
Received: October 12, 2022. Revised: November 14, 2022. 265

International Journal of Intelligent Engineering and Systems, Vol.16, No.1, 2023 DOI: 10.22266/ijies2023.0228.24

Closer Towards Named Data Networking Implementation

Tody Ariefianto Wibowo1* Nana Rachmana Syambas1 Hendrawan1

Leanna Vidya Yovita2 Ade Aditya Ramadha2

1School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Indonesia

2School of Electrical Engineering, Telkom University, Indonesia

* Corresponding author’s Email: tody.wibowo@students.itb.ac.id

Abstract: Due to named data network (NDN) 's advantages as a content-based architecture, it is a strong candidate for

future internet architecture. Extensive research has been done on NDN implementation in the real world. However,

the method widely used has advantages and disadvantages in reaching the goal. Simulation gives simplicity but is

unlikely to provide reality in node implementation. The testbed method is close to real-world performance but needs

higher effort. To solve the problems, building an environment with nature closer to the implementation world is

required. The method also gives ease of use and observation, like simulation/emulation. Due to these needs, we

proposed a framework that combines the advantages of emulation and a testbed that occupies a UNetLab-based

virtualization environment for extensive observations for the NDN researcher. We build a test case in the PNETLab

and Mini-NDN for gives a perspective on how our proposed method works. PNETLab framework evaluates NDN

network’s nodes performance, giving 7,59% in RTT delay, and 0,89% in nCHR deference result to Mini-NDN, and

provides intensive hardware performance parameters result which is very important for NDN implementation.

Keywords: Named data network, Implementation, Virtualization, Performance.

1. Introduction

Named data networking (NDN) was initially

proposed by Van Jacobson [1, 2] for facing the

critical problem due to the increased Internet usage

for end-to-end connection. NDN networks emphasize

receiving and sending content or data instead of

looking for content/data itself. It has a big difference

from IP. In NDN, consumers request the data using

the names. The advantage is that every node in the

network can respond to this request. While in an IP

network, the request from the consumer is addressed

to the specific node. It can cause an unnecessary

burden on the network when many consumers request

the same data. All these requests will be directed to a

server with the same address. Due to the advantages

of named data network as a content-based

architecture, NDN is a strong candidate for future

internet architecture.

The general concept of communication

mechanism that uses the name of data is called

information-centric networking (ICN). To realize the

vision of ICN, various architectures have been

proposed including DONA [3], PURSUIT [4], NetInf

[5], COMET [6], CONET [7], CONVERGENCE [8],

MobilityFirst [9], GreenICN [10], CCN [1], and

NDN. NDN research is one of the most active ICN

research projects for all of these studies. This is

because many academic institutions,

telecommunications companies, and non-profit

research centers are involved in the NDN research

consortium, led by the University of California Los

Angeles as consortium administrator. Moreover,

NDN has several large and prestigious meetings that

take place regularly and are used to strengthen and

disseminate research on NDN, for example, the ACM

ICN conference, MILCOM conference, NDN

hackathon, and NDN community meetings.

The US government NSF initially funded NDN

as their proposed architecture for shaping the future

internet architecture (FIA) in 2010. Nowadays, many

universities around the globe take part, whereas

UCLA university is the coordinator. Previous

Received: October 12, 2022. Revised: November 14, 2022. 266

International Journal of Intelligent Engineering and Systems, Vol.16, No.1, 2023 DOI: 10.22266/ijies2023.0228.24

considerable studies have carried out initiatives to

implement NDN schemes on data communication

networks. Still, there have been no structured steps to

implement NDN on commodity hardware in the real

world.

As illustrated in Fig. 1, many initiatives or

research attempts to implement NDN in the real

world. In general, the stages of the research carried

out were simulation, emulation, and testbed. In the

earlier step, simulations in NDN research usually use

NDNSim [11]. NDNSim was developed from the

NS-3 simulation framework and utilized widely by

the researcher. NDN IoT-based research [12, 13] uses

NDNSim simulation to verify their proposed

algorithm. NDNSim benefits from the NS-3

framework by leveraging the features of existing

utilities and helpers.

Nevertheless, every NDN forwarding daemon

(NFD) and ndn-cxx release must be manually

integrated with NDNSim. NFD works as a network

forwarder, and ndn-cxx is a C++ library for

implementing NDN core. They are an essential part

of creating NDN nodes. Even more, some elements

in NDNSim sometimes show an anomaly on the run

because some simplifications were made in the

simulation. Therefore, we need to ensure that existing

and newly added unit tests are running consistently

Emulation is the next step in NDN research. In

[14] M. S. Budiana et al. using Mini-NDN to

investigate impact of contenstore to cache

replacement scheme. Xian Guo et al. [15] proposed

NOLSR scheme for NDN-MANET routing protocol

using a Mini-NDN emulator. Emulation intends to

approach hardware and operating systems

mechanisms closer to real-world processes. The

majority of NDN researchers use Mini-NDN to

emulate the NDN process. Mini-NDN is a

lightweight networking emulation tool built upon

Mininet. It enables testing, experimentation, and

NDN research to reach scalability. NDN libraries,

NFD, NLSR, and tools released by the NDN project

to emulate an NDN network. Mini-NDN runs on

docker as a container-level virtual machine (VM)

environment. Therefore Mini-NDN can emulate

complete NDN nodes and networks on a single

system. Each packet delivery and process in Mini-

NDN could be analyzed using a packet capture tool

(Wireshark or Tcpdump) and a process logging file

(NFD and NLSR). However, Mini-NDN lacks

isolating process, and CPU/RAM resource allocation

for each node.

The closest step to real-world implementation is

the testbed. In [16], Divya Saxena and Vaskar

Raychoudhury simulated and built a testbed of NDN-

based Smart Healthcare using IoT devices. L.

Figure. 1 NDN real-world implementation steps

Gameiro, C. Senna, and M. Luís in [17] implement

Intelligent Transportation System based on NDN

using Raspbery Pi and Nvidia Jetson. In the testbed,

usually, the researcher uses a dedicated resource to

implement the NDN node on a lab scale [18]. A

dedicated scale means the researcher must be

allocated real resources for running NDN nodes.

With dedicated resource allocation, every process

could be monitored: CPU utilization, RAM usage

even energy consumption per node. As a

consequence, this method has become less cost-

effective than others.

To solve the problems, building the environment

with nature closer to the implementation world has

ease of use, and observation is necessary. Due to

these needs, we proposed a framework combining

emulation and testbed advantages. This combination

framework gathers NDN research goals to be as close

as possible to real-world implementation. We

proposed a UNetlab-based emulation process using a

Qemu-based VM to gather easy implementation,

extensive monitoring, and cost-effectiveness. This

paper shows how this framework can monitor QoS

parameters, CPU utilization, and RAM usage. The

CPU and RAM usage are impossible to check and

analyze if we only use the NDNSim or even Mini-

NDN. We believe that this framework could bring

researchers the first step closer to implementing NDN

networks and technologies.

The rest of the paper is organized as follows. We

present the fundamental of NDN virtualization in

section 2. Section 3 presents the proposed

framework's system model and all the components

involved. In section 4 we present the proposed

framework and experimental setup, results, and

discussion. Finally, we conclude the paper in section

5 and give a direction for future works in section 6.

2. NDN virtualization

Virtualization is essential for modeling the NDN

nodes because we can enhance distributed systems'

flexibility, process isolation, and fault tolerance.

Received: October 12, 2022. Revised: November 14, 2022. 267

International Journal of Intelligent Engineering and Systems, Vol.16, No.1, 2023 DOI: 10.22266/ijies2023.0228.24

NDN Nodes

Libraries

NDN-cxx

PSync

Core Component

NFD

NLSR

NDN-traffic
generator

NDN-tools

Tools & Application

NDN faces

Figure. 2 NDN nodes component

Process isolation is vital because each node runs

independently with dedicated hardware resources in

the real environment. Without the isolation, it won't

be easy to monitor the performance of NDN nodes.

Previously, IBM initialized virtualization

technology in 1973, and through time virtualization

became very popular and extensively used.

Nowadays level/type and application of virtualization

have become more varied. Starting from the initial

full virtualization and para-virtualization evolve to

scalable operating system-level virtualization.

Implementation of virtualization, for example, is

used to operate several virtual machines (VM) on one

physical machine or server. This mechanism will

improve server resource usage in terms of CPU,

RAM, and energy. One dedicated server usually uses

only a few of the available hardware resources. Using

VM also increases the company's flexibility for

running the server operation. Adding a resource, hot

backing up, migrating, and other server operations

are straightforward. These benefits, in the end, will

give the company better operations reliability.

Virtualization is also adopted in the data

communication world. There is a term called

virtualization network function (VNF). VNF,

virtualize network and other functions, such as

network security, out of dedicated hardware devices.

Both network service providers and enterprises have

widely used this VNF method in virtualizing routers,

switches, firewalls, load balancers, DNS servers, and

caching mechanisms.

In this paper, we proposed a framework based on

the virtualization mechanism in NDN research as an

added step for real-world implementation. In this step,

the researcher virtualizes the NDN function before

going to the testbed step. In the NDN virtualization

step, they virtualize NDN functions in software, so a

Linux Kernel

Network
Element

(NE)
Space

Process

Dynamips
Based NE

Qemu
Based NE

KVM (Modules)

Hardware Support,
Virtualization Technologies (AMD-V / Intel-VT)

Web Interfaces

HTML/VNC Viewer

IOL

Based NE
Docker

Based NE

Figure. 3 UNetlab structure

new algorithm or function proposed by the researcher

can be deployed as VMs or containers. With this

steppingstone, it will be more quickly and efficiently

to do NDN research. Furthermore, in NDN

virtualization, the researcher can monitor the system's

performance, which is set as close as the hardware

resource of the testbed candidate system.

2.1 Named data networking nodes

NDN nodes are built upon a core library/code

based called NDN-cxx. NDN-cxx collaborates with

core components (NFD & NLSR), NDN tools, and

applications (NDN traffic generator), as depicted in

Fig. 2. NDN-cxx is used as an NDN code library

firstly built and used to write various NDN

applications. The core component function is NDN

components that are mandatory for running NDN

node functions, such as routing, caching, and

forwarding. While the NDN tools and application is

used as an extension for the experiment. NDN node

faces are similar to interfaces in routers connected to

other NDN nodes, consumers, or producers.

There are two types of NDN packets, interest and

data. The consumer uses interest packets to request

content, while the data packet is sent to the consumer

in response to an interest packet. Whereas the

functions differ, interest and data packets use the

name as the content identifier. Each node in the NDN

network also has a name, so the routing mechanism

uses a name.

2.2 UNetlab

UNetlab is a free multi-vendor and multi-user

emulator platform for creating and modeling various

network functions and topologies. Some say it

emulates, but the method of emulating the network

Received: October 12, 2022. Revised: November 14, 2022. 268

International Journal of Intelligent Engineering and Systems, Vol.16, No.1, 2023 DOI: 10.22266/ijies2023.0228.24

function has a higher level than in Mini-NDN.

UNetlab can virtualize routers, switches, firewalls,

customers, and producers. The emulator has vast

support for many types of equipment from various

vendors, such as Cisco, Citrix, PaloAlto, Juniper,

VMWare, Windows Server, Aruba, and Fortinet.

Because NDN has not been standardized, it is not

listed as a supported function. Even so, we can build

the NDN function upon supported operating systems

functions such as Ubuntu or other UNIX-based

operating systems.

EVE-NG [19] and PNETLab [20] are part of the

UNetlab emulator development. Prioritizing the ease

of use, friendly user interface, and providing

virtualization options up to the container level these

why it has become our preference. EVE-NG and

PNETlab have almost the same user interface and

features. However, with several considerations, such

as the number of free licenses, examples of cases that

have been carried out, and social media support, in

this study, we decided to use PNETLab.

NDN nodes are created over PNETLab-based

Qemu virtualization and installed on a small Bodhi

Linux 32bit OS. We used Bodhi Linux because of its

non-demanding hardware resources. Bodhi Linux's

minimum requirements are a 500MHz processor,

512MB of RAM, and 5GB of drive space. Since

Bodhi Linux is built based on Ubuntu LTS, we have

not found many difficulties installing NDN

components to this OS.

2.3 UNetlab network element & QEMU

UNetlab support four kinds of virtualization

environments for the Network Element space process.

They are Docker, IOL, Dynamips, and Qemu, as

depicted in Fig. 3. All of them are running upon

hardware support (AMD-V or Intel-VT) depending

on hardware specifications and Linux kernel KVM

modules. Every compatible hardware has specific

requirements to emulate. Furthermore, the choice of

virtualization environment will also affect the

performance of the emulated hardware.

Docker [21] is a container level of the

virtualization environment. Docker is well-known

and widely used because of its flexibility and

adaptive resource management. In UNetlab,

supported devices/features are minimal. A docker for

Wireshark, chrome, Ubuntu, ansible, and Cisco NSO

is most used for testing, capturing, and device

orchestration.

Internetwork operating system over Linux (IOL)

is an emulation dedicated to Cisco IOS systems

devices. IOL can support Cisco routers, switches r,

firewalls, SD-WAN, and servers running on Linux

operating system.

Dynamips [22], like IOL, are also built to emulate

cisco devices. Dynamips is widely used as

experimental telecommunications testing benchmark

and for cisco exam preparation. Powered by the

GNS3 community, Dynamips git is actively

developing the system. Initially, Dynamips only

supported Cisco 7200 router then; currently, it can

emulate other series of Cisco routers, such as the

Cisco 3600, 3700, and 2600 routers family.

QEMU is an abbreviation for Quick Emulator, a

generic and open-source machine emulator and

virtualizer. There are two types of QEMU emulation

levels. The first type is System emulation. In this

mode, QEMU emulates a virtual mode of an entire

machine. It includes CPU, memory, and emulated

device running a guest OS. The second type is User

mode emulation. QEMU can invoke a Linux

executable compiled for a different device

architecture in this mode. QEMU can leverage the

host system resources to launch processes compiled

to a different architecture in this mode. Because of

these complicated mechanisms, some features may

have compatibility issues. QEMU commands for user

mode emulation are named qemu-target_architecture,

e.g., qemu-x86_64 for emulating Intel 64-bit CPUs.

To virtualize NDN nodes in the UnetLab

environment, we are using Qemu-based

virtualization. The selection of Qemu is due to NDN

implementation on the Linux-based OS (Bodhi and

because of the flexibility of Qemu virtualization

environment support.

3. System model

In this research, we build some study cases to

show how this proposed system can help NDN

researchers for an intensive experiment. In our study,

this NDN system is deployed to analyze the

performance of the proactive routing protocol in the

NDN-based Indonesia digital network (IDN).

3.1 IDN

IDN plays an essential role in the Indonesian

development strategy. Data communication

infrastructure is believed to be an essential step to

strengthening Indonesia's position in facing the

challenges of global change. To realize this vision,

the government and stakeholders build the Indonesia

digital network (IDN), which focuses on developing

and providing internet connectivity for all regions of

Indonesia. The digital telecommunication

Received: October 12, 2022. Revised: November 14, 2022. 269

International Journal of Intelligent Engineering and Systems, Vol.16, No.1, 2023 DOI: 10.22266/ijies2023.0228.24

Figure. 4 IDN model

infrastructure includes fiber optic and terrestrial

cables on the land and submarine cables at sea, as

seen in Fig. 4.

To see how intensive PNETLab (PL) can be used

for emulating NDN based network, we create IDN-

based NDN in the PNETLab virtual lab and then

compare the scenario with widely used Mini-NDN

(MN) based NDN emulation. Many NDN researcher

adopts Mini-NDN emulation as the primary

emulation tool for NDN. The IDN model created is

the backbone part that stretches from Banda Aceh to

Ambon in the east of Indonesia. This model involves

twenty-six nodes, consisting of sixteen main cities

and ten transits, where NDN nodes are placed, as seen

in Fig. 4. In the scenario, Jakarta plays the role of a

producer, and (Medan, Semarang, Pontianak,

Makassar, Denpasar, Yogyakarta, Padang, and

Manado) as a consumer.

3.2 Content request

In this system, consumers generate content

requests based on Zipf-Mandelbrot [23]. We model

the traffic from consumers' content requests using the

Zipf-Mandelbrot distribution. Contents with top-

ranking popularity are more likely to be requested by

consumers than non-popular content. The consumer's

probability request of content i is expressed by Eq.

(1):

𝑝(𝑖) =
(𝑖+𝑞)−𝛼

∑ (𝑖+𝑞)−𝛼𝑁
𝑖=1

 (1)

Where:

p (i) = probability request of content i,

q = flattened factor,

α = exponential factor,

N = number of files or content.

3.3 Network cache hit ratio (nCHR)

In this research, the term 'network cache hit'

denotes the number of requests for content that

intermediate NDN routers can respond. Intermediate

NDN router means NDN nodes between consumer

and producer. So, one request is said to be a 'hit' when

the interest packet can be satisfied by the content

cache by the intermediate node so that the interest

packet is not forwarded to the producer. Therefore,

the NDN intermediate router's ability to satisfy the

interest can improve the QoS without burdening the

producer's resources. So that the cache hit ratio is the

number of content interest that is successfully hit

(network cache hit) compared to the amount of total

interest (hit and miss). The network cache hit ratio

(nCHR) [24] for the scenario is obtained using the

following formula:

𝑛𝐶𝐻𝑅 =
𝑛𝐻

𝑛𝐻+𝑛𝑀
 (2)

Where:

nH = number of hit interests at intermediate nodes,

nM = number of missed interests at intermediate

nodes.

3.4 CPU and RAM utilization

CPU utilization is a parameter of average CPU

usage over the observation period. The term CPU

utilization percent is applied for a time period portion

that a CPU component is working and running the

processing, divided by the total amount of

observation time. The result is multiplied by 100 to

obtain a percentage, denoted in Eq. (3).

Received: October 12, 2022. Revised: November 14, 2022. 270

International Journal of Intelligent Engineering and Systems, Vol.16, No.1, 2023 DOI: 10.22266/ijies2023.0228.24

There are at least 4 (four) groups of processes in

NDN default nodes, routing process, caching process,

NDN forwarding process, and others background

processes; see Eqs. (3) and (4). For NDN CPU

Utilization measurement, elaborate in the next

section, focused on NDN consumer and producer

CPU utilization percentages. In NDN consumers,

there is a traffic-generating process, so Eq. (4)

evolves to Eq. (5). Meanwhile, there is no traffic-

generating process in the NDN producer, and not

every interest packet reaches the producer. Because

of the cache hit mechanism, Eq. (6), so that Eq. (4)

evolve into Eq. (7)

𝑈 =
∑ 𝑡𝐶𝑃𝑈𝑤𝑜𝑟𝑘𝑖

𝑝
𝑖=1

𝑇
× 100% (3)

𝑈𝑁𝐷𝑁 =
𝑡𝑅𝑃+𝑡𝐶𝑃+𝑡𝐹𝑃+𝑡𝐵𝑃

𝑇
× 100% (4)

𝑈𝑐𝑜𝑛𝑠 =
𝑡𝑅𝑃+𝑡𝐶𝑃+𝑡𝐹𝑃+𝑡𝐵𝑃+𝑡𝑇𝐺

𝑇
× 100% (5)

Where:

RP = NDN Routing Process

CP = NDN Caching Process

FP = NDN Forwarding Process

BP = Others Background Process

TG = Traffic Generating Process

𝑃(𝑀) = 1 − 𝑃(𝐻) (6)

𝑈𝑝𝑟𝑜𝑑 =
𝑡𝑅𝑃+𝑡𝐶𝑃+∏ 𝑃𝑖(𝑀)𝑛

𝑖=1 𝑡𝐹𝑃+𝑡𝐵𝑃

𝑇
 (7)

Where:

∏ 𝑃𝑖(𝑀)𝑛
𝑖=1 =Network cache missed

n=Nodes along path

Here is the meaning of the average CPU usage

rate of 75% during the observation time. It means the

CPU occupies 75% of the time executing the process

along with observation time. When CPU utilization

reaches 100% usage rate, so the CPU works all the

time of observation. In this case, the process can

overload the CPU capacity. When process overload

happens, then it can be seen by increasing RAM

usage. We built our code in [24] for CPU, RAM, and

VRAM measurement every 1 ms, saved in a CSV file.

3.5 Throughput

Throughput is defined as the average number of

data bits transmitted in a time unit. NDN data packet

transmission depicts in Fig. 5. Data communication

Figure. 5 NDN data transmission [25]

starts when the consumer sends an interest packet for

the desired content. Involve several mechanisms and

can be said to be over until the consumer receives all

data packets from the producer. The total time needed

for that process is in Eq. (8). The whole desired data

can have a large size file denoted as D Byte, such as

multimedia, picture, or music. Thus, NDN divided

the D file into several c chunk data packets and

transmitted them i times. With the condition of the

non-blocking channel and NDN nodes, the resource

is enough for data packet processing so that T

throughput can be proportional to PS packet size, as

elaborate in Eqs. (9)-(13).

𝑡𝑜 = 2𝑡𝑝𝑟𝑜𝑝 + 2𝑡𝑝𝑟𝑜𝑐 + 𝑡𝐼𝑝 + 𝑡𝐷 (8)

𝑇 =
𝐷

∑ 𝑡𝑖
𝑐
𝑖=1

 (9)

𝑇 =
𝐷

∑ (2𝑡𝑝𝑟𝑜𝑝+2𝑡𝑝𝑟𝑜𝑐+𝑡𝐼𝑝+𝑡𝐷)𝑖
𝑐
𝑖=1

 (10)

∑ 𝑡𝑖 ∝𝑐
𝑖=1 𝑐𝑡𝑖 =

𝐷

𝑃𝑆
𝑡𝑖 (11)

𝑇 ∝
𝐷

𝐷/𝑃𝑆(2𝑡𝑝𝑟𝑜𝑝+2𝑡𝑝𝑟𝑜𝑐+𝑡𝐼𝑝+𝑡𝐷)
 (12)

𝑇 ∝
𝑃𝑆

(2𝑡𝑝𝑟𝑜𝑝+2𝑡𝑝𝑟𝑜𝑐+𝑡𝐼𝑝+𝑡𝐷)
 (13)

Where:

𝑡𝑜 = Transmission time (s),

𝑡𝑝𝑟𝑜𝑝 = Propagation time (s),

𝑡𝑝𝑟𝑜𝑐 = Packet processing time (s)

𝑡𝐼𝑝 = Interest packet transmission time (s)

𝑡𝐷 = Data packet transmission time (s)

𝐷 = Data packet size (B)

𝑃𝑆 = Packet Size (B)

Received: October 12, 2022. Revised: November 14, 2022. 271

International Journal of Intelligent Engineering and Systems, Vol.16, No.1, 2023 DOI: 10.22266/ijies2023.0228.24

(a)

(b)

Figure. 6 (a) NDN nodes & host server CPU Utilization on Mini-NDN; (b) Process CPU & memory usage capture for

NDN nodes and host server

Table 1. Study case parameter

Parameter Value

Number of NDN nodes 26

Number of producers 1 (Jakarta)

NDN nodes CPU core 1

NDN nodes RAM 2048 MB

Number of consumers 2, 5, 8 Consumers

Packet size 1024, 4096, 8192

Interest rate 100 int/s

Exp Factor 0,8

Flattened factor 3

Cache size 30 packets

Link bandwidth 10, 100 Mbps

Scenario
26 NDN node

virtualization

3.6 Other parameters

Detail of the PL study case parameters shown in

Table 1.

4. Performance evaluations

Using this framework, we can evaluate the

parameters of network performance and the hardware

performance of NDN nodes. The performance of

NDN-IDN scenario using PL compared with NDN-

IDN scenario using MiniNDN, as widely used NDN-

based emulation. In many research using MN

emulation, the researchers did not analyze the CPU

and RAM utilization of the scenario. Our research

elaborates on why CPU and RAM utilization was

impossible to analyze using MN. We also show

opportunities with our proposed method to analyze

the use of hardware resources in the future.

This research uses a virtual machine on

commodity hardware, AMD Ryzen 3900x 24 CPU

and 80 GB RAM. We allocate a virtual host server

with 16 CPUs and 16 GB RAM. Each NDN node is

assigned 1 CPU and 2048 MB RAM to check how

NDN nodes work for minimal hardware resources.

PNETLab and Mini-NDN both have the same virtual

host resource allocation, so we can compare how both

methods respond in running the scenario.

In our proposed PL system, each node has all

independent NDN components, libraries, core

components, NDN tools, and interface allocation

(depending on the connection needed). All of the

NDN components are running on Qemu, then the

NDN nodes in the PL system work as a full system

Received: October 12, 2022. Revised: November 14, 2022. 272

International Journal of Intelligent Engineering and Systems, Vol.16, No.1, 2023 DOI: 10.22266/ijies2023.0228.24

(a)

 (b) (c)

Figure. 7: (a) NDN nodes & host server CPU Utilization on PNETLab, (b) Process CPU & memory usage capture for

NDN host server, and (c) Process CPU & memory usage capture for NDN nodes

Table 2. PNETLab CPU, RAM, VRAM record

Time % CPU

used

RAM used

(Bytes)

VRAM

used (Bytes)

5:14:33 PM 5.376344 655519744 655519744

5:14:34 PM 2.040816 655519744 655519744

5:14:35 PM 4 655765504 655765504

5:14:36 PM 36.458333 720560128 720560128

5:14:37 PM 22.222222 754647040 754647040

5:14:38 PM 4.040404 754647040 754647040

5:14:39 PM 3.092784 754647040 754647040

5:14:40 PM 4.081633 754606080 754606080

5:14:41 PM 3.061224 754589696 754589696

5:14:42 PM 4.081633 755380224 755380224

5:14:43 PM 12.5 756912128 756912128

5:14:44 PM 5.050505 756871168 756871168

While MN systems use Linux network name-space

features to differentiate the process and interfaces for

emulating NDN nodes. In the CPU Utilization

observation, the difference in emulation methods

from PL and MN is very significant. MN system

process containerizing leads each process to run on

the host server OS. Consequently, we cannot see the

detail of what processes occur on each NDN node

using MN. We try to capture the processes that occur

on each NDN node (consumer, producer, and

intermediate NDN nodes) and a host server to get the

total load on each hardware resource. It was found

that although the processes captured on the node

through the Linux X-Term windows in MN, the list

of processes obtained was identical for all nodes and

host servers, as shown in Fig. 6(a) and 6(b), even

though each node has a different activity.

Received: October 12, 2022. Revised: November 14, 2022. 273

International Journal of Intelligent Engineering and Systems, Vol.16, No.1, 2023 DOI: 10.22266/ijies2023.0228.24

(a)

(c)

(b)

(d)

Figure. 8 Experiment result: (a) Consummers RTT delay, (b) packet delivery ratio (PDR),

(c) Network cache hit tatio (nCHR), and (d) throughput

Whereas in PL, if we access the NDN node, we can

catch the different processes between these nodes.

Qemu complete system virtualization provides

isolation of processes running on each NDN node,

depicted in Fig. 7(b) and 7(c). Fig. 7(a) shows that the

Jakarta (producer), Semarang, and Medan

(consumer) nodes have the highest CPU load. The

Ambon node, which only acts as an intermediate

node, has the lowest CPU load. Therefore, in the PL

emulation environment, we could see the detailed

process running in every NDN node and the

utilization of the process for hardware resources.

Measurements in PL for RAM usage fluctuates

and do not show the direct impact of the scenario we

built. It's because the RAM is the only temporal

buffer for the process running in the NDN node.

However, as seen in Table 2, the RAM usage data

record shows that all NDN nodes in PL operate below

2048 MB RAM allocation. This means that all NDN

processes are not buffered for a long time to be

processed by the CPU.

Observations on the round trip (RTT) delay with

changes in the number of consumers indicate that

more consumers will increase the delay in data

communication on the NDN-IDN network, depicted

in Fig. 8(a). RTT delay increases due to the increasing

number of requests being served on the network. Each

consumer generates 100 interest/second, which means

800 interest/second total for 8 (eight) consumers.

The producer responds to the first request from

consumer, while the intermediate node cache serves

repeated requests.

As shown in Fig. 8(a), a significant delay occurs

when eight consumers make requests simultaneously

due to the queue to serve all requests. NDN emulation

based on PL has a similar result to MN emulation

when 2 (two) consumers and 5 (five) consumers

generate interest traffic. Nevertheless, NDN

emulation on PL suffers high RTT delay in

simultaneous 8 (eight) consumer traffic generation.

RTT delay increases 8 (eight) times to 80,33 ms.

The significant performance decrease for PL in

the 8 (eight) consumers scenario is caused by limited

resource allocation on NDN nodes. Each NDN node

gets an allocation of 1 (one) CPU core and 2048 MB

RAM which can be said to be a minimal resource for

network devices. On the other hand, resource

restrictions cannot be applied to the MN, so the MN

uses all of the host server's resources. The RTT delay

will increase significantly when the IDN-NDN

2 Cons 5 Cons 8 Cons

MN 10.05 11.17 12.10

PL 9.06 10.58 80.33

0.00

20.00

40.00

60.00

80.00

100.00

Consumers RTT Delay (ms)

2 Cons 5 Cons 8 Cons

MN 47.29% 48.60% 49.84%

PL 47.27% 49.48% 57.13%

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%

Net Cache Hit Rat io (%)

2 Cons 5 Cons 8 Cons

MN 100.00% 99.9980% 99.9975%

PL 100.00% 99.9980% 99.96%

99.94%

99.96%

99.98%

100.00%

100.02%

Packet Del ivery Rat io (%)

8192 Byte 4096 Byte 1024 Byte

MN 4.98 2.95 1.06

PL 7.55 2.83 1.30

0.00

2.00

4.00

6.00

8.00

Throughput (Mbps)

Received: October 12, 2022. Revised: November 14, 2022. 274

International Journal of Intelligent Engineering and Systems, Vol.16, No.1, 2023 DOI: 10.22266/ijies2023.0228.24

network is given a high load with 8 consumers

(generates a total of 800 interests/second). This is

caused by a good isolation of the processes running on

each NDN node in the PL environment.

When the RTT delay increases significantly, on

the other hand, the net Network cache hit ratio

(nCHR) in PL tends to give better performance at 8

(eight) consumer scenarios depicting Fig 8(c).

Observations on the Network cache hit ratio (nCHR)

with changes in the number of consumers indicate that

a consumer number increase will also increase the

probability of a cache hit. Terms of nCHR mean that

the request that appears is not forwarded to the

producer to be served. An intermediate node serves

the request on the network. With a high nCHR value,

the burden on producers will be significantly reduced.

However, the increment in nCHR could not

compensate total consumer's interest rate, so the

packet delivery ratio (PDR) dropped to 99,6% in PL

depict in Fig. 8(b). PDR is a ratio comparison between

the total packet delivered to all the transmit packets.

Giving so much interest/second request load with

minimal hardware resources makes the packet queue

intense. Consequently, some requests could not be

satisfied because packets wait too long in the queue

and cannot be handled by hardware/node resources.

NDN-IDN with consumer increases gives more

stable results for the MN emulation environment

because there is no resource limitation issue. PL gives

solid performance for 2 (two) consumers and 5 (five)

consumers scenarios where both interest rates are 200

and 500 interest/s, respectively.

Then we evaluate throughput performance on

both PL and ML (see Fig. 8(d)). Three packet sizes

are used, 8.192, 4.096, and 1.024 Bytes. As the most

stable scenario, we occupy 2 (two) consumers with

100 interest/s each. Results show PL and ML give a

close performance for 4k and 1k Bytes packet size, but

in 8k Bytes, PL gives higher throughput than MN.

This increase is because sending large content

sizes requires fewer requests. So, more requests can

be served with fewer requests and larger packet sizes.

As elaborated in Eq. (13), PS is proportional to the

throughput in the non-blocking condition and

resource adequacy. Thus, the PL emulation

environment gives a more solid throughput than MN

for an 8K Bytes packet size.

5. Conclusions

In this research, we proposed a method as a

catalyst for accelerating NDN research toward real-

world implementation. This method occupies a

UNetLab-based virtualization environment for

extensive observations for the researcher.

As a corroboration proof of this method, we build

a test case in the PNETLab compared with Mini-

NDN as a widely used NDN emulation mechanism.

The result showed PL method could give an extensive

measurement of NDN nodes, while MN failed.

However, PL and MN give similar results in IDN-

NDN network performance measurement for 100 to

500 interest/s, 7,59% in RTT delay, and 0,89% in

nCHR. It means that both PL and MN can be used to

analyze NDN performance. Furthermore, only PL

can give detailed data on the hardware utilization

process for each node, which is very important for

NDN implementation.

6. Future work

For future research, we will use this method to

explore NDN-based IoT, which is hardware resource

sensitive.

Conflicts of interest

The authors declare no conflict of interest.

Author contributions

Conceptualization, TAW and NRS; methodology,

TAW and NRS; software, TAW and ADR; validation,

TAW, HEN, and ADR; formal analysis, TAW and

NRS; investigation, TAW, NRS and HEN; resources,

TAW; data curation, TAW; writing—original draft

preparation, TAW and LVY; writing—review and

editing, TAW and LVY; visualization, TAW;

supervision, NRS and HEN. All authors have read

and agreed to the published version of the manuscript.

Acknowledgments

This work was partially supported by Institut

Teknologi Bandung, Telkom University, and

Ministry of Research Technology and Higher

Education Republic of Indonesia.

References

[1] V. Jacobson, D. K. Smetters, J. D. Thornton, M.

F. Plass, N. H. Briggs, and R. L. Braynard,

“Networking named content”, In: Proc of the 5th

International Conference on Emerging

Networking Experiments and Technologies -

CoNEXT ’09, p. 1, 2009.

[2] L. Zhang, K. Claffy, P. Crowley, C.

Papadopoulos, L. Wang, and B. Zhang, “Named

Data Networking”, ACM SIGCOMM Comput.

Commun. Rev., Vol. 44, No. 3, pp. 66–73, 2014.

[3] T. Koponen, M. Chawala, B. Chun, A.

Ermolinskiy, K. Kim, S. Shenker, and I. Stoica,

Received: October 12, 2022. Revised: November 14, 2022. 275

International Journal of Intelligent Engineering and Systems, Vol.16, No.1, 2023 DOI: 10.22266/ijies2023.0228.24

“A data-oriented (and beyond) network

architecture”, ACM SIGCOMM Comput.

Commun. Rev., Vol. 37, No. 4, pp. 181–192,

Aug. 2007, doi: 10.1145/1282380.1282402.

[4] N. Fotiou, P. Nikander, D. Trossen, and G. C.

Polyzos, “Developing information networking

further: From PSIRP to PURSUIT”, Lect. Notes

Inst. Comput. Sci. Soc. Telecommun. Eng., Vol.

66 LNICST, pp. 1–13, 2012.

[5] C. Dannewitz, D. Kutscher, B. Ohlman, S.

Farrell, B. Ahlgren, and H. Karl, “Network of

Information (NetInf) – An information-centric

networking architecture”, Comput. Commun.,

Vol. 36, No. 7, pp. 721–735, Apr, 2013, doi:

10.1016/j.comcom.2013.01.009.

[6] G. García , A. Beben, F. Ramon, A. Maeso, I.

Psaras, G. Pavlou, N. Wang, J. Sliwinski, S.

Spirou, S. Soursos, and E. Hadjioannou,

“COMET: Content mediator architecture for

content-aware networks”, In: Proc. of 2011

Futur. Netw. Mob. Summit, Futur. 2011, pp. 1–

8, 2011.

[7] A. Detti, N. B. Melazzi, S. Salsano, and M.

Pomposini, “CONET: A Content Centric Inter-

Networking Architecture”, In: Proc of the ACM

SIGCOMM Workshop on Information-Centric

Networking - ICN ’11, 2011.

[8] N. B. Melazzi, S. Salsano, A. Detti, G. Tropea,

L. Chiariglione, A. Difino, A. Anadiotis, A.

Mousas, I. Venieris, and C. Patrikakis,

“Publish/subscribe over information centric

networks: A Standardized approach in

CONVERGENCE”, In: Proc. of 2012 Futur.

Netw. Mob. Summit, Futur. 2012, pp. 1–8, 2012.

[9] D. Raychaudhuri, K. Nagaraja, and A.

Venkataramani, “MobilityFirst: A Robust and

Trustworthy MobilityCentric Architecture for

the Future Internet”, ACM SIGMOBILE Mob.

Comput. Commun. Rev., Vol. 16, No. 3, p. 2,

2012.

[10] A. Tagami and M. Arumaithurai, “GreenICN

Project: Architecture and Applications of Green

Information Centric Networking”, IEICE Trans.

Commun., Vol. E99.B, No. 12, pp. 2470–2476,

2016, doi: 10.1587/transcom.2016CNI0001.

[11] S. Mastorakis, A. Afanasyev, and L. Zhang, “On

the Evolution of ndnSIM”, ACM SIGCOMM

Comput. Commun. Rev., Vol. 47, No. 3, pp. 19–

33, 2017, doi: 10.1145/3138808.3138812.

[12] M. Amadeo, G. Ruggeri, C. Campolo, and A.

Molinaro, “IoT services allocation at the edge

via named data networking: From optimal

bounds to practical design”, IEEE Trans. Netw.

Serv. Manag., Vol. 16, No. 2, pp. 661–674, 2019,

doi: 10.1109/TNSM.2019.2900274.

[13] M. Amadeo, C. Campolo, G. Ruggeri, G. Lia,

and A. Molinaro, “Caching transient contents in

vehicular named data networking: A

performance analysis”, Sensors (Switzerland),

Vol. 20, No. 7, pp. 1–17, 2020, doi:

10.3390/s20071985.

[14] M. S. Budiana, M. M. Nadra, T. R. Hapsari, R.

Mayasari, and N. R. Syambas, “Impact of the

Content Store Scaling toward the LRU and FIFO

Cache Replacements on NDN using Mini-

NDN”, In: Proc 15th Int. Conf. Telecommun.

Syst. Serv. Appl. TSSA 2021, 2021.

[15] X. Guo, S. Yang, L. Cao, J. Wang, and Y. Jiang,

“A new solution based on optimal link-state

routing for named data MANET”, China

Commun., Vol. 18, No. 4, pp. 213–229, 2021.

[16] D. Saxena and V. Raychoudhury, “Design and

Verification of an NDN-Based Safety-Critical

Application: A Case Study with Smart

Healthcare”, IEEE Trans. Syst. Man, Cybern.

Syst., Vol. 49, No. 5, pp. 991–1005, 2019, doi:

10.1109/TSMC.2017.2723843.

[17] L. Gameiro, C. Senna, and M. Luís, “Insights

from the Experimentation of Named Data

Networks in Mobile Wireless Environments”,

Futur. Internet, Vol. 14, No. 7, pp. 1–18, 2022,

doi: 10.3390/fi14070196.

[18] A. Friyanto, W. T. Ariefianto, and N. R.

Syambas, “Analysis Operation NLSR With

Ubuntu as NDN Router”, In: Proc. of 2019 IEEE

5th International Conference on Wireless and

Telematics (ICWT), 2019.

[19] “EVE-NG Site”, https://www.eve-ng.net/

(Accessed Jul. 30, 2022).

[20] “PNETLab : Lab is Simple Site”,

https://pnetlab.com/pages/main (Accessed Jul.

30, 2022).

[21] “Home - Docker”, https://www.docker.com/

(Accessed Jul. 30, 2022).

[22] “GitHub - GNS3/dynamips: Dynamips

development”,

https://github.com/GNS3/dynamips (Accessed

Jul. 30, 2022).

[23] “ndn-traffic-generator_modified”,

https://github.com/aderama2711/ndn-traffic-

generator_modified (Accessed Jul. 31, 2022).

[24] L. V. Yovita, N. R. Syambas, I. J. M. Edward,

and N. Kamiyama, “Performance analysis of

cache based on popularity and class in named

data network”, Futur. Internet, Vol. 12, No. 12,

pp. 1–22, 2020, doi: 10.3390/fi12120227.

[25] T. A. Wibowo, N. R. Syambas, and H.

Hendrawan, “The routing protocol efficiency of

named data network”, In: Proc. of 2020 14th

International Conference on

Received: October 12, 2022. Revised: November 14, 2022. 276

International Journal of Intelligent Engineering and Systems, Vol.16, No.1, 2023 DOI: 10.22266/ijies2023.0228.24

Telecommunication Systems, Services, and

Applications (TSSA), pp. 1-5, 2020, doi:

10.1109/TSSA51342.2020.9310886.

