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Abstract: A crucial and important task in machine learning is feature selection (FS). The primary goal of the feature 

selection task is to minimize the dimension of the feature set while preserving performance accuracy. In order to 

address the FS task, a discrete moth flame algorithm that is combined with levy flights (DL-MFA) is presented in 

this research. The proposed DL-MFA imitates the natural navigational patterns of moths. The moths move along a 

straight line at a constant angle in the direction of the true light source (the moon) known as transverse orientation. 

Additionally, moths are drawn to artificial lights like fires and because of the close proximity; they constantly adjust 

their flying angles, creating a spiral path. In order to maintain healthy population diversity and increase the global 

search capabilities of the algorithm, the levy flight search technique is also used as a regulator of the moth position 

updating mechanism. The five swarm intelligence algorithms (SIAs) are contrasted with the proposed algorithm 

using measures such as entropy, purity, completeness score (CS), and homogeneity score (HS). For evaluating 

fitness, the SSE fitness function is utilised. The outcomes have shown that the proposed algorithm achieved purity 

values in the range 90% to 100%, and entropy 10% to 50%. Proposed DL-MFA has also achieved homogeneity 

score and completeness score up to 50%. These results prove that the proposed algorithm is better than its state-of-

the-art competitors. 
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1. Introduction 

The process of choosing the most crucial 

features to feed into machine learning algorithms is 

known as feature selection (FS) [1]. Feature 

selection (FS) eliminates the majority of the 

dataset's pointless features, which simplifies our 

machine learning model. Additionally, it decreases 

the problem's dimensionality while increasing 

prediction accuracy and processing efficiency. Filter 

methods, wrapper methods, and embedded methods 

are the three categories of feature selection 

techniques, and they are detailed below. 

Filter methods: These methods forecast the 

relationship between the features and our aim using 

some statistical techniques. Each feature receives a 

score based on how essential it is. This score is used 

by filter algorithms to determine if a characteristic is 

pertinent or not. There is no machine learning 

algorithm used in this strategy. 

Wrapper Methods: Using the classifier's 

performance evaluation, wrapper methods rate the 

subset of features' quality. Here, a feature subset 

selection machine learning approach on a given 

dataset is applied. A greedy technique is used to 

assess all potential feature combinations against the 

evaluation criterion. When compared to filter 

approaches, the wrapper feature selection typically 

produces good prediction accuracy. 

Embedded Methods: Methods that incorporate 

feature selection into the learning algorithm are 

referred to as embedded methods. The feature 

selection and classification operations are carried 

out simultaneously by embedded algorithms. 

Typically, during training, the characteristics that 

have contributed the most across all iterations are 

extracted. Examples of embedded approaches 
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include feature selection using decision trees and 

random forests. 

The filter methods ignore the interaction with 

the classifier and each feature is considered 

independently thus ignoring feature dependencies. 

In addition, it is not clear how to determine the 

threshold point for rankings. Wrapper methods are 

computationally expensive as most of the execution 

time is spent in training the predictor. They are also 

prone to overfitting. Embedded methods suffer from 

the loss of a large part of the information contained 

in the data set due to the elimination of most of the 

features. These methods also ignore interactions and 

correlations between variables.  

Generally speaking, any FS problem is an NP-

hard problem. The solutions to this problem are 

found via optimization algorithms. Most of the 

optimization algorithms have the ability to address 

the problems faced by the different FS methods 

mentioned above.  

Swarm intelligence algorithms (SIAs) are one of 

the types of the optimization algorithms. SIAs are 

based on the collective intelligence shown by the 

objects like animals, insects and others. A number of 

SIAs are proposed to solve the optimization 

algorithms. An SIA that is based on the natural 

navigational patterns of moths is called the moth-

flame algorithm (MFA) [2]. We have proposed a 

discrete version of the moth flame algorithm (DL-

MFA) hybridized with levy flights in this paper. We 

have applied this discrete MFA to feature selection 

(FS) problem.   

Below we emphasize this study's contribution. 

1. The introduction of a swarm intelligence 

algorithm for feature selection based on MFA. 

2. The newly presented algorithm incorporates the 

ideas of levy flights. 

3. Twelve medical datasets that are available at UCI 

are used to evaluate the introduced algorithm. 

4. Five cutting-edge SIAs are contrasted with the 

outcomes produced by the newly introduced 

MFA. 

5. The effectiveness of the newly implemented 

algorithm is assessed using four external 

evaluation measures. 

6. Based on the evaluation, it is determined that the 

introduced algorithm's time, convergence, and 

solution quality are acceptable. 

There are seven sections in the paper. Section 

two presents a review of the literature. Section three 

provides an overview of the fundamental moth 

flame algorithm. Section four and five presents levy 

flights and Proposed DL-MFA. Fitness function is 

discussed in section 6. The results and their 

comparison with other known SIAs are covered in 

section seven. Conclusion is followed section seven. 

2. Related work 

In this research, we propose a discrete moth 

flame algorithm (DL-MFA) that is integrated with 

levy flights. DL-MFA is a swarm based algorithm 

(SIA). A brief review of the literature based on the 

SIAs for feature selection (FS) is as follows. 

Xie et al. [3] tried to overcome the poor 

exploitation and premature convergence of particle 

swarm optimization (PSO) by presenting two new 

variants of PSO. In the first variant they integrated 

global best signals, rectified personal, swarm leader 

enhancement with Gaussian distribution, local 

exploitation using spiral search, mutation operations, 

and mirroring for solution improvement. The 

authors tried to improve the first approach by using 

search coefficients, scattering schemes, adaptive 

breeding mechanism, and multiple optimal signals. 

A unique binary gray wolf algorithm (BGWO) is 

introduced by Emery et al. [4] for FS. Hu et al. [5] 

introduced an enhanced update equation for 

balancing the exploration and exploitation in the 

searching. The introduced method gave some new 

transfer functions to be used in the new update 

equation. A grey wolf algorithm with multiple 

search strategies (MEGWO) was introduced by Q. 

Tu et al. [6]. Guo et al. hybridized the whale 

optimization algorithm (WOA) with new mutation 

and adaptive neighborhoods strategies for the FS 

problem. Using this, the algorithm chooses solutions 

from the neighborhoods of the current best solution. 

The new mutation strategy helps the algorithm 

balance exploration and exploitation to overcome 

the local optima problem. R. K. Agrawal et al. [7] 

integrated the quantum concept with a whale 

optimization algorithm (QWOA) to improve the 

convergence of the basic WOA for the FS problem. 

Chantar et al. [8] have integrated a simulated 

annealing (SA) algorithm with a binary dragonfly 

algorithm (BDA) to improve the classification 

accuracy of BDA in feature selection. The best 

solution found with the BDA was given to SA for 

further improvement of the search results. Ibrahim et 

al. [9] improved the social spider algorithm (SSO) 

by using opposition-based learning to increase the 

search area's exploration. They did this to save the 

SSO from falling into the local optima.  

Hichem et al. [10] presented a binary 

grasshopper algorithm (BGHO) for the feature 

selection problem. The results obtained are 

compared with the other five known approaches, 

and BGHO has proved itself the best among all of 
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them. Ahmed and colleagues [11] improved SSA by 

integrating a new local search and a method for re-

positioning the search agents (Sparrows) into the 

search space that are wandering beyond the search 

space. This improvement was carried out to enhance 

the searching efficiency of the original SSA. Arora 

et al. presented [12] two variants of the butterfly 

algorithm (BBOA) by using V-shaped and S-shaped 

transfer functions, respectively. The authors tested 

both variants with the 21 different UCI datasets. 

Wang et al. [13] improved the cuckoo search 

algorithm by integrating the chaotic maps, two 

population preservation strategies, levy flights, and a 

mutation strategy. Initially, chaotic maps are used to 

improve the initialization diversity of the algorithm 

to avoid local optima. Population preservation 

strategies are used in the next step to select the 

fittest feature from each iteration. Finally, levy flight 

is applied with the new mutation strategy to avoid 

convergence issues while working with a large 

search space. Naseer et al. [14] presented a 

hybridized filter-based feature selection algorithm in 

which ACO is combined with the gain ratio. A gain 

ratio is used here to normalize preferences between 

information gain and mutual information. The gain 

ratio penalizes some high-split information as a part 

of the classifier and uses it over different 

convergence thresholds for final feature subset 

selection. Hu et al. presented [15] an improved grey 

wolf optimizer for feature selection. They have 

analyzed the A and D parameters, which are 

controlled by parameter a in the position updating. 

These parameters influence the exploration and 

exploitation process. A new position update function 

for balancing global and local search is proposed by 

analyzing the range of values of A and D under 

binary conditions. 

Zawbaa et al. [16] presented a chaotic antlion 

optimizer integrated with random walks and a new 

controlling parameter for balancing exploration of 

the search space and exploitation of the best 

solutions. The parameter I is used to control the 

range of the random walks. The chaotic approach is 

used in this algorithm to improve the tradeoff 

between exploitation and exploration. Too et al. [17] 

presented two variants of binary harris hawk 

algorithms which use different types of transfer 

functions for converting a continuous version into a 

discrete one. Hegazy et al. [18] improved the 

convergence rate, consistency, and accuracy of the 

salp swarm algorithm by using a new control 

parameter, inertia weight. They have combined this 

new algorithm with the KNN classifier for feature 

selection. Sureja et al. [19] improved the shuffle 

frog leaping algorithm (SFLA) by integrating 

simulating annealing (SA) with it. SA is used to 

exploit more and more near-optimal solutions for 

the enhancement of the solution quality. Uzer et al. 

[20] improved classification accuracy by combining 

the artificial bee colony (ABC) algorithm with 

support vector machines. A 10-fold cross-validation 

is applied to obtain the classification accuracy of the 

proposed approach. Salima et al. [21] presented an 

improved version of a wrapper-based crow search 

algorithm (CSA) to extract the finest feature subsets. 

They made improvements by integrating adaptive 

awareness probability to enhance the balance 

between exploration and exploitation, selecting crow 

by the dynamic local neighborhoods to follow, and 

by developing new searching techniques to improve 

global exploration. 

All of the above work suffers from the one or 

more drawbacks like computational complexity, 

execution time, stuck in local optima, loss of 

information, and noise. 

There is a scope to propose a new, modified, and 

hybrid algorithm for feature selection (FS) problem 

based on no free lunch (NFL) theorem. This 

motivates us to modify and present a discrete 

version of the moth flame algorithm (DL-MFA) for 

feature selection (FS). The performance of any 

optimization algorithm depends on how efficiently it 

explores and exploit the search space and how 

quickly finds global optimal solution without getting 

trapped in local optimal solution. So, we have 

hybridized levy flights with DL-MFA to improve 

the exploration and exploitation of the search space. 

3. Basic moth flame algorithm 

The moth flame algorithm (MFA) is a 

population based approach [2]. MFA imitates moths' 

natural navigational strategies. The moths move in a 

straight line at a constant angle in the direction of 

the moon. Transverse orientation is the term used to 

describe this navigation. Typically, artificial lighting, 

such as flames, has a strong attraction to moths. Due 

to the near proximity, moths continuously alter their 

flight angle, which causes them to spiral. In order to 

solve NP-hard problems, the MFA algorithm 

simulates the aforementioned moth behaviors. 

The set of moths is represented by a matrix M in 

the fundamental moth flame algorithm [2]. The 

fitness value of each moth in the population is kept 

in an array called OM. The flames are represented 

by a matrix F, which is very similar to the moths. 

The fitness value of each flame is kept in an array 

OF [2, 22]. 

The Moth Flame algorithm generates a three-

tuple that represents an approximation of the global 
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ideal for every problem. It is made in accordance 

with Eq (1). 

 

𝑀𝐹𝑂 = (𝐼, 𝑃, 𝑇)                          (1) 

 

Here I represent a function that is used to 

generate a population of moths randomly with the 

respective values of fitness. The function can be 

modeled methodically as under. 

 

𝐼: ∅ → { 𝑀, 𝑂𝑀)                         (2) 

 
The P function is developed for moving the 

moths about the search region. The updated matrix 

M of moths is returned by the P function in the 

output. 

 

𝑃 ∶  𝑀 → 𝑀                             (3) 

 

If the termination criterion is satisfied then T 

function returns true and false otherwise. 

 

𝑇 ∶  𝑀 → {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒)                   (4) 

 

The function P performs itself repeatedly until it 

produces a true value. We update each moth's 

position in relation to the flames for mathematically 

simulating moth behavior using Eq. (5). 

 

𝑀𝑖 =  𝑆(𝑀𝑖, 𝐹𝑗)                           (5) 

 

Here, Mi  and Fj represents ith moth and  jth 

flame respectively. S is the spiral function. 

We follow the following conditions to use any 

type of spirals.  

1. Both, starting and ending points for the spiral 

would be a moth.  

2. The position of the flame should be the ending 

point of the spiral.  

3. Variation in the range of the spiral would be 

restricted to the search area. 

For a moth flame algorithm, we can define a 

logarithmic spiral by considering the above 

conditions as per Eq. (6).  

 

𝑆(𝑀𝑖, 𝐹𝑗)= 𝐷𝑖 ∙  𝑒𝑏𝑡 ∙ 𝑐𝑜𝑠(2𝜋𝑡) + 𝐹𝑗           (6) 

 

Here, Di is the distance between ith moth and jth 

flame, b is a constant defines spiral’s shape, and 

t represents a number (random) in [-1, 1]. 

Now we calculate D using Eq. (7). 

 

𝐷𝑖 =  |𝐹𝑗 − 𝑀𝑖 |                            (7) 

 

Here, Mi and Fj are ith moth and jth flame, and 

Di is the distance between ith moth and jth flame.  

Eq. (6) is used to determine a moth's next 

position in relation to a flame. The t parameter in Eq. 

(6) determines how close the moth will be to the 

flame in its subsequent position. (The closest is 

represented by t = -1, and the farthest by t = 1). 

Only moths travelling in the direction of the 

flame are considered position updates according to 

Eq. (6) MFA could become swiftly trapped in local 

optima under this circumstance. The exploitation of 

the most useful solutions is equally decreased when 

n distinct locations are used for moths' position 

updates. Eq. (8) is used to solve this problem. 

 

𝑓𝑙𝑎𝑚𝑒 𝑛𝑜 = 𝑟𝑜𝑢𝑛𝑑 (𝑁 − 𝑙 ×
𝑁−1

𝑇
)           (8) 

 

Here, l is a current iteration, N is maximum 

flames and T represents maximum iterations. The 

basic moth flam algorithm is given in algorithm 1. 

4. Levy flight 

The concepts of Levy-flight were introduced by 

Paul Levy in 1937 [23]. Levy-flight is a random 

walk with the particular heavy jumps using step 

lengths which are derived from a probability 

distribution. We can define term flight as maximum 

distance in a straight line between two points that an 

entity in motion covers without directional variation.  

Levy flight is integrated with basic MFA to 

improve the diversity of the population of moths to 

jump out of the local optima. Specifically, levy  

 
Initialize moths (M) randomly in dimension (D) 

While (Iter<=Maxiter) 

Perform Updating of flame number using Eq.  (8) 

𝑂𝑀 = Fitness Function (𝑀);  

if Iter = = 1 

 𝐹 = sorting (𝑀); 

 𝑂𝐹 = sorting(𝑂𝑀); 

else 

 𝐹 = sorting(𝑀𝑡 − 1, 𝑀𝑡); 

 𝑂𝐹 = sorting (𝑀𝑡−1, 𝑀𝑡); 

end 

for 𝑖 = 1 : 𝑛 

 for 𝑗 = 1 : 𝑑 

 • Perform Updating of  𝑟 and 𝑡 

• Compute 𝐷 using Eq. (7) concerning  the 

respective moth 

• Updating 𝑀(𝑖, 𝑗) using Eq. (5) and Eq. (6) 

concerning the respective moth 

 end 

end 

Figure. 1 Basic MFA algorithm 
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flights are composed of clusters of multiple short 

steps connected by longer relocations. 

5. Proposed moth flame algorithm 

To solve the local optima problem, this research 

suggests the discrete levy flight moth-flame 

algorithm (DL-MFA). Additionally, we work to 

increase the diversity of the moth population. 

Excellent qualities of Levy flight contribute to 

increasing population diversity. Due to this, the 

suggested method can very easily jump out from the 

local optimum. It is also possible to achieve a good 

balance between the MFA's exploitation and 

exploration capabilities. Therefore, following the 

update of positions [24, 25], we permit each moth to 

perform its flight in accordance with Eq. (9). 

 

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝑢 𝑠𝑖𝑔𝑛[𝑟𝑎𝑛𝑑 − 0.5]  ⊕ 𝑙𝑒𝑣𝑦 (𝛽)  (9) 

 

Here, 𝑋𝑖
𝑡 is a solution vector, u and rand are 

uniformly distributed random numbers, and ⊕ s 

represents entry-wise multiplications.  

There are only three possible values for the 

signed random integer u (rand): 1, 0, and 1. Levy-

flight and u are combined to improve the random 

walks of the moth, which then aids the MFA in 

avoiding local maxima. According to Eq. (10) [24, 

25], levy flight is considered to be a random walk in 

which the step lengths determine the steps and a 

levy distribution determines the leaps. Levy random 

numbers are provided by Eq. (11). 

 

𝑙𝑒𝑣𝑦 (𝛽)~𝜇 = 𝑡−1−𝛽 , (0 ≤ 2)            (10) 

 

𝑙𝑒𝑣𝑦 (𝛽) ~ 
∅×𝜇

|𝑣|1/𝛽,                        (11) 

 

Here, u and v are normal distributions, Γ is a 

gamma function, and β=1.5.  ∅ is defined using Eq. 

(12). 

 

∅ =  [
𝛤(1+𝛽)×𝑠𝑖𝑛 (𝜋×

𝛽

2
)

𝛤((
1+𝛽

2
)×𝛽×2

𝛽−1
2 )

]

1/𝛽

                (12) 

6. Fitness function 

To assess the fitness of the suggested DL MFA 

solutions, we employ a fitness function. In this study, 

evaluation is conducted using the Sum of Squared 

Error (SSE) [26-28] fitness function provided in Eq. 

(13). 

 

𝑆𝑆𝐸 =  ∑ 𝑑𝑖𝑠𝑡𝑛𝑐
2𝑁

𝑛=1                     (13) 

 

Initialize moths (M) randomly in dimension (D) 

While (Iter <= Maxiter) 

Perform Updating of flame number using Eq.  (8) 

𝑂𝑀 = Fitness Function (𝑀); 

If Iter ==1 

𝐹 = sorting (𝑀); 

𝑂𝐹 = sorting (𝑂𝑀); 

else 

𝐹 = sorting (𝑀𝑡− 1, 𝑀𝑡); 

𝑂𝐹 = sorting (𝑀𝑡−1, 𝑀𝑡); 

end 

for 𝑖 = 1 : 𝑛 

for 𝑗 = 1 : 𝑑 

• Perform Updating of  𝑟 and 𝑡, and Compute D 

using Eq. (7) concerning  the respective moth 

• Update (i,  j) using Eq. (5) and Eq. (6) concerning 

the respective  moth 

end 

for each moth (search agent) 

• Perform Updating the position of the current 

moth (search agent) using Levy-flight 

end 

Iter = Iter + 1; 

End 

Figure. 2 Proposed DL-MFA algorithm 

 

Distnc in this case refers to the (Euclidean) 

distance between a point and the centroid. By 

reducing the sum of the squared error (SSE) 

function, we can get the improved outcomes. 

7. Results and discussions 

The effectiveness of the DL-MFA algorithm in 

feature selection is examined in this section. To 

make an accurate comparison, we present the 

outcomes of utilizing the DL-MFA method on 12 

well-known medical data sets. A fitness function 

sum of squared error (SSE) is also employed to 

demonstrate the algorithm's strength. We also 

compare the DL-MFA to five other popular 

algorithms that have been applied to feature 

selection in the past: BDASA [8], OBSSO [9], 

BGHO [10], IBSSA [11], and BBOA [12]. 

7.1 Datasets and environment 

A computer system with an Intel i3 processor, 8 

GB of RAM, and the 64-bit Windows 10 operating 

system is used to carry out the research. Table 2 

displays the parameter settings for the proposed DL-

MFA. Twelve medical data sets were utilized [29] to 

evaluate the proposed MFA in Table 1 based on 

their characteristics.  

7.2 Evaluation measures 

Homogeneity score (HS), purity, completeness 
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Table 1. Data set properties 

Dataset Instances Attributes 

Exactly  1000 13 

KrVsKpEW 3196 36 

M-of-N  1000 13 

Vote  300 16 

BrestEW 569 30 

CongressEW 435 16 

Lymphography 148 18 

Tic-tac-Toe  958 9  

PenglungEW 73 325 

Breast cancer  569 569 

SpectEW 267 22 

WaveformEW 5000 40 

 

score (CS), and entropy measures are used to 

evaluate the performance of the DL-MFA [26, 30, 

31]. The entropy is calculated Using Eq. (14) [26, 

31], and provides information about the distribution 

of the semantic classes inside the cluster.  

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = ∑
(|𝑃𝑗|)

𝑛
𝑘
𝑗=1  𝐸(𝑃𝑗)                 (14) 

 

Here, E(Pj) represents the individual cluster 

entropy. 

 

𝐸(𝑃𝑗) =  
1

𝑙𝑜𝑔𝑘
∑

(|𝑃𝑗∩𝑇𝑖|)

𝑃𝑗

𝑘
𝑖=1  𝑙𝑜𝑔 (

(|𝑃𝑗∩𝑇𝑖|)

𝑃𝑗
     (15) 

 

The purity is computed using Eq. (16) [26, 31]. 

 

𝑃𝑢𝑟𝑖𝑡𝑦 =  
1

𝑛
∑ 𝑚𝑎𝑥𝑖

𝑘
𝑗=1 (|𝑇𝑖  ∩  𝑃𝑗|)        (16) 

 

Here, Pj represents points allotted to cluster j, k 

represents all clusters, and Ti represents points 

actually allotted to cluster I.  

We compute homogeneity score (HS) using Eq. 

(17) [26, 30, 31]. 

 

𝐻𝑆 = 1 − 
𝐻(𝑇/𝑃)

𝐻(𝑇)
                        (17) 

 

Here H(T) and H(T|P) are entropy and 

conditional entropy of the classes and computed 

using Eqs. (18) and (19). 

 

𝐻(𝑇) = − ∑
𝑛𝑡

𝑁

|𝑇|
𝑡=1 . 𝑙𝑜𝑔 (

𝑛𝑡

𝑁
)               (18) 

 

𝐻(𝑇|𝑃) = − ∑ ∑
𝑛𝑝𝑡

𝑁

|𝑇|
𝑡=1

|𝑃|
𝑝=1 𝑙𝑜𝑔 (

𝑛𝑝𝑡

𝑛𝑝
)         (19) 

 

Here, p is the anticipated cluster, while nt and np 

stand for the points that a true class t holds. 

Additionally, npt denotes the quantity of points that 

are grouped together into a true class (t) of a 

predicted cluster (p). Eq. (20) is used to get the 

completeness score (CS) [26, 30, 31]. 

 

𝐶𝑆 = 1 − 
𝐻(𝑃/𝑇)

𝐻(𝑃)
                      (20) 

 
Table 2. Experimental settings of DL-MFA 

Parameters Value 

Population size of moths 40 

Maximum Iterations 500 

Search agents 50 

 
Table 3. Comparison of results (Brest Cancer) 

Criteria DL-

MFA 

OB 

SSO 

BDA 

-SA 

B- 

BOA 

B- 

GHO 

IB- 

SSA 

SSE 

Best 209 374 216 331 274 359 

Worst 699 695 670 653 647 742 

Avg 321 429 253 378 384 496 

Std. 0.3 0.3 0.3 0.3 0.3 0.3 

Evaluation Measures 

Purity 1.0 0.8 0.9 0.8 0.9 0.8 

Entropy 0.1 0.2 0.1 0.1 0.1 0.1 

HS 0.8 0.6 0.7 0.8 0.7 0.7 

CS 0.8 0.6 0.7 0.8 0.7 0.7 

Time 30.0 37.0 31.4 31.2 55.4 69.9 

 
Table 4. Comparison of results (BrestEW) 

Criteria DL-

MFA 

OB 

SSO 

BDA 

-SA 

B- 

BOA 

B- 

GHO 

IB- 

SSA 

SSE 

Best 292 578 400 630 610 887 

Worst 1622 1773 1187 1537 1610 1716 

Avg 653 675 500 700 1094 1178 

Std. 0.3 0.2 0.2 0.2 0.3 0.2 

Evaluation Measures 

Purity 0.9 0.8 0.6 0.7 0.6 0.6 

Entropy 0.5 0.6 0.6 0.5 0.6 0.6 

HS 0.2 0.0 0.0 0.2 0.0 0.0 

CS 0.4 0.1 0.1 0.3 0.2 0.1 

Time 34.2 43.8 38.3 37.4 60.7 70.4 

 
Table 5. Comparison of results (CongressEW) 

Criteria DL-

MFA 

OB 

SSO 

BDA 

-SA 

B- 

BOA 

B- 

GHO 

IB- 

SSA 

SSE 

Best 1010 1222 1116 1429 1067 1254 

Worst 1685 1756 1620 1685 1767 1743 

Avg 1181 1296 1171 1477 1300 1469 

Std. 0.4 0.3 0.3 0.3 0.4 0.3 

Evaluation Measures 

Purity 0.9 0.8 0.9 0.7 0.9 0.8 

Entropy 0.2 0.3 0.3 0.3 0.3 0.3 

HS 0.6 0.5 0.5 0.5 0.5 0.5 

CS 0.7 0.5 0.5 0.5 0.5 0.5 

Time 17.9 20.5 17.8 17.7 29.2 34.9 
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Here, H(P) and H(P|T) stand for the entropy and 

the conditional entropy of the clusters and computed 

using Eqs. (21) and (22) [26, 30, 31]. 

 

𝐻(𝑃) = − ∑
𝑛𝑝

𝑁

|𝑃|
𝑝=1 . 𝑙𝑜𝑔 (

𝑛𝑝

𝑁
)           (21) 

 

𝐻(𝑃|𝑇) = − ∑ ∑
𝑛𝑝𝑡

𝑁

|𝑃|
𝑝=1

|𝑇|
𝑡=1 𝑙𝑜𝑔 (

𝑛𝑝𝑡

𝑛𝑝
)    (22) 

 
Table 6. Comparison of results (Exactly) 

Criteria DL-

MFA 

OB- 

SSO 

BDA 

-SA 

B- 

BOA 

B- 

GHO 

IB- 

SSA 

SSE 

Best 3044 3097 3123 3126 3051 3147 

Worst 3191 3437 3432 3373 3420 3437 

Avg 3009 3131 3163 3207 3166 3212 

Std. 0.1 0.1 0.1 0.1 0.1 0.1 

Evaluation Measures 

Purity 1.0 0.9 0.9 0.9 1.0 0.9 

Entropy 0.5 0.6 0.6 0.6 0.6 0.6 

HS 0.6 0.6 0.6 0.6 0.6 0.6 

CS 0.7 0.7 0.6 0.6 0.7 0.6 

Time 51.9 51.8 59.6 53.3 52.6 60.7 

 
Table 7. Comparison of results (KrVsKpEW) 

Criteri

a 

DL-

MFA 

OB- 

SSO 

BDA 

-SA 

B- 

BOA 

B- 

GH

O 

IB- 

SSA 

SSE 

Best 4083 6839 5097 5671 4565 7099 

Worst 1172

1 

1044

9 

1145

2 

1042

5 

7605 1106

7 

Avg 6714 8463 5784 6318 4907 8477 

Std. 0.2 0.2 0.1 0.1 0.2 0.2 

Evaluation Measures 

Purity 0.9 0.7 0.8 0.8 0.9 0.7 

Entrop

y 

0.6 0.6 0.6 0.6 0.6 0.6 

HS 0.2 0.1 0.1 0.1 0.2 0.3 

CS 0.2 0.1 0.1 0.1 0.1 0.1 

Time 703 2719 781 609 1120 1297 

 
Table 8. Comparison of results (Lymphography) 

Criteria DL-

MFA 

OB- 

SSO 

BDA 

-SA 

B- 

BOA 

B- 

GHO 

IB- 

SSA 

 

Best 127 153 157 159 131 200 

Worst 290 278 276 260 232 288 

Avg 168 168 202 169 141 235 

Std. 0.2 0.2 0.2 0.1 0.2 0.2 

Evaluation Measures 

Purity 0.9 0.8 0.8 0.8 0.8 07 

Entropy 0.5 0.5 0.5 0.5 0.5 0.5 

HS 0.3 0.1 0.1 0.2 0.1 0.1 

CS 0.5 0.3 0.4 0.3 0.4 0.2 

Time 6.1 6.6 6.2 7.2 11.3 11.9 

 

 

Table 9. Comparison of results (M-of-N) 

Criteria DL-

MFA 

OB- 

SSO 

BDA 

-SA 

B- 

BOA 

B- 

GHO 

IB- 

SSA 

SSE 

Best 3033 3127 3107 3143 3074 3162 

Worst 3474 3406 3414 3462 3161 3379 

Avg 3170 3201 3141 3171 3027 3224 

Std. 0.1 0.1 0.1 0.1 0.1 0.1 

Evaluation Measures 

Purity 0.6 0.6 0.6 0.6 0.6 0.6 

Entropy 0.6 0.6 0.6 0.6 0.6 0.6 

HS 0.2 0.1 0.2 0.1 0.2 0.0 

CS 0.3 0.1 0.2 0.1 0.3 0.1 

Time 52.4 52.7 52.0 52.7 87.9 105.2 

 
Table 10. Comparison of results (PenglungEW) 

Criteria DL-

MFA 

OB- 

SSO 

BDA 

-SA 

B- 

BOA 

B- 

GHO 

IB- 

SSA 

SSE 

Best 2457 3337 3096 3755 2612 4050 

Worst 4137 4095 3995 4131 3004 4090 

Avg 2620 3387 3366 4008 2585 3996 

Std. 0.4 0.4 0.5 0.3 0.5 0.3 

Evaluation Measures 

Purity 0.6 0.5 0.5 0.5 0.5 0.5 

Entropy 0.5 0.6 0.5 0.6 0.6 0.6 

HS 0.4 0.3 0.4 0.3 0.3 0.3 

CS 0.4 0.5 0.5 0.4 0.5 0.3 

Time 11.9 7.1 6.6 22.9 9.6 11.3 

 

Table 11. Comparison of results (SpectEW) 
Criteria DL-

MFA 

OB- 

SSO 

BDA 

-SA 

B- 

BOA 

B- 

GHO 

IB- 

SSA 

SSE 

Best 1035 1193 1162 1198 1149 1244 

Worst 1471 1461 1485 1467 1412 1480 

Avg 1170 1228 1270 1222 1164 1345 

Std. 0.5 0.4 0.5 0.5 0.4 0.3 

Evaluation Measures 

Purity 0.8 0.8 0.8 0.8 0.8 0.8 

Entropy 0.4 0.4 0.4 0.4 0.4 0.4 

HS 0.1 0.1 0.1 0.2 0.1 0.1 

CS 0.1 0.1 0.1 0.1 0.1 0.1 

Time 12.2 12.8 11.7 11.9 17.9 20.8 

 
Table 12. Comparison of results (Tic-Tac-Toe) 

Criteria DL-

MFA 

OB- 

SSO 

BDA 

-SA 

B- 

BOA 

B- 

GHO 

IB- 

SSA 

 

Best 538 581 551 579 543 585 

Worst 823 775 720 817 667 816 

Avg 603 604 606 601 545 642 

Std. 0.1 0.1 0.1 0.1 0.1 0.1 

Evaluation Measures 

Purity 0.7 0.7 0.7 0.7 0.7 0.7 

Entropy 0.6 0.6 0.6 0.6 0.6 0.6 

HS 0.0 0.0 0.0 0.0 0.0 0.0 

CS 0.0 0.0 0.0 0.0 0.0 0.0 

Time 47.6 54.9 46.5 51.3 83.0 102.2 
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Table 13. Comparison of results (Vote) 

Criteria DL-

MFA 

OB- 

SSO 

BDA 

-SA 

B- 

BOA 

B- 

GHO 

IB- 

SSA 

SSE 

Best 376 429 410 396 398 468 

Worst 567 659 682 608 664 653 

Avg 390 455 481 419 459 533 

Std. 0.2 0.2 0.2 0.3 0.2 0.2 

Evaluation Measures 

Purity 0.7 0.6 0.6 0.6 0.8 0.7 

Entropy 0.5 0.6 0.6 0.6 0.4 0.5 

HS 0.4 0.1 0.1 0.2 0.3 0.2 

CS 0.3 0.1 0.0 0.1 0.3 0.2 

Time 12.2 13.0 13.6 22.2 12.2 23.7 

 

Table 14. Comparison of results (WaveformEW) 
Criteri

a 

DL-

MF

A 

OB- 

SSO 

BDA 

-SA 

B- 

BOA 

B- 

GH

O 

IB- 

SSA 

SSE 

Best 1582

3 

2696

0 

2824

2 

2480

8 

2069

1 

3364

7 

Worst 4711

4 

4608

6 

3976

2 

4423

9 

4289

1 

4627

1 

Avg 1696

3 

2897

5 

2964

0 

3224

7 

2926

1 

3826

4 

Std. 0.2 0.2 0.2 0.3 0.2 0.2 

Evaluation Measures 

Purity 0.5 0.3 0.3 0.3 0.3 0.4 

Entrop

y 

0.7 0.8 0.8 0.8 0.8 0.8 

HS 0.3 0.2 0.2 0.3 0.3 0.2 

CS 0.2 0.1 0.1 0.1 0.1 0.1 

Time 1194 2239 1709 1820

6 

2069 2922 

 

 
Figure. 3 Result for fitness function SSE  

(Breast Cancer dataset) 

 

 
Figure. 4 Result for fitness function SSE  

(BreastEW dataset) 

 
Figure. 5 Result for fitness function SSE 

(CongressEW dataset) 

 

 
Figure. 6 Result for fitness function SSE 

(Exactly dataset) 

 

 
Figure. 7 Result for fitness function SSE 

(KrVsKpEW dataset) 

 

 
Figure. 8 Result for fitness function SSE 

(Lymphography dataset) 

 

 
Figure. 9 Result for fitness function SSE 

(M-of-N dataset) 
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Figure. 10 Result for fitness function SSE 

(PenglungEW dataset) 

 

 
Figure. 11 Result for fitness function SSE 

(SpectEW dataset) 

 

 
Figure. 12 Result for fitness function SSE 

(Tic-tac-Toe dataset) 

 

 
Figure. 13 Result for fitness function SSE 

(Vote dataset) 

8. Conclusion 

This paper proposes a discrete moth flame 

algorithm (DL-MFA) for feature selection that has 

been improved with levy flights. Levy flights are 

used in this algorithm to further balance the 

exploration and exploitation of MFA. Along with 

presenting the DL-MFA, the experimental analysis 

and outcomes were also covered. Purity, entropy, 

homogeneity score, and completeness score 

evaluation measures are used to evaluate the 

performance of the algorithm. This algorithm (DL-

MFA) produces purity in the range of 90% to100%, 

very less entropy values up to 10%, good 

homogeneity score up to 70%, and completeness 

score up to 70%. Based on the results achieved, it 

was determined that DL-MFA produces good 

performance in terms of quality, consistency, and 

convergence when compared to the other SIA 

algorithms. Future applications of DL-MFA to 

various real-world issues can be made by combining 

classifiers such as neural networks (NN) and support 

vector machines (SVM). 
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