CL vector 𝑦𝑡,𝑗 

contains 2 opposite ranges:{−1,1}. If 𝑟𝑡 has 𝑗𝑡ℎ CL, 

then 𝑦𝑡,𝑗 must be 1; or else, 𝑦𝑡,𝑗 must be -1. 

3.2 Algorithm 

Consider that the GT is not accessible in the 

whole test DS. The challenges required to be resolved 

in newer MLL majorly occur in 2 phases: (i) the 

primary phase is to build an identifier for detecting 

the newer CLs and (ii) the auxiliary phase is to obtain 

several newer CLs separately when they eject in a 

single step, i.e., while it may essential to adjust the  
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Algorithm 1: MuEMNL 

Input: Primary training data: 𝑅0, 𝑌0, 𝐶0 

Output: Function set ℋ𝑡 for every 𝑟𝑡 

Begin 

Obtain a primary ℋ0 by learning 𝑅0, 𝑌0; 

Build a primary newer CL identifier 𝒟0 

depending on 𝑅0; 

Initialize sampling eight vector 𝑠0 = 1|𝑟0|; 

ℋ1 = [ℋ0, 𝒟0]; 𝒟1 = 𝒟0; 

Repeat 

Get a newer instance 𝑟𝑡 , 𝑅𝑡 = [𝑅𝑡−1; 𝑟𝑡
⊤]; 

Expand the sampling weight vector 𝑠𝑡 =
[𝑠𝑡−1; 1] concurrently; 

𝒊𝒇(𝒟𝑡(𝑟𝑡) ≥ 1)  

Include 𝑟𝑡 to buffer; 

𝒊𝒇(|𝐵𝑢𝑓𝑓𝑒𝑟| ≥ 𝐵𝑆𝑀𝑎𝑥)  

Apply Algorithm 2; 

Perform OPTICS to split buffer storage; 

Obtain 𝑛 clusters for 𝑛 newer CLs; 

𝒘𝒉𝒊𝒍𝒆(𝑖 > 𝑛)  

Create 𝒟𝑡+𝑖  and ℋ𝑡+𝑖  from 𝑖 = 0  and every 

𝒟𝑡+𝑖 relies on 𝒟𝑡+𝑖−1 iteratively; 

𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆  

Empty buffer; 

𝑙 ← 𝑙 + 𝑛; 𝑐𝑡 = 𝑐𝑡−1 ∪ {𝑙}; 

Update 𝑠𝑡 ← 0.8𝑠𝑡; 

𝒆𝒏𝒅 𝒊𝒇  

𝒆𝒏𝒅 𝒊𝒇  

𝑐𝑡 = 𝑐𝑡−𝑛; 𝒟𝑡 = 𝒟𝑡−𝑛;  ℋ𝑡 = ℋ𝑡−𝑛; 

Until 

Obtain ℋ𝑡; 

End 

 

framework for several CLs simultaneously. Or else, a 

high opportunity exists that it may erroneously learn 

a single weight vector for several newer CLs. 

These challenges are solved by utilizing the 2 

major techniques: 1). First, the MuENL/MuENLHD 

is extended, which will create an outlier identifier 

𝒟𝑡(𝑟𝑡) depending on the prior learning instances and 

CL characteristics. When the result of 𝒟𝑡(𝑟𝑡) = 1, 

then it denotes that the current 𝑟𝑡 has a newer CL. Or 

else, if the output is -1, then it denotes that there is no 

newer CL in 𝑟𝑡. 2). Then, the density-based spatial 

clustering called OPTICS scheme is adapted to the 

buffer storage while it achieves the specific limit. 

Specifically, for the instance with newer CLs in the 

storage, such instances are clustered into many 

clusters and every cluster transforms into specific 

newer CL. Moreover, while this process is completed, 

the classifier framework updating task is performed 

stage-by-stage, and every stage is executed based on 

the prior stage for constructing a more robust 

classifier: ℋ𝑡 = [ℎ𝑡,1, … , ℎ𝑡,𝑙] → ℋ𝑡
′ =

[ℎ𝑡,1, … , ℎ𝑡,𝑙 , 𝒟𝑡]. 
Algorithm 1 describes the MuEMNL technique. 

It comprises 4 units: the multi-label classifier for ℋ0, 

the outlier identifier 𝒟𝑡 , OPTICS splitting several 

newer CLs residing in the buffer storage into 𝑛 newer 

CLs, and updating the framework ℋ𝑡 → ℋ𝑡+𝑛. The 

point that necessitates state is that the weighted 

sampling vector is utilized for minimizing the chance 

of prior instances being chosen during the creation of 

the extended MuENL technique and offers a 

preference for newer instances. So, consider 𝑠  is 

multiplied by a decay value of 0.8. 

3.2.1. Linear multi-label classifier 

For an instance 𝑟, the linear classifier is defined 

on CL 𝑖 as Eq. (1): 

 

ℎ𝑖(𝑟) = 𝑠𝑖𝑔𝑛(𝜔𝑖
⊤𝑟 + 𝑏𝑖)  (1) 

 

When the misclassification error and the pairwise 

CL ranking error are reduced for obtaining the total 

efficiency, the convex optimization for every 𝜔𝑖  is 

written as: 

 

min
𝜔𝑖𝑏𝑖,𝜉,𝜁

1

2
‖𝜔𝑖‖2 + 𝐶1 ∑ 𝜉𝑘

𝑛
𝑘=1 +  

𝐶2 ∑ ∑ 𝜁𝑗,𝑘
𝑛
𝑘=1

𝑙
𝑗=1  (2) 

 

Subject to 𝑦𝑖,𝑘𝑓𝑖,𝑘 ≥ 1 − 𝜉𝑘 

∆𝑗,𝑘(𝑓𝑖,𝑘 − 𝑓𝑗,𝑘) ≥ 1 − 𝜁𝑗,𝑘 

𝜉𝑘 ≥ 0, 𝜁𝑗,𝑘 ≥ 0 

𝑗 ∈ {1, … , 𝑙}, 𝑘 ∈ {1, … , 𝑛} 

 

In Eq. (2),  ∆𝑗,𝑘= 𝑦𝑖,𝑘 − 𝑦𝑗,𝑘 , 𝑓𝑖,𝑘 = 𝜔𝑖
⊤𝑟𝑘 + 𝑏𝑖 , 

and 𝐶1, 𝐶2 define 2 variables to balance. To make it 

simpler, the computation task 𝑏𝑖  is replaced by 

inserting a quality range 1 in the last part of 𝑟𝑘, then 

𝑓𝑖,𝑘 = 𝜔𝑖
⊤[𝑟𝑘: 1]. So, Eq. (2) is rewritten as Eq. (3): 

 

min
𝜔𝑖

∑ ∑ [1 − (𝑦𝑖,𝑘 − 𝑦𝑗,𝑘)(𝑓𝑖,𝑘 − 𝑓𝑗,𝑘)]
+

𝑛
𝑘=1

𝑙
𝑗=1   

+𝜆1 ∑ [1 − 𝑦𝑖,𝑘𝑓𝑖,𝑘]
+

𝑛
𝑘=1 +

𝜆2

2
‖𝜔𝑖‖2   (3) 

3.2.2. Newer label identification 

Assume that a data set contains a CL or attribute 

that is a newer version of one that was previously 

there. So, the MuENLForest [7] is adopted as the 

newer CL identifier which finds the attributes in the 

attribute space and the CLs. It has 𝑔 MuENLTree; 

and every MuENLTree is constructed by the random 

subset of (ℛ𝑡, ℋ𝑡(ℛ𝑡))  of dimension 𝜓  using a 
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sampling weight 𝑠𝑡 . Also, a new unit of the 

MuENLForest is an enclosing sphere at every leaf 

node. So, examples with identical characteristics will 

be situated on the identical leaf node. Once the 

MuENLForest is built i.e., 𝒟𝑡(∙), the newer CLs are 

predicted. If 𝒟𝑡(𝑟𝑡) = 1, then it means 𝑟𝑡 has a newer 

CL. Or else, if 𝒟𝑡(𝑟𝑡) = −1, then it doesn’t contain a 

newer CL. Particularly, when the example occurs on 

a similar leaf node yet outer of the enclosing sphere, 

it recommends that the example contain few 

characteristics. So, the example maintains a newer 

CL with a significantly higher chance. 

3.2.3. OPTICS for splitting buffer storage 

Each period, while the newer CLs buffer storage 

attains maximum, i.e., 𝐵𝑆𝑀𝑎𝑥, the standard schemes 

consider each instance in the buffer contains a 

frequent newer CL. In the real-time scenario, it may 

satisfy the condition that the examples in a single 

buffer can have several CLs in a single step. For case, 

buffer storage has 𝐵𝑆𝑀𝑎𝑥  examples applying with 

𝑛(𝑛 > 1) newer CLs. These natures of incorrectly 

learning one framework for multiple newer CLs are 

solved by introducing the OPTICS algorithm. 

Typically, the OPTICS splits the buffer storage 

into 𝑛  essential groups that may enhance the 

classification robustness for several newer CLs. The 

below section presents the information that how the 

OPTICS operations are combined with the splitting 

task: 

The OPTICS is an extended version of the 

DBSCAN algorithm which utilizes a value of 𝜀 

instead of a particular total threshold for detecting the 

groups of various regional densities i.e., for defining 

the closeness of sample distribution.  

It utilizes the input variables 𝑀𝑖𝑛𝐼𝑛𝑠 and created 

distance 𝜀; but, 𝜀 is the highest threshold range. Also, 

𝜀′ is used for defining the radius utilized by OPTICS, 

where 0 < 𝜀′ < 𝜀 . The basic terms used in this 

OPTICS clustering algorithm are defined as follows: 

 

• Major gap: The major gap of an instance 𝑟𝑡 

defines the gap 𝜀′  between 𝑟𝑡  and its 

𝑀𝑖𝑛𝐼𝑛𝑠’s adjacent such that 𝑟𝑡  refers to the 

major instance relating to 𝜀′. When 𝜀′ range is 

superior to 𝜀, the major gap is not defined. 

• Accessibility gap (of 𝑟𝑥 from 𝑟𝑦): When 𝑟𝑦 is 

not a major data relating to 𝜀 , then the 

accessibility gap is not specified. Or else, the 

accessibility gap of a data 𝑟𝑥 from a data 𝑟𝑦 is 

the highest of 𝑟𝑦 ’s major gap and the 

minimum gap such that 𝑟𝑥  is density-

accessible from 𝑦.    

A) Partition index to assess strength of accessibility 

curve in OPTICS 

To evaluate the cluster formation in OPTICS, an 

accessibility curve is considered. The accessibility 

gap is projected for every instance ranked based on 

the ranked file. Because acquiring the accessibility 

curve is a transitional process in OPTICS, the hit of 

this algorithm essentially relies on the accessibility 

curve. After that, evaluating the curve strength is an 

evaluation of the result of OPTICS. 

  By neglecting the initial and final instances of the 

accessibility curve, the partition index is defined as 

the fraction of the average peak heights to the average 

range of instances among the peaks in the valleys. As, 

if there are peaks at 𝑟𝑥  and 𝑟𝑦  in the accessibility 

curve, with the group-𝑐  represented by the valley 

enclosed by such peaks, then the partition index for 

the group-𝑐 is 

 

𝑆𝑧 =
1

2
(𝑅𝑃(𝑟𝑥)+𝑅𝑃(𝑟𝑦))

1

𝑟𝑦−𝑟𝑥−1
∑ 𝑅𝑃(𝑚)

𝑟𝑦−1

𝑚=𝑟𝑥+1

  (4) 

 

In Eq. (4), 𝑆𝑧 is the partition index for 𝑧𝑡ℎ cluster, 

and 𝑅𝑃(𝑟𝑥), 𝑅𝑃(𝑟𝑦)  are the ranges of the 

accessibility curve. The last partition index is a mean 

of the partition indices acquired for every group. It 

assesses the fraction of the peak heights to the mean 

of the benchmark heights. A greater partition index 

denotes that the peaks are comparatively very greater 

than the benchmark; so, creating groups by the 

threshold on the accessibility curve may be less 

responsive to outliers. This is a proximate indicator 

of how reliable OPTICS clustering is. 

B) Evaluating sturdiness by additive noise 

When dealing with noisy data, a clustering 

algorithm's sturdiness is evaluated. If clustering can 

continue to function well in the existence of greater 

interference ranges than the noise-free instances for a 

particular data set, it is said to be resilient. To analyze 

the sturdiness of OPTICS in correlation with multiple 

characteristics, a recursive clustering using additive 

noise (RCAN) scheme is applied. In this paper, white 

Gaussian noise is sequentially inserted into the 

multiple characteristics such that the signal-to-noise 

ratio (SNR) of the succeeding contaminated 

characteristics is reduced by 1dB per iteration, with 

the SNR range initiating from 100dB in the initial 

iteration. 

In this case, the standard description of SNR is 

utilized i.e. 𝑆𝑁𝑅 = 10 × log (
𝑆

𝑁
) , where 𝑆  is the  
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Algorithm 2: OPTICS clustering 

Input: New instances 𝑟𝑡 

Output: 𝑛 clusters 

Begin 

Include white Gaussian noise to 𝑟𝑡  in 

decrements of 1dB SNR from 100 to 0; 

Determine core and reachability distances; 

Compute the partition index using Eq. (4); 

Acquire 𝑛 clusters for 𝑟𝑡 multiple novel CLs; 

𝒊𝒇(𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 𝑢𝑝𝑑𝑎𝑡𝑒𝑑)  

     SNR value observed at this data instance; 

𝒆𝒍𝒔𝒆  

     Continue the clustering process; 

       𝒆𝒏𝒅 𝒊𝒇 

End 

 

 
Figure. 2 Flowchart of evaluating robustness using 

additive noise 

 

signal power (average squared range of each feature 

value), 𝑁 is the noise power (average squared range 

of additive Gaussian noise), and the logarithm is 

considered to the base of 10. An SNR range of 100dB 

denotes a maximum quantity of signal associated 

with the outlier, while a range of 0dB denotes a 

similar quantity of outliers in the instance, creating it 

hard to differentiate a signal from an outlier. 

Initiating with an instance consisting of an SNR 

of 100dB, OPTICS-based clustering is executed at 

every SNR range, reducing the SNR by 1dB in all 

iterations and concluding merely while the grouping 

creation has been updated. The lesser the SNR range, 

the greater outlier that exists in the instances, so 

highly vigorous the scheme could be in the mixture 

with the multiple input characteristics because the 

less SNR denotes a greater acceptance for the outlier. 

The flow of this process is shown in Fig. 2 and 

Algorithm 2 gives the pseudo code for OPTICS 

clustering. 

In Algorithm 2, 𝑟𝑡  new samples with white 

Gaussian noise to determine core distance and 

reachability distance values. After that, the partition 

index is calculated for clusters and 𝑛  clusters are 

obtained. When the clustering is updated, the SNR 

value is observed at the measured distance; or else, 

the clustering procedure is continued. 

Consider that examples having similar newer CL 

can situate in the identical group. Hence, various 

groups can indicate various CLs. Since it is shown 

that amongst the MuENLForest leaf nodes, such 

examples having newer CLs are estimated using their 

gap far from the regular examples situated in every 

group reliantly. Specifically, if the classifier is 

considered as learned for 𝑖𝑡ℎ CL, then the successive 

step is to learn the classifier for 𝑖 + 1𝑡ℎ CL 

depending on 𝑖𝑡ℎ CL classifier. 

3.2.4. Multi-label classification update 

After the OPTICS-based clustering process has 

finished the splitting task for multiple newer CLs, the 

multi-CL classification is updated. The trained 

categorizer is highly resilient to the failures of the 

identifier. The result is modeled as: 

Consider that 𝑘  groups gathered in the buffer 

storage and 𝑅𝐵,𝑖  is the set of examples having 𝑖𝑡ℎ 

newer CLs, 𝑅𝑈 refers to the collection of examples 

having expected CLs simply, where 𝑅𝑈 =
𝑅𝑡

𝑅𝐵
⁄  and 

𝑅𝐵 = [𝑅𝐵,1, … , 𝑅𝐵,𝑘] . Assume 𝑝 = [𝑝1, … , 𝑝𝑚]⊤  is 

the unknown allocation of the newer CL of 𝑅𝑡,𝑖 =

[𝑅𝐵,𝑖; 𝑅𝑈] where 𝑚 denotes the number of instances 

in [𝑅𝐵,𝑖; 𝑅𝑈], and 𝑝𝑘 = 1 if 𝑟𝑘 ∈ [𝑅𝐵,𝑖; 𝑅𝑈]; or else, 

𝑝𝑘 = 0. 

Different from Eq. (3), 𝑦𝑖,𝑘  is replaced with 

2𝑝𝑘 − 1 . So, the optimization dilemma of 

constructing a classifier 𝜔𝑎  and training 𝑝  for the 

newer CL 𝑙 is directed as: 

 

𝜔𝑎 , 𝑝 ← min
𝜔𝑎,𝑝

∑ ∑ [1 − (2𝑝𝑘 − 1 −𝑚
𝑘=1

𝑙
𝑗=1

𝑦𝑗,𝑘)(𝑓𝑙,𝑘 − 𝑓𝑗,𝑘)]
+

+ 𝜆1 ∑ [1 − (2𝑝𝑘 − 1)𝑓𝑙,𝑘]
+

𝑛
𝑘=1   

+
𝜆2

2
‖𝜔𝑎‖2 +

𝜆3

2
‖𝑝‖2 (5) 

 

Subject to 𝑝𝑘 ∈ {0,1}, 𝑘 = {1, … , 𝑚} 

Because Eq. (5) is an NP-hard dilemma, the 

condition from 𝑝𝑘 ∈ {0,1} is changed to 𝑝𝑘 ∈ [0,1] 
to optimize 𝑝  and 𝜔𝑎  alternatively, i.e. the  

 

Yes 

Start 

Add white Gaussian noise 

to multiple new instances 

in decrements of 1dB SNR from 100 to 0 

Execute OPTICS clustering 

Clustering updated? 

SNR range observed at this data point 

End 

No 

Yes 
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Algorithm 3: MuEMNLHD 

Input: Primary training data: 𝑅0, 𝑌0, 𝐶0 

Output: Function set ℋ𝑡 for every 𝑟𝑡 

Begin 

Create the random feature map 𝜑; 

Obtain a primary ℋ0 by learning 𝑅0, 𝑌0; 

Build a primary newer CL identifier 𝒟0 

depending on 𝑅0; 

Initialize sampling weight vector 𝑠0 = 1|𝑟0|; 

Initialize 𝐵𝑢𝑓𝑓𝑒𝑟 = 𝜑; 

ℋ1 = [ℋ0, 𝒟0]; 𝒟1 = 𝒟0; 

Repeat 

Get a newer instance 𝑟𝑡 , 𝑅𝑡 = [𝑅𝑡−1; 𝑟𝑡
⊤]; 

Expand the sampling weight vector 𝑠𝑡 =
[𝑠𝑡−1; 1] concurrently; 

𝒊𝒇(𝒟𝑡(𝑟𝑡) ≥ 1)  

Include 𝑟𝑡 to buffer; 

𝒊𝒇(|𝐵𝑢𝑓𝑓𝑒𝑟| ≥ 𝐵𝑆𝑀𝑎𝑥)  

Apply Algorithm 1 and perform OPTICS to 

split buffer storage; 

Obtain 𝑛 clusters for 𝑛 newer CLs; 

𝒘𝒉𝒊𝒍𝒆(𝑖 > 𝑛)  

Create 𝒟𝑡+𝑖  and ℋ𝑡+𝑖  from 𝑖 = 0  and every 

𝒟𝑡+𝑖 relies on 𝒟𝑡+𝑖−1 iteratively; 

𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆  

Empty buffer; 

𝑙 ← 𝑙 + 𝑛; 𝑐𝑡 = 𝑐𝑡−1 ∪ {𝑙}; 

Update 𝑠𝑡 ← 0.8𝑠𝑡; 

𝒆𝒏𝒅 𝒊𝒇  

𝒆𝒏𝒅 𝒊𝒇  

𝑐𝑡 = 𝑐𝑡−𝑛; 𝒟𝑡 = 𝒟𝑡−𝑛;  ℋ𝑡 = ℋ𝑡−𝑛; 

Until 

Obtain ℋ𝑡; 

End 

 

optimization in Eqs. (6) and (7) are carried out. 

 

𝑝 ← min
𝑝

∑ ∑ [1 − (2𝑝𝑘 − 1 − 𝑦𝑗,𝑘)(𝑓𝑙,𝑘 −𝑚
𝑘=1

𝑙
𝑗=1

𝑓𝑗,𝑘)]
+

+ 𝜆1 ∑ [1 − (2𝑝𝑘 − 1)𝑓𝑙,𝑘]
+

𝑛
𝑘=1 +

𝜆3

2
‖𝑝‖2

    (6) 

 

Subject to 𝑝𝑘 ∈ {0,1}, 𝑘 = {1, … , 𝑚} 

Then, the Eqns. (5) and (6) are solved by using 

the sub-gradient of the objective function. After, 𝑝 is 

projected to [0,1]: 𝑝 ← min(1, [𝑝]+)  to assure the 

box condition in Eq. (7): 

 

𝜔𝑎 ← min
𝜔𝑎

∑ ∑ [1 − (2𝑝𝑘 − 1 − 𝑦𝑗,𝑘)(𝑓𝑙,𝑘 −𝑚
𝑘=1

𝑙
𝑗=1

𝑓𝑗,𝑘)]
+

+ 𝜆1 ∑ [1 − (2𝑝𝑘 − 1)𝑓𝑙,𝑘]
+

𝑛
𝑘=1   

+
𝜆2

2
‖𝜔𝑎‖2  (7) 

 

Table 2. Statistics of various databases 

Database No. of 

instances 

Size Total 

No. of 

CLs 

Mean 

No. of 

CLs for 

every 

instance 

Birds 645 260 19 1014 

CAL500 502 68 174 26044 

Emotions 593 72 6 3378 

Enron 1702 1001 53 3378 

Yeast 2417 103 14 4237 

20Newsgr

oup 

19300 1006 20 1029 

 
Table 3. Parameters utilized in MuEMNL/MuEMNLHD 

technique 

Parameter Technique Definition 

|𝐵𝑢𝑓𝑓𝑒𝑟| = 127   𝐵𝑆𝑀𝑎𝑥  

𝜆1, 𝜆2

∈ {0.001,0.01,0.1,1} 

Multi-label 

categorizer 

Trade-off 

variable 

|𝑞| ∈ {1,3,5}  

𝑔 = 100  

𝜓 = 256  

MuENLForest Novel CL 

identification 

Forest 

creation 

𝑀𝑖𝑛𝐼𝑛𝑠 = 5  

𝜀 = 1.325  

OPTICS 2 fixed 

parameters 

𝜆3 = 1  Multi-label 

classifier 

update 

Trade-off 

parameter 

 

Similarly, the MuEMNL technique is extended to 

high-dimensional data as MuEMNLHD. The 

pseudocode of this technique is given in Algorithm 3, 

which also involves similar processes as in Algorithm 

1, but for high-dimensional data. 

4. Results and discussion 

The efficiency of MuEMNL and MuEMNLHD 

techniques is assessed by implementing them in 

MATLAB 2019b. In this experiment, 5 multi-label 

standard databases [16] such as birds, CAL500, 

emotions, Enron, and yeast are considered for 

evaluating the prediction efficiency of the MuEMNL 

technique. Also, the 20Newsgroup dataset [16] is 

used for evaluating the prediction efficiency of the 

MuEMNLHD technique. Table 2 presents the 

statistics of these databases. 

For analysing both MuEMNL and MuEMNLHD, 

different metrics are considered such as average 

precision, F1-score, micro F1, . For a test set (𝑟𝑛, 𝑌𝑛), 

ℎ(𝑟𝑛)  defines the group of expected CLs for 𝑛𝑡ℎ 

example, 𝑓(𝑟𝑛, 𝑦) is the belief value that 𝑟𝑛  fits the 

CL 𝑦.  

• Mean precision: It defines the mean ratio of 

positive CLs sorted greater than the certain 

positive CL in Eq. (8): 
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𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
1

𝑛
∑

1

|𝑌𝑖|
𝑛
𝑖=1 ∑

|𝑙𝑝|

𝑠𝑜𝑟𝑡𝑓(𝑟𝑛,𝑦)
𝑦∈𝑌    

                  (8) 

 

Here, 𝑌𝑖  is the set of positive CLs, 𝑛  is the 

number of test instances, 𝑙𝑝  is the set of positive 

predicted CLs, which are sorted lower than CL 𝑦 for 

𝑟𝑛. 

• F1-score: It refers to the harmonic average 

of precision and recall for every instance in 

Eq. (9): 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
1

𝑛
∑

2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖×𝑅𝑒𝑐𝑎𝑙𝑙𝑖

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖+𝑅𝑒𝑐𝑎𝑙𝑙𝑖

𝑛
𝑖=1   

     (9) 

 

• Micro-F1: It is computed as Eq. (10): 

 

𝑀𝑖𝑐𝑟𝑜 𝐹1 = ∑
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖×𝑅𝑒𝑐𝑎𝑙𝑙𝑖

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖+𝑅𝑒𝑐𝑎𝑙𝑙𝑖

𝑛
𝑖=1   

 (10) 
 

• Accuracy: It measures the algorithm’s 

ability to accurately predict CL of unknown 

instances. It is calculated as: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
             (11) 

 

In Eq. (11), TP is the True Positive, TN is the 

True Negative, FP is the False Positive, and 

FN is the False Negative. 

• Hamming loss: It measures the ratio of 

instance-CL pairs, which have been 

misclassified, i.e. a relevant CL is missed or 

an irrelevant CL is predicted. 

• One-error: It measures the ratio of instances 

whose top-ranked predicted CL is not in the 

ground-truth relevant CL set. 

• Coverage: It measures how many steps are 

required, on average, to move down the 

ranked CL set of an instance thus covering all 

its relevant CLs. It is normalized by the 

number of possible CLs. 

• Ranking loss: It measures the mean ratio of 

misordered CL pairs, i.e. an irrelevant CL of 

an instance is ranked higher than its relevant 

one.  

4.1 Analysis of MuEMNL performance 

The efficiency of MuEMNL is compared with the 

LLP-ELM [8], VLSF [9], MENL-IK [11], and LF- 

 

 
Figure. 3 Comparison of mean precision for low-

dimensional dataset 

 

 
Figure. 4 Comparison of F1-score for low-dimensional 

datasets 

 

 

LELC [15] using 5 different low-dimensional 

datasets. 

Fig. 3 portrays the mean precision results for 

different MLL techniques executed on low-

dimensional datasets. It observes that the MuEMNL 

technique realizes better mean precision compared to 

all other existing MLL techniques. For example, if 

the CAL500 dataset is considered, then the mean 

precision of MuEMNL is 59.02% higher than the 

LLP-ELM, 43.54% higher than the VLSF, 34.49% 

higher than the MENL-IK, 18.91% higher than the 

LF-LELC and 7.28% higher than the MuENL 

techniques. 

Fig. 4 shows the F1-score results for different 

MLL techniques executed on low-dimensional 

datasets. It observes that the MuEMNL technique 

realizes a better F1-score compared to all other 

existing MLL techniques. For example, if the yeast 

dataset is considered, then the F1-score of MuEMNL 

is 81.96% greater than the LLP-ELM, 48.32% greater 

than the VLSF, 38.16% greater than the MENL-IK, 

19.06% greater than the LF-LELC and 7.95% greater 

than the MuENL techniques. 

Fig. 5 shows the 𝚫Micro F1 results for different 

MLL techniques executed on low-dimensional 

datasets. It observes that the MuEMNL technique 
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Table 4. Performance of on low-dimensional datasets 

Technique Birds CAL500 Enron Emotions Yeast 

Hamming loss 

LLP-ELM 0.126 0.148 0.073 0.131 0.235 

VLSF 0.119 0.140 0.066 0.125 0.227 

MENL-IK 0.111 0.133 0.059 0.117 0.220 

LF-LELC 0.104 0.128 0.051 0.110 0.212 

MuENL 0.096 0.121 0.045 0.102 0.208 

MuEMNL 0.088 0.114 0.039 0.093 0.196 

Technique One-error 

LLP-ELM 0.253 0.150 0.281 0.235 0.252 

VLSF 0.248 0.143 0.274 0.229 0.246 

MENL-IK 0.241 0.137 0.266 0.221 0.240 

LF-LELC 0.236 0.131 0.258 0.214 0.233 

MuENL 0.230 0.125 0.251 0.209 0.225 

MuEMNL 0.222 0.118 0.245 0.203 0.219 

Technique Coverage 

LLP-ELM 0.961 0.799 0.278 0.195 0.502 

VLSF 0.948 0.783 0.265 0.188 0.489 

MENL-IK 0.932 0.775 0.251 0.174 0.474 

LF-LELC 0.924 0.768 0.239 0.161 0.458 

MuENL 0.910 0.756 0.225 0.150 0.443 

MuEMNL 0.907 0.744 0.218 0.142 0.435 

Technique Ranking loss 

LLP-ELM 0.172 0.230 0.121 0.193 0.208 

VLSF 0.157 0.219 0.109 0.176 0.195 

MENL-IK 0.134 0.205 0.094 0.168 0.181 

LF-LELC 0.121 0.193 0.087 0.155 0.170 

MuENL 0.108 0.180 0.075 0.141 0.163 

MuEMNL 0.095 0.172 0.068 0.134 0.156 

Technique Accuracy 

LLP-ELM 0.751 0.524 0.632 0.799 0.723 

VLSF 0.765 0.537 0.649 0.810 0.735 

MENL-IK 0.779 0.552 0.664 0.821 0.749 

LF-LELC 0.792 0.569 0.676 0.835 0.762 

MuENL 0.805 0.584 0.691 0.847 0.774 

MuEMNL 0.813 0.597 0.705 0.854 0.788 

 

 

 
Figure. 5 Comparison of 𝚫Micro F1 for low-dimensional 

datasets 

 

realizes better 𝚫Micro F1 compared to all other 

existing MLL techniques executed on birds, CAL500, 

Enron, emotions, and yeast datasets. 

Table 4 provides accuracy, hamming loss, one-

error, coverage, and ranking loss for different MLL 

techniques on low-dimensional datasets. 

From this analysis, it is indicated that the 

MuEMNL technique achieves better performance in 

terms of hamming loss, one-error, coverage, ranking 

loss, and accuracy compared to the other MLL 

techniques applied to the low-dimensional datasets. 

4.2 Analysis of MuEMNLHD performance 

The efficiency of MuEMNLHD is compared with 

the MENL-iIK [11], DM2L [13], and MLL-FLSDR 

[14] using the 20Newsgroup dataset. 

Fig. 6 shows the mean precision, F1-score, and 

𝚫Micro F1 results for different MLL techniques 

executed on the 20Newsgroup dataset. It observes 

that the MuEMNLHD technique realizes better mean  
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Table 5. Performance on 20Newsgroup dataset 

Metrics MENL-iIK DM2L MLL-FLSDR MuEMNLHD 

Hamming loss 0.138 0.123 0.110 0.994 

One-error 0.624 0.611 0.599 0.585 

Coverage 0.289 0.275 0.263 0.258 

Ranking loss 0.135 0.129 0.114 0.102 

Accuracy 0.682 0.696 0.711 0.729 

 

 
Figure. 6 Comparison of Different MLL techniques on 

20Newsgroup dataset 

 

precision, F1-score, and 𝚫Micro F1 compared to all 

other existing MLL techniques. That is, the mean 

precision of MuEMNLHD is 16.1% higher than the 

MENL-iIK, 11.9% higher than the DM2L, and 6.74% 

higher than the MLL-FLSDR techniques. Also, the 

F1-score of MuEMNLHD is 55.42% greater than the 

MENL-iIK, 27.73% greater than the DM2L, and 

8.23% greater than the MLL-FLSDR techniques. 

Table 5 provides accuracy, hamming loss, one-

error, coverage, and ranking loss for different MLL 

techniques on the 20Newsgroup dataset (i.e., high-

dimensional dataset). 

From this scrutiny, it is addressed that 

MuEMNLHD  

technique realizes good efficiency in terms of 

hamming loss, one-error, coverage, ranking loss, and 

accuracy compared to the other MLL techniques 

applied to the high-dimensional datasets. 

5. Conclusion 

In this article, two different versions of 

MuEMNL and MuEMNLHD techniques were 

presented to solve the MLL in complex scenarios. In 

this technique, different modules were performed. 

The findings revealed that the MuEMNL technique 

on low-dimensional databases attains 67.08% 

average mean precision, 75.14% mean accuracy, 

64.02% mean F1-score, 0.125 mean ranking loss, 

0.489 mean coverage, 0.201 mean one-error, and 

0.106 mean hamming loss compared to the classical 

MLL techniques. Similarly, the MuEMNLHD 

technique on high-dimensional database achieve 

64.6% mean precision, 63.1% F1-score, 72.9% 

accuracy, 0.102 ranking loss, 0.258 coverage, 0.994 

hamming loss, and 0.585 one-errors compared to the 

classical MLL techniques. In future work, an 

ensemble technique is proposed to handle concept 

drifts when higher quantity of data arriving at high 

speeds. 
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