
Received:  October 11, 2022.     Revised: November 17, 2022.                                                                                        290 

International Journal of Intelligent Engineering and Systems, Vol.16, No.1, 2023           DOI: 10.22266/ijies2023.0228.26 

 

 
A New Technique for Genetic Mutations Detection and Classification Using Deep 

Learning 

 

Rana H. Saloom1*          Hussein K. Khafaji2 

 
1Informatics Institute for Postgraduate Studies (IIPS), 

Iraqi Commission for Computers and Informatics (ICCI) Baghdad, Iraq 
2Computer Communications Engineering Department, Al-Rafidain University College Baghdad, Iraq 

* Corresponding author’s Email: Phd202020565@iips.icci.edu.iq 

 

 
Abstract: Numerous variables, such as changes in the environment, toxins, spontaneous mutations, and replication 

mistakes, can have an impact on DNA. It is known as a gene mutation when this occurrence permanently alters the 

DNA sequence that forms a gene, changing it from the sequence seen in most people. Alleles, which are small 

variations within the same gene, are produced as a result of mutations. Each person is different due to these minute 

variations in their DNA sequence. In particular, some mutations affect just the carriers, whilst others affect both all 

children and the carrier organism's progeny. Changes in the DNA sequence (genetic mutations) are one of the reasons 

that lead to life-threatening disorders such as cancer and other diseases, so it has become necessary to detect these 

mutations early and know their types and their impact on the DNA sequence The DNA modifications developing in 

the cells of the following generation are what bioinformatics is most concerned about. In this paper, an efficient 

approach based on the architecture of long-term memory (LSTM) recurrent neural networks is presented. The method 

involves locating mutations using the Needleman algorithm that compares the reference DNA sequence with the 

mutant sequence. The deep neural network is then trained on the Cancer Cell Lines portal (CCLE) dataset to classify 

the different types of genetic mutations that have been identified. The algorithm reports the mutation type and locus 

for each pair of DNA inputs. Finally, the simulation output demonstrates the effectiveness of the algorithm. By testing 

the method, it was found that it was able to identify the mutation type with 100% accuracy. 

Keywords: Bioinformatics, DNA sequence, DNA mutation, Sequence alignment, Mutation classification. 

 

 

1. Introduction 

All living things have genes, a unit of heredity, 

which store their genetic information. The way those 

genes are expressed in a given cell defines that cell's 

activity. As a result, any kind of gene mutation, 

whether single or several, can cause an imbalance in 

the expression of genes, which is known as a genetic 

illness [1].The somatic mutations can cause a variety 

of harmful biological effects, but DNA is particularly 

vulnerable to somatic mutations due to its greater 

susceptibility to them [2, 3] some of these mutations 

have been linked to critical roles in the development 

and metastasis of cancer [4]. Scientists working in 

bioinformatics still struggle with accurately 

predicting mutation subtypes [5] Numerous machine-

learning techniques are now being used to tackle 

biological issues.However, it is quite challenging to 

reliably identify somatic mutations from the vast 

sequencing data. Numerous scholars have been 

attempting to solve this issue in recent years. 

Identifying the many subtypes of mutations is very 

important since doing so can aid in the development 

of a system for detecting diseases in their early stages 

by identifying the mutation that causes those diseases 

[6].  

In bioinformatics, pairwise sequence alignment 

(PWSA) is one of the crucial jobs. In order to identify 

areas of similarity, a pair of genetic sequences (such 

as DNA and RNA) with different characteristics are 

arranged. The goal is to find the alignment that has 

the highest overall score, or the most base-to-base 

matches, without changing the order of the bases in 
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either sequence. Gap-to-gap pairings are also not 

allowed [7]. A pairwise sequence alignment 

technique based on dynamic programming, the 

Needleman-Wunsch (NW) algorithm is primarily 

used to find the best global alignment between two 

biological sequences (such as DNA, RNA, and 

protein) in O(MN) time and space where N is the 

length of reference sequences and M is the length of 

query sequences Matrix initialization, similarity 

score computation, traceback, and result generation 

are the four stages of the NW algorithm [8]. 

Classification algorithms in data mining can identify 

a certain pattern in a vast amount of data. By using 

both features created from the existing data and 

attributes that are presented in the data.  

The contribution of this paper is to detect the 

genetic mutation in the DNA sequencing and its 

location and then determine the main category of the 

mutation (deletion, substitution, insertion) and the 

detection of this mutation subclass (Missense 

substitution, Nonsense substitution, Silent 

substitution, Read-through substitution, Frameshift 

insertion/deletion) by comparing the reference 

sequence with the mutant sequence using pairwise 

sequence alignment (PWSA) to align the mutation-

free DNA sequence with the mutant sequence based 

on Needleman algorithm, then encoding the reference 

and mutant sequences and dividing them into amino 

acids to be classified and to know the main and 

subtype of the mutation. The results of the technique 

used in this paper outperformed the results achieved 

in the previous studies with an accuracy of 100%. 

The remainder of this research is structured as 

follows: Previous studies that dealt with the 

identification of genetic mutations and their types and 

the theoretical foundations of this research will be 

explained in the next section. The study methodology 

is explained in the third part, the analysis and 

discussion of the results are explained in the fourth 

section, and the conclusions are explained in the last 

section. 

2. Related works 

In this section, we will discuss prior research on 

the DNA mutations classification: 

In 2017, Jinliang Yanget al. utilized a program to 

compare and analyze the symbols of amino acids 

along the polypeptide chain in order to model and 

discover mutation categories and kinds using the 

PetriNet network. The model is helpful for 

determining if protein function and structure are 

impacted by mutations [9]. 

A strategy for classifying genetic variants based 

on clinical evidence was provided by Resham N. 

Waykole et al. in 2018. They extracted characteristics 

from genes and their variations using a single hot 

coding strategy in order to detect a mutation. The 

clinical transcript data were processed using the tf-idf 

algorithm to extract features. Logistic regression is 

used for classification. The findings indicate a 64% 

[10] classification accuracy. 

In 2019, Jingwen Xuet al.suggested a 

classification scheme for genetic mutations based on 

empirical data. The approach combines a repeating 

unit with a bidirectional sequential neural network 

and a convolutional neural network. With an 

accuracy of 84%, the model demonstrated its 

superiority over the conventional single neural 

network model [11]. 

Vikalp Kumar Singh presented a project to treat 

hemophilia in 2020. 7,784 patient mutations were 

found using the position specific mutation (PSM) and 

one hot coding (OHE) techniques to predict the 

severity of the disease. Different ML algorithms were 

examined and trained to categorize the mutation 

severity level from the dataset processed by PSM and 

OHE approaches. Surprisingly, PSM beat OHE in 

terms of accuracy and efficiency of training and 

prediction time, with improvements in these areas of 

91%. The use of PSM with various ML algorithms 

further increased the accuracy of risk prediction [12]. 

In 2021, Samuel Peacocketal.suggested a 

machine learning approach to automatically classify 

mutation by developing and training a recurrent 

neural network of an abstract syntax tree. The 

experimental analysis of 582 mutations revealed that 

this approach had a 90% accuracy rate for classifying 

mutations [13]. 

Natural Language Processing (NLP) methods 

were proposed by Meenu Gupta et al. in 2012 to 

categorize the genetic alterations based on clinical 

data. For Text conversion into a matrix of token 

counts, three models for text 

transformation )CountVectorizer, TfidfVectorizer, 

and Word2Vec  (are used. The sparse matrix of text 

descriptions is subjected to the application of three 

machine learning classification models, namely 

Logistic Regression, Random Forest, and XGBoost, 

as well as the Recurrent Neural Network (RNN) 

model of deep learning. The suggested classifiers' 

accuracy score is assessed by 70% [14]. 

Using a 1-D convolutional neural network (1D-

CNN), a Bidirectional Long Short-Term Memory 

(BiLSTM), and Bidirectional Gated Recurrent Unit 

(Bi-GRU), UntariNoviaWisestyetal.presented the 

sequential labeling model in 2022 as a method to 

concurrently identify type and index alterations of 

DNA sequences. The suggested model uses Bi-GRU 

and BiLSTM to report F1 scores of 0.9596 [15]. 

https://ieeexplore.ieee.org/author/37087008415
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3. LSTM 

A specific kind of RNN called Long Short-Term 

Memory (LSTM) networks is able to learn long-term 

dependencies. These networks perform amazingly 

effectively for avariety of issues. LSTMs are 

especially made to avoid the issue of long-term 

reliance [16]. LSTMs achieve this goal by naturally 

retaining information for lengthy periods of time. A 

sequence of repeatedly used neural network modules 

is the shape that all recurrent neural networks have. 

This repeating module in conventional RNNs has a 

fairly straightforward structure that may be a 

straightforward activation layer with the hyperbolic 

tangent function [17]. LSTM networks, on the other 

hand, also feature a similar sequence structure, but 

the repeating module is built differently. It contains 

four interacting layers, as shown in Fig. 1, as opposed 

to just one layer of a single neural network [18]. 

Lengthy Short-Term Memory (LSTM) neural 

networks are able to cope with the issue of long time-

dependent inputs and solve the vanishing and 

expanding gradients concerns [19]. LSTMs employ 

the notion of gates to simplify and effectively 

perform computations using both Long Term 

Memory (LTM) and Short Term Memory (STM) [20]. 

1. Forget Gate: When LTM goes to the forget gate, 

it forgets unhelpful knowledge. 

2. Learn Gate: Event (current input) and STM are 

integrated to enable the present input to be 

subjected to the recent knowledge we have 

gained via STM. 

3. Remember Gate: LTM data that we haven't 

forgotten, together with STM and Event 

information, are integrated into Remember Gate 

to serve as an updated LTM. 

4. Use Gate: To forecast the outcome of the current 

event, which serves as an updated STM, this 

gate additionally employs the LTM, STM, and 

Event. 

 

 
Figure. 1 Long short-term memory (LSTM) networks 

The hidden layer cell state of the neuron, or the 

data held in the neuron, is an important component of 

the LSTM model. The cell states function on a data 

chain resembling the conveyor belt. There is just a 

limited amount of linear information interaction, 

which prevents information loss and successfully 

transfers information between long-short-term 

memory. The input gate, forget gate, update gate, and 

output gate make up an LSTM model [21]. 

4. K-fold cross-varidation 

One statistical technique that may be used to 

gauge the effectiveness of machine learning models 

is cross-validation. Since it is simple to learn, simple 

to use, and produces skills estimate that it typically 

has a lower bias than other methodologies as the 

mean estimate of any parameter is less biased than a 

one-shot estimate, it is frequently used in involved 

machine learning to compare and select models for a 

given predictable modeling problem [22, 23]. There 

are four phases that make up the entire K-Fold cross-

validation algorithm [24]: 

1. Equally divide the training set S into k sections. 

Each subset has m/k training examples if the 

total number of training samples in S sets is m. 

The relevant subset is identified by the notation 

{S1,S2,....,Sk}. 

2. Select one from the sample set to serve as mi 

After that, choose k-1 from the training subset 

{S1, S2, Sj-1, Sj+1,... Sk}. (There is just one person 

remaining who is Sj.) To obtain the hypothetical 

function hij, train with this k-1 subset mi. Test 

the remaining Sj to see if there are any mistakes 

ἑsj(Sij). 

3. We receive k empirical errors since we remove 

one Sj at once (j ranging from 1 to k). The 

average of these k empirical errors is what a 

miempirical error is as a result. The average of 

the values generated in the loop is the  

 

 
Figure. 2 5-fold cross-validation technique 
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performance indicator supplied by the K-Fold 

cross-validation. 

4. Select the alternative with the smallest median 

empirical error rate mi. Then perform another 

training to obtain the last hi while using all S. 

Although this approach might be computationally 

expensive, it does not waste a lot of data. That is a 

significant benefit when trying to solve issues with a 

small number of samples, like inverse inference [25]. 

Fig. 2 illustrates K-Fold Cross-Validation. 

5. Methodology 

In this work, we suggest a method for locating 

gene mutations in DNA and identifying their type. 

The method entails five steps:  

1. Data collection. 

2. Data pre-processing  

3. Mutation detection 

4. Data encoding 

5. Mutation classification 

5.1 Data collection 

One of the mutation data sets is available at 

DepMap (https://depmap.org/portal/#). It is a Cancer 

Cell Lines portal (CCLE). It serves as a platform for 

the scientific community to learn about cancer 

vulnerabilities. The data set consists of a Mutation 

Annotation Formatfile (MAF) including information 

on all somatic point mutations and indels discovered 

in DepMap cell lines. The file contains a data set 

consisting of 1,048,575 rows representing different 

types of genetic mutations . 

5.2 Data preprocessing 

Data pre-processing transforms data into a format 

that machine learning can handle more quickly and 

effectively. In this step, the data set is prepared for 

the training and testing phase. Inappropriate and 

useless features of the dataset are eliminated. This 

stage includes the following steps: 

A. Features Extraction: The CCLE dataset 

consists of 32 features that represent mutation 

metadata. The necessity to choose the essential 

features for the modified data set results from 

the fact that many characteristics are not 

required for training. The features chosen for the 

training process are Codon_Change and 

Variant_Classification . 

B. Complex Features Simplification: The 

Codon_Change feature is a complex feature 

consisting of the mutation position, the 

reference codon, and the mutant codon. In this 

step, this feature is simplified by dividing it into  
 

Table 1. Example of extract new features from the 

Codon_Change feature 

CodonChange Position Reference 

codon 

Mutant 

codon 

c.(544-

546)gaC>gaG 

544-546 gaC gaG 

c.(6121-

6123)tCa>tAa 

6121-

6123 

tCa tAa 

c.(4666-

4668)cGg>cAg 

 

4666-

4668 

cGg cAg 

 
Table 2. Data layout 

Position Reference codon Mutant codon 

544-546 GAC GAG 

6121-6123 TCA TAA 

4666-4668 CGG CAG 

 
Table 3. Unsuitable data cleaning 

Index Reference codon 

1 c.(937-969)agctcctctccccagccagaagaaaccac 

2 c.(379-396)gggggcgggcccgcagfs 

3 c.(244-288)cagaccactctggcgtctcctgaagtgaga 

 

three features to obtain new features that we 

need in the training to predict the type of 

mutation as shown in Table 1. 
C. Data layout:The data is currently converted to 

produce codons in a format that only uses capital 

letters. as shown in Table 2. 
D. Unsuitable Data Cleaning: The incorrect data 

is removed at this step, as seen in Table. 3. 
E. Fill in the missing rows :  In this step, the NULL 

rows that represent deleted or inserted codons 

are replaced by three gaps to represent the 

deleted/inserted codon (---). 

5.3 Mutation detection 

The first step in this research is finding mutations 

in order to forecast the types of mutations that will be 

found in the subsequent phase. At this point, the 

reference sequence and mutant sequence were 

compared using Needleman's mutation detection 

technique for global alignment. The Pseudo code of 

Needleman-Wunsch Algorithm used in the alignment 

process to detect the location of the mutation is 

shown in Algorithm 1. 

In the following alignment, the reference 

sequences and mutant sequences are split into codons 

for initiation to the classification process as shown in 

Fig. 3. 

 

 

 

https://depmap.org/portal/
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Algorithm.1 Needleman-Wunsch Algorithm 

M- sequence 1 length 

N- sequence 2 length 

S-M x Ndimensional dynamic programming matrix 

δ(xi,-)-score from aligning xi with a gap  

δ(-,yj)-score from aligning yj with a gap  

δ(xi,yj)-score from aligning xi with yj 

1. S[0,0]=0 

2. For i=1 to M Do: 

• S[I,0]=s[i-1,0]+ δ(xi,-) 

3. For j=1 to N Do: 

• S[0,j]=S[0,j-1]+ δ(-,yj) 

• For i=1 to M Do: 

S[i-1,j-1]+ δ(xi,yj) 

S[i,j]=MAX S[i-1,j]+ δ(xi,-) 

S[i,j-1]+ δ(-,yj) 

4. Return S[M,N] 

Output: Optimal alignment score for aligning M and N  

Time Complexity: O(MN) 

 

 
Figure. 3 Splitting reference sequences and mutated 

sequences 

5.4 Data encoding 

A dictionary that translates the various symbols 

in the sequence (like ACGT) to a numeric code is 

used to turn the input into base sequences before 

feeding it into the deep neural network. Fig. 4 

illustrates how concatenated characters might be 

mapped to tokens: 

 

 

Figure. 4 Data encoding 
 

Table 4. Target encoding 

 Mutation Type One-Hot-

Coding 

1 Missense substitution mutation 100000000 

2 Nonsense substitution mutation 010000000 

3 Silent substitution Mutation 001000000 

4 Read-through substitution mutation 000100000 

5 Frameshift insertion mutation 000010000 

6 Frameshift deletion mutation 000000100 

7 in-frame insertion mutation 000000010 

8 in-frame deletion mutation 000000001 

 

While the target is encoded using one-hot-coding 

to represent all types of mutations represented by the 

four types of switch mutations (Missense mutation, 

Nonsense mutation, Silent Mutation, Read-through 

mutation) and insertion/deletion mutation 

(Frameshift mutation, in-frame mutation) as shown in 

Table 4. 

5.5 Mutation classification 

Mutations classification is the second stage of the 

suggested work. Building a classifier model is the 

first step in classifying DNA sequence alterations. 

These mutations are divided into three primary 

categories   )deletions, insertions, and substitutions) 

as well as subcategories (frame-shift insertion, in-

frame insertion, frameshift deletion, in-frame 

deletion, missense, silent, nonsense, and read-

through). 

The LSTM deep learning network model has 

been suggested to categorize different mutation types. 

When learning and hyperparameter tuning used 80% 

of the data set, while model testing occupied 20% of 

the data. In order to performthis, we conducta 10-fold 

validation by dividing training process into ten parts, 

so that the model is trained on nine parts and predicts 

the tenth part, and this is repeated ten times. The 

model was built using an LSTM technique, and 

several neural network architectures were tested to 

find the best one. The three layers of the network 

covered by this model are as follows: the embedding 

layer, the LSTM layer, and the dense layer. They used 

this cross-validation procedure to assess them, and 

the design with the greatest F1 score across all ten 

folds was chosen.  

The proposed neural networks underwent 100 

epochs of training, which means they had to go over 

the full dataset 100 times. Between each epoch, the 

model provided prediction on the validity fold, and it 

was recorded which epoch had the highest 

performance on the validation set. Figure 5 shows the 

classification process. 
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Figure. 5 Overall phases of the suggested mutation 

detection and classification method 

 

The use of LSTM networks in this situation may 

be advantageous. A characteristic of LSTM allows 

data sequences to be preserved. It eliminates unused 

information, and as we all know, data is always filled 

with a lot of unused information that can be 

eliminated by LSTM in order to speed up 

computation and lower costs. For this reason, the 

ability of LSTM to eliminate unused information 

while maintaining information sequence makes it a 

potent tool for classification. A prediction model for 

DNA mutations was put out. With this strategy, we 

aimed to attain the best prediction accuracy by 

arranging the sequencing data in a unique manner. 

We suggested that the method be broken down into 

four key phases. 

The sequence of data sets is preprocessed in the 

first stage. After the data sequence processing is 

finished in the second stage, the sequence is divided 

into codons (3 bases), and it is then turned into a 

format appropriate for training the LSTM network by 

and encoded {‘A’: 1, ‘C’: 2, ‘G’: 3, ‘T’:4, ‘_’:5}. The 

target values are also encoded using one-hot 

encoding, where each class is represented by a binary 

vector with all '0' values except for the pointer to the 

word, which is set to 1. In the third stage, input data 

passed for training on the LSTM layer. In the last 

stage collected results are assessed. 

In model Training, the reference codon and the 

query codon are given to the network as input. A 

hidden state vector and a cell state vector serve as the 

preceding cell's inputs for each LSTM cell. We 

output the hidden and cell-state vectors concatenated. 

The model's previous input for the subsequent 

generation, the hidden state, and the cell-state vectors 

from the previous cell are all inputs to each cell in the 

next step. The hidden state vector is fed to the dense 

layer (output layer), which outputs a posterior 

distribution over the next generation word at that 

place, in addition to passing those two vectors to the 

subsequent cell after updating them. A SoftMax 

function is used in order to obtain a probability 

distribution. Fig. 6 shows how network architecture 

works . 

The quantity of information that may enter each 

node state is controlled by the LSTM using a number 

of gates. Below is a detailed explanation of the LSTM 

cell and its gates: 

 

1) Forget gate: 

ft = σ(ωf・ [ht−1, xt] + bf)                 (1) 

 

 
Figure. 6 Deep neural network architecture 
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2) Input gate: 

it = σ(ωi・[ht−1, xt] + bi ) 

ct = tanh(ωc・[ht−1, xt] + bc)              (2) 

 

3) Cell state: 

ct = ft・ct−1 + it ・ct                      (3) 

 

4) Output gate: 

σt = σ(ωo・[ht−1, xt] + bo) 

ht= ot・tanh(ct)                        (4) 

 

where xt represents input on step time right now, 

σ denotes the logistics sigmoid function, and displays 

the elemental multiplication. Intuitively, the input 

gate regulates how much each unit is updated, the 

forget gate controls how many memory cells are 

removed per unit, and the gate outputs govern how 

much of the internal memory state is exposed. 

6. Result 

Due to the availability of large-scale biological 

data from high-throughput testing and the maturation 

of techniques for learning large numbers of network 

parameters, we can now evaluate the viability and 

utility of using specific deep neural network 

architectures as categorization tools for detecting 

genetic mutations. Numerous concerns arise as a 

result of the rapid uptake and rising popularity of 

deep learning materials to solve a wide range of 

biological issues, including the following: Can deep 

learning models successfully classify and 

differentiate between different mutation types using 

only nucleotide information? And what significance 

does the contribution of various structural and 

functional predictors derived from a biophysical 

approach have in this situation? 

The CCLE dataset is utilized, and it includes a csv 

file with the features and the label, For the aim of 

identifying the mutation position, two fasta files 

representing the reference file (a file with no genetic 

mutations) and the query file (a file containing 

genetic mutations) were also utilized.The dataset 

consists of 32 features from which we derived 

features relevant to our study, and additional features 

from these features are extracted. The data set 

contains 1005217mutations of various types, as 

shown in Table 5 and the distribution of mutation 

types in the dataset is shown in Fig. 7. 

The alignment that this analysis produced is as 

follows: 

 

ACTG-ATTCA………n+1                (5) 

 

AC-GCAT-CA………m+1                (6) 

Table 5. Mutations type 

 Mutation Type Number of 

Mutation 

1 Silent substitution mutation 305193 

2 Missense substitution mutation 594942 

3 Nonsense substitution Mutation 34659 

4 Read-through substitution mutation 832 

5 Frameshift deletion mutation 37205 

6 in-frame deletion mutation 6481 

7 Frameshift insertion mutation 23182 

8 in-frame insertion mutation 2723 

 

 
Figure. 7 Mutation types distribution 

 

 
Figure. 8 Sequence alignment using needleman algorithm 
 

The first stage of the work consists of using 

Needleman algorithm to align the reference and 

mutant sequences, by comparing the two sequences, 

in order to identify the positions of mutations as 

shown in Fig. 8. 

In the following alignment, the reference and 

query sequences are divided into codons (3 bases), 

which are then ready to enter into the deep neural 

network for training and testing. After the data was 

divided into codons, the neural network training 

procedure started. The data are divided into two parts: 

80% of it was used for training and 20% of it was 

used for testing.To anticipate and classify mutations, 

we investigated Four machine learning classifiers, 
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namely Decision Tree, Logistic Regression, KNN, 

and Naive Bayes. They were applied to the data for 

the purpose of comparing them with the proposed 

model. We trained the network on mutations within 

the CCLE database using these classifiers and these 

classifiers were evaluated using the following scales: 

 

1. Accuracy: It measures the proportion of accurate

 predictions to all input samples. 

 

Accuracy =
Number of correct preductions

Total number of preductions made
    (7) 

 

2. Precision: It is calculated as the proportion of co

rrect positive findings to those that the classifier 

anticipated to be positive. 

 

Precision =
True positives

True positives+False positives
      (8) 

 

3. Recall: It is calculated as the total number of rele

vant samples divided by the number of correct p

ositive outcomes 

 

Recall =
True positives

True positives+False negative
        (9) 

 

4. F1-Score:The Harmonic Mean of recall and prec

ision is the F1 Score. F1 Score has a range of [0,

 1]. It reveals the precision and durability of you

r classifier (the proportion of properly classified 

cases) 

 

F1 − Score = 2 ∗ (
Precision∗ Recall

Precision+ Recall
)     (10) 

 

Table 6 shows a comparison between the classifi

ers that were tested on our data set according to the a

bove-mentioned metrics. 

We trained various deep neural networks to reach 

the highest possible accuracy for predicting the types 

of genetic mutations, where LSTM was used, and the 

accuracy was 99.97%. It gives the expected accuracy, 

then K-Fold cross-validation was used which in turn 

divides the training data into 10 folds so that the 

network can train and give better accuracy, and this 
 

Table 6. Comparison between different classifiers 

Strategy Accuracy precision recall F1-sc

ore 

Naive 

Bayes 

57.88% 48% 49% 44% 

LogisticRe

gression 

59.60% 20% 16% 14% 

DecisionTr

ee 

60.95% 33% 32% 31% 

KNN 96.15% 90% 80% 87% 

Table 7. Comparison between the suggested approach 

with alternative strategies 

Strategy Accuracy precisi

on 

recal

l 

F1-s

core 

Naive Bayes 66.66% 23% 33% 27% 

LogisticRegression 66.91% 30% 16% 16% 

Decision Tree 74.01% 18% 15% 15% 

CNN+LSTM 84.30% 82% 37% 45% 

KNN 98.84% 90% 81% 89% 

LSTM 99.97% 100% 97% 98% 

LSTM+K-Fold 

cross-validation 

100% 100% 10

0% 

10

0% 

 

has achieved an accuracy of 100. By testing and 

classifying our dataset using several classifiers such 

as (Naive Bayes, Logistic Regression, Decision Tree, 

KNN, CNN+LSTM ) and comparing it with the 

proposed model, we found that the accuracy gained 

from the proposed model is higher than the accuracy 

that we obtained from other classifiers, as shown in 

Table 7. 

When training data is conveyed via a network, its 

primary goal is to minimize loss, either in terms of 

errors or costs, that is seen in the output. After 

calculating the gradient, or loss in relation to a 

particular set of weights, the weights are modified 

appropriately. We continue using these weights until 

we discover the ideal weights, for which the loss is 

the least. A critical step in evaluating the 

effectiveness of any model in deep learning is to 

check the accuracy of the model after the training 

phase. Fig. 9 shows the verification of the increase in 

accuracy in learning. Fig. 9(a) shows the progress in 

learning and the increase in accuracy from the initial 

stages of training. Fig. 9(b) shows the decrease in the 

amount of loss from the initial stages of training as 

well. 
 

 
Figure. 9 Accuracy and loss result from the proposed 

model 
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7. Comparative analysis 

The proposed technique has also been compared 

with the methodologies that were reviewed in 

previous studies included in Section 2 of this research. 

The comparison can be summarized as follows: 

When comparing the proposed model with the 

model presented in reference [9], it is found that the 

Scaling Petri nets is tricky. As a result, attempts to 

reproduce biological systems using standard Petri 

nets have mostly focused on extremely tiny models 

up until now. In contrast, the proposed system 

showed its ability to be used in large models. 

The researchers at reference [10] used logistic 

regression. Complex relationships are challenging to 

get using logistic regression. This approach can be 

readily defeated by the deep neural network 

techniques utilized in our suggested technique. 

The model used in reference [11] showed that it 

is able to predict with much less accuracy than that 

achieved in our proposed technique. 

The SVM was used as one of the machine 

learning techniques in the reference [12]. Due to the 

fact that this algorithm is not suitable for very large 

datasets, the technique proposed in this paper is 

considered more efficient for classifying large 

datasets. Because the length of the DNA sequence 

can reach millions of nitrogenous bases, and this 

requires a technique that works very efficiently with 

very large sequence lengths. 

The researchers of the reference [13] published a 

study that included methods for categorizing 

comparable mutants using only two types of mutation 

operators, namely ABS (Absolute Value Insertion) 

and UOI (Unary Operator Insertion). But the 

proposed technique in this paper can detect and 

determine the types of all forms of mutations. 

 
Table 8. Comparison between the suggested approach 

with related works 

Reference No. Technique Accuracy 

[9] Petri Nets - 

[10] logistic regression 64% 

[11] CNN and BiGRU 

Network 

84% 

[12] SVM and one hot 

coding 

91% 

[13] Abstract Syntax Tree 

Neural Networks 

90% 

[14] Natural Language 

Processing 

70% 

[15] Sequential Labeling 

Model 

95% 

Propose 

Technique 

LSTM+K-Fold cross-

validation 

100% 

 

The researchers of reference [14] have used 

Natural Language Processing (NLP) to forecast the 

sorts of genetic changes, however finding effective 

NLP techniques is challenging, making it challenging 

to finish this task. 

In contrast to our technique, which identifies the 

location of the mutation, its main types, and mutation 

subtype, the model in the reference [14] classifies the 

three primary types of mutations (deletion, 

substitution, and insertion) only. Also, the accuracy 

of the model is lower than the accuracy of proposed 

technique. The accuracy of the methods in the 

aforementioned studies and the one that is suggested 

in this paper are presented in Table 8. 

8. Conclusion 

It is essential to classify genetic mutations in 

order to understand the nature and position of the 

mutation and to quickly recognize the disease that the 

mutation causes. As a result, the goal of this study 

was to propose a deep neural network model based 

on the LSTM network. To do this, we extracted the 

features from the data set and trained the network 

using 80% of the Cancer Cell Lines portal (CCLE) 

data set by splitting the training data into 10 folds. By 

comparing our results with those of other strategies, 

we discovered that the proposed approach is capable 

of detecting and classifying the primary types of 

genetic mutations (deletions, insertions, and 

substitutions) and subtypes of genetic mutations 

represented by (frame-shift insertion, in-frame 

insertion, frameshift deletion, in-frame deletion, 

missense, silent, nonsense, and read-through) with 

greater accuracy than other strategies, with an 

accuracy of 100%.The quantity of training data and 

training epoch utilized have an impact on the 

classification accuracy. During training, it's crucial to 

establish the right parameters, including the ideal 

function, learning rate, meta-architecture, and input 

sample size, in order to achieve the greatest accuracy. 

The quality of the dataset and accurate data 

annotation are crucialto achieving the highest 

possible accuracy. Also,the form of LSTM itself 

exhibits temporal behaviour and sequentially 

captivates the data, which is a more suitable 

technique in sequences classification, the experiment 

found that LSTM is acceptable with genetic mutation 

classification issues. 
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