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Abstract: Lung cancer is more likely to relapse in the first five years following surgery; even though the operation 

may have been a complete success, there remains a chance that the lung cancer could return. This return may lead the 

patient to die after a successful surgery. Because there are no symptoms of lung cancer in its early stage, many 

researchers use intelligent systems to predict the relapse of lung cancer in its early stages. The outcome of previous 

works considering this issue still suffers from low prediction accuracy. This study proposed a method to predict lung 

cancer relapse more accurately. This method has multiple stages: 1st optimization system, feature selection stage, 2nd 

optimization stage, and extreme gradient boost (XGBoost) classifications stage. It used two datasets (GSE8894 and 

GSE68465) of a gene expression microarray for NSCLC with its clinical information on relapse state. We obtained 

three probes (3 genes) with clinical data combinations that can get good prediction results. These genes included 

225389_at (BTBD6), 220239_at (KLHL7), and 204832_s_at (BMPR1A). A comparison between the proposed model 

and the original XGBoost with PSO and Hyperopt as hyperparameter optimization for the XGBoost classification 

model is performed. Extensive comparisons with four machine learning algorithms, including Deep Forest, K-nearest 

neighbor (KNN), Support Vector Machine (SVM), and Naive Bayes, are conducted. The proposed model accuracies 

are 0.93 for the GSE8894 dataset and 0.81 for the GSE68465 dataset. 

Keywords: XGBoost classifier, Intelligent systems, Machine learning, Optuna, Optimization, Lung cancer, Gene 

expression, Microarray dataset. 

 

 

1. Introduction 

The term "lung cancer relapse" or "recurrence" 

refers to lung cancer that comes back after treatment. 

A relapse may be in a different type of previous 

cancer and may occur in the exact or other location as 

before. Even with early-stage cancers and new cancer 

treatments, lung cancer recurrence occurs rapidly, 

perhaps in three months or more often than one might 

assume [1]. Most lung cancers recur after two to five 

years from the first diagnosis, depending on the 

cancer type and stage. The relapse rate in stage 1 

NSCLC patients is approximately three in 10 people, 

increasing in stage 4 to nearly seven in 10 [2]. 

Generally, early-stage tumor prediction has better 

clinical outcomes, and tumor staging aids treatment 

arrangement. However, there are cases where 

patients unexpectedly produce recurrent disease, 

exemplifying the limitations of current clinical 

staging techniques in precisely predicting tumor 

recurrence. The main benefit of early detecting the 

lung cacner relapse after success surgary is a lower 

chance of dying from lung cancer. Therefore, the 

prediction of lung cancer recurrence is crucial for 

categorizing patients to help doctors make decisions 

on therapeutic strategies. Many studies have tried to 

improve a method to predict lung cancer relapse early 

using gene expression profiles. They used different 

methods and had different results, such as R Alanni. 

et al. [3-8]. They proposed various studies in new 

optimization models to improve NSCLC detection 

using microarray datasets. Hasseeb A. et al. [9-12] 

improved multiclass using the Gene Expression 

Programming (GEP) algorithm to classify lung 

cancer. Y. Onish el al. [13] examined the use of a 

deep convolutional neural network (DCNN) for the 

automatic categorization of lung nodules in CT 



Received:  August 4, 2022.     Revised: October 24, 2022.                                                                                                132 

International Journal of Intelligent Engineering and Systems, Vol.16, No.1, 2023           DOI: 10.22266/ijies2023.0228.12 

 

images. They tested if the classification accuracy is 

enhanced by producing a large number of fresh 

pulmonary nodule pictures using generative 

adversarial networks (GANs), which is a typical 

challenge in medical research when only little 

quantities of data are available. Shu-long Li et al. [14] 

developed an incorporation technique that integrates 

handmade features (HF) into the features learned in 

the output layer of a 3D deep convolutional neural 

network to predict lung nodule malignancies  They 

dealt with an imbalance dataset has 431 malignant 

nodules and 795 benign nodules extracted from the 

LIDC/IDRI database. The proposed model result has 

an accuracy value of 88.66 and an AUC value of 

93.03. Lai, Y et al. [15] upgraded the deep neural 

classifier by utilizing clinical and gene expression 

datasets to predict the survival of lung cancer patients. 

It dealt with an imbalance dataset that has 512 

patients; 355 survivals and 157 deaths. The results 

were AUC= 0.8163 and the accuracy is 0.7544. The 

previous three kinds of research [13-15] suffer from 

an imbalanced dataset which mostly occurs in bio 

datasets. This kind of dataset let the classification 

models divergent from their true values, as can see 

from the different values between the AUC metric 

(which takes the class imbalance into account) and 

the accuracy metric. Our proposed model handled 

this kind of dataset.  

Wang, Q., et al. [16] presented a random forest 

with self-paced learning bootstrap that was 

demonstrated to enhance lung cancer classification 

and prognosis based on gene expression data. To be 

more precise, they suggested using ensemble learning 

and a random forest strategy to pick several 

classifiers, which would enhance the model's 

classification performance. Then, through self-paced 

learning, they gradually incorporate high to low-

quality samples to evaluate the sampling technique. 

According to experimental findings based on five 

publicly available datasets on lung cancer, the 

accuracy values for the GSE4115, GSE33356, 

GSE3141, GSE8894, and GSE40419 models are 

0.8261, 0.9472, 0.7059, 0.6905, and 0.9796, 

respectively. L. V. Povoa et al. [17], employed the 

Multi Learning Training (MuLT) algorithm, which 

combines supervised, unsupervised, and self-

supervised learning techniques to identify cancer 

patients with a low and high risk of developing the 

disease. Through five-fold cross-validation trials, our 

method is assessed using three separate, publicly 

available cancer data sets while taking three different 

performance elements into account. MuLT 

outperforms alternative approaches, reaching AUCs 

of 0.6457. Mu Teng et al [18] analyzed the prognostic 

energy metabolism (EM) related gene signature using 

the Univariate Cox and LASSO (Least Absolute 

Shrinkage and Selection Operator) methods. To 

verify the prognostic value of the prognostic 

signatures, Kaplan-Meier and receiver operating 

characteristic (ROC) curves were plotted. Based on a 

risk model, a nomogram was developed to forecast 

the likelihood that LUAD would survive. 13 EM-

related genes were compiled into a prognostic 

signature by the researchers. At one year, three years, 

and five years in the GSE31210 dataset, the AUC was 

0.57, 0.67, and 0.73, respectively. At one year, three 

years, and five years in the GSE68465 dataset, the 

AUCs were 0.69, 0.63, and 0.63, respectively. 

Shahweli, Z. N [19] used an enhancer DBN classifier 

in predicted lung cancer. This classifier is related to 

the unsupervised phase using two restricted 

Boltzmann machines (RBMs) and a supervised phase 

when the deep belief network (DBN) is trained by a 

backpropagation neural network (BPNN). Essam H. 

Houssein et al. [20] proposed a hybrid algorithm from 

MRFO and SVM to select the most predictive and 

informative genes for cancer classification. Hui Jiang 

[21] used particle swarm optimization (PSO) to tune 

the hyperparameters of XGBoost to enhance the 

network intrusion detection system's accuracy. R. 

Dhia’a. et al. [22-24] compared multiple machine 

learnings on lung cancer prediction and found that 

XGBoost is the most accurate model when applied to 

balance and imbalance datasets. They used multiple 

XGBoost layers with different XGBoost 

hyperparameters to improve the prediction. 

This study attempted to improve the lung cancer 

relapse-prediction probability after surgery by 

overcoming the bio datasets drawbacks such as the 

missing information, high dimension (a large number 

of features according to low samples), noise, and 

imbalance class. These drawbacks overcame in our 

proposed model by pre-processing the datasets at the 

beginning, selecting suitable genes involved in 

causing lung cancer, and improving XGBoost by 

applying the Optuna model to automatically tune the 

XGBoost hyperparameters to strengthen its 

construction. 

The remaining paper is structured as follows. 

Section 2 provides lung cancer datasets. Section 3 

presents the XGBoost classification works. Section 4 

described the optimization part. Section 5 presented 

the proposed model. Section 6 describes 

experimental results and discussion, Finally, Section 

7 concludes the discussion and provides future work. 

2. Lung cancer datasets 

Two microarray gene expression datasets, 

GSE8894 and GSE68465, were used. The data were  
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Table 1. Relapse dataset information 

Datasets Patients Features 
Relapse 

Class 

Non_Relapse 

Class 
GSE8894 135 54675 67 68 

GSE68465 362 22283 205 157 

 

gathered to represent the patient's clinical 

information and gene expression profiles. Gene 

expression displays alterations in the expression of 

several genes simultaneously due to lung cancer. The 

class of this work depends on the relapse state from 

the clinical information. It has two states; 

relapse/non-relapse. So, the system is binary 

classification, the 1 indicates the relapse and 0 for 

non-relapse. Both datasets were downloaded from the 

public Gene Expression Omnibus (GEO) database. 

2.1 Dataset information 

Two datasets are used in this study. Their types 

are gene expression microarray types with their 

clinical information. The first dataset (GSE8894) is 

an NCLC type for 138 cases; 67 cases have a lung 

cancer relapse state, and 68 patients have nonrelapse 

lung cancer. The second is the GSE68465 dataset. It 

has gene expression and clinical information for 442 

cases; after removing the incomplete data, 362 cases 

remain, with 205 cases having a cancer relapse and 

157 cases having nonrelapse cancer. It can 

summarize the relapse datasets in Table 1. 

2.2 Data preprocessing 

It is critical to clean biological data to increase 

their quality for searching and analyzing. It 

accomplishes this by removing the mess-up or 

incorrect records from the database. Every record 

with incomplete data must be eliminated because it is 

considered irrelevant and leads to incorrect learning 

outcomes. Furthermore, XGBoost is concerned with 

the numeric representation in the decision class, 

whereas classes in the lung cancer datasets, such as 

nonrecurrence and relapse, are nominal. As a result, 

they must be converted to numeric form (0/1). 

3. XGBoost classification model 

XGBoost is an ensemble machine learning 

method based on decision trees. It employs the 

gradient boosting method. Tianqi Chen and Carlos 

Guestrin created XGBoost in 2016. They presented 

their results at the SIGKDD conference [25]. It offers 

parallel tree boosting, which addresses many data 

science issues rapidly and correctly. It has several 

hyperparameters that allow one to fine-tune the 

model training process [24]. 

The greedy algorithm used in XGboost to 

evaluate the split candidates:  

 

𝐿𝑠𝑝𝑙𝑖𝑡 = 
1

2
 [ 

(∑ 𝑔𝑖𝑖∊𝑆𝐿
)2

(∑ ℎ𝑖+𝜆 𝑖∊𝑆𝐿
)
 + 

(∑ 𝑔𝑖𝑖∊𝑆𝐿
)2

(∑ ℎ𝑖+𝜆 𝑖∊𝑆𝑅
)
 - 

(∑ 𝑔𝑖𝑖∊ 𝐼 )2

(∑ ℎ𝑖+𝜆 𝑖∊ 𝐼 )
] – 𝛾 

(1) 

 
g= yi – ŷi                             (2) 

 
h= ŷ (1 - ŷ)                           (3) 

 

where; 

Lsplit: the quality or the gain of each candidate split 

SL, and SR: are the instance sets of left and right nodes 

after the split.  

i: is the root instance sets 

𝛾: the leaf weight penalty parameter. 

𝜆: the tree size penalty parameter 

If Lsplit < 0 it will be neglected or pruned. In the 

end, it will choose the largest value as a splitting point 

for that feature.  

4. Optuna optimization model 

Takuya Akiba et al. [26] introduced new design 

criteria for next-generation hyperparameter 

optimization software called Optuna, which has 

multiple features that give it the flexibility to deal 

with complex code, less time, and more accuracy in 

searching for optimal solutions. It is a software 

framework developed primarily for machine learning 

for automated hyperparameter tuning. It offers a new 

defining-by-run style API that allows the user to 

optimize hyperparameters while preserving greater 

flexibility than other frameworks, even if the user 

code is complicated. It can also optimize 

hyperparameters in a complex space as no other 

framework can previously represent. It can also stop 

unpromising testing before the training ends [27]. 

4.1 Optuna algorithm 

Hyperparameter optimization has two parts in the 

Optuna model; they usually work together to quickly 

find the best hyperparameter values. The first is the 

sampling algorithm, which decides where to look. It 

uses a trial history record to select the next 

hyperparameter. It estimates and tests the best 

location and then calculates an even more promising 

area based on the new result. This method is repeated 

by utilizing the historical data of previous trials. It 

used multiple sampling methods; this study 

employed the Tree-structured Parzen Estimator 

(TPE) [28] as a sampling method. The second part is 

the pruning algorithm used when the particle trial is  
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Figure. 1 Optuna optimization model design 

 

not promising; it could terminate it early to provide a 

time for better trials. It is based on an asynchronous 

variant of the successive halving algorithm (ASHA) 

[29], which is a technique to parallelize SHA [30]. 

Fig. 1 shows the design of the Optuna model [26]. 

4.1.1. Tree-structured parzen estimator 

The difference between random search and 

sequential model-based optimization (SMBO) is that 

random search is un-informed and requires more 

trials to maximize the objective function (accuracy). 

Tree Parzen Estimator (TPE), an algorithm used for 

SMBO, spends more time choosing the next values, 

but overall requires fewer evaluations of the objective 

function because it can reason about the next values 

to evaluate. Over many iterations, the TPE algorithm 

concentrates the search around the most promising 

values, yielding; higher scores on the objective 

function, and faster optimization. 

4.1.2. Asynchronous successive halving algorithm 

Modern learning models are characterized by 

large hyperparameter spaces and long training times. 

The asynchronous successive halving algorithm 

(ASHA) exploits parallelism and aggressive early-

stopping to tackle large-scale hyperparameter 

optimization problems. In Optuna, the successive 

halving algorithm (SHA) has been slightly modified 

by using the TPE algorithm for sampling suggestions 

instead of the random search algorithm. Therefore, it 

behaves differently from the algorithm described in 

the paper [28]. The pruning in SHA depends on the 

median stopping rule. This rule means that the trial 

with a sample evaluation worse than the median value 

of the previous trial's intermediate values will be 

trimmed away. 

5. Proposed model 

It is impossible to educate a machine learning to 

suit all types of data. In our scenario, XGBoost 

successfully learned with high accuracy on specific 

datasets but had less accuracy on others [22]. These  
 

Table 2. XGBoost hyperparameter information 

Hyperparameter 

Hyperparameter The range 
Default 
value 

Suggested 
range 

colsample_bytree (0,1] 1 [0.6-1] 

gamma [0,∞] 0 [0-4] 

eta (learning rate) [0,1] 0.3 [0.2-0.6] 

Max_depth [0,∞] 6 [2-10] 

Min_child_wieght [0,∞] 1 [2-8] 

n_estimators [1,∞] 100 [1-200] 

subsample (0,1] 1 [0.5-1] 

 

differences in the accuracy are because of its 

significant dependence on its hyperparameter setting. 

To overcome this problem, it used the Optuna model 

to select the best hyperparameters to tune the 

XGBoost to accommodate different types of datasets. 

The proposed methodology has four stages, as shown 

in Fig. 2. 

The optimization stage: Multiple types of lung 

cancer databases are required in our scenario. 

Because the bio dataset is noisy in general, the model 

must tune its hyperparameters with each dataset to 

avoid overfitting or underfitting and to be able to 

handle a variety of datasets. As a result, it auto-mated 

the tuning of XGBoost hyperparameters using the 

Optuna model.  

Six common hyperparameters were used in this 

study's optimization: the learning_rate, max_depth, 

n_estimators, subsample, gamma, and 

colsample_bytree. First, it identified the search space 

for these hyperparameters. From experience, it can 

suggest a limit range for each hyperparameter in the 

search space to enhance the accuracy and decrease 

the optimization time, as seen in Table 2. 

It shows how it can limit the hyperparameter 

search space range to obtain a more accurate result 

for the XGBoost model. The objective value in this 

study is the accuracy value, so this value needs to be 

maximized. The Optuna with XGBoost 

(Optuna_XGB) used the dataset for optimization. It 

repeats the optimization for 100 trials to obtain the 

best XGBoost hyperparameters that got the best 

accuracy. At the end of this stage, the best 

hyperparameters are chosen to tune the XGBoost. 

The feature selection stage: Not all genes are 

involved in lung cancer recurrence. Therefore, we 

tried to select suitable genes for more accurate 

prediction. For that purpose, it used the XGBoost 

model to rank the importance of the features (genes) 

in making the prediction.  

Optuna API 

Objective 

function 

Suggest () 

Storge 

Report() 

Return() 

Pruning () Pruning 

algorithm. 

Suggest 
algorithm. 
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Figure. 2 The proposed model 

 

In XGBoost, the importance of features is 

calculated after constructing the boosted trees. The 

calculation depends on how many each feature is 

used in that construction. Each time the feature is 

used in the construction, the higher the importance 

score. The importance score refers to how this feature 

is valuable or helpful in constructing the trees. The 

importance score algorithm calculated the 

importance of each decision tree by counting each 

feature, causing a splitting point, and improving the 

performance measure, weighted by the number of 

observations for which the node is responsible. 

The feature importance is averaged across all 

decision trees within the model [31]. In XGBoost it 

can calculate the importance by three methods; 

wights, gain and cover. This paper used the gain to 

calculate the importance which had the best accuracy 

in our case. At the end of XGBoost construction, it 

calculates the importance of each feature. During the 

construction, the gain calculates during the splitting 

choice. It finds the similarity for each root, right, and 

left node and then calculates the gain by following 

equations derived from Eq. (1): 

 

S = 
∑(𝑦𝑖−𝑝𝑖−1)2

∑(𝑝𝑖−1( 1− 𝑝𝑖−1))+ 𝜆
                    (4) 

 
Gain = 𝑆𝐿 + 𝑆𝑅 – 𝑆𝑟𝑜𝑜𝑡  -Ɣ                (5) 

 

Where;  

yi: the Actual class 

pi-1: the class probability prediction of the previous 

tree 

SL : left similarity node. 

SR : right similarity node. 

Sroot : the root similarity 

λ, Ɣ: for regulation, to decrease the overfitting. 

 

If Gain > 0 it accepts the splitting if not the node 

will prune. This procedure will be repeated to the 

number of offered splitting points till have the best 

gain value and this point will consider a splitting 

point. This calculation will be repeated for each tree 

in the XGBoost. In the end, it calculates the 

importance score for each feature by dividing the 

summation of its gain by the total features gain. 

In Fig. 2, it is seen that in this stage, the whole 

dataset (DS) is used to construct the XGBoost to 

calculate the score importance of each feature and 

select only the features with the higher score, which 

are stored in a new dataset (NDS). The threshold 

taken in this study is all features above zero. Each 

feature with an importance score equal to zero will be 

neglected. After it repeats this stage five times it took 

the average of their important scores. As a result, it 

obtained three features which are called probes that 

have the highest important score and got the highest 

accuracy when they were used in the classification 

stage. These probes with their gene symbols are 

225389_at (BTBD6), 220239_at (KLHL7), and 

204832_s_at (BMPR1A). 

The second optimization stage: The XGBoost is 

very sensitive to their hyperparameters value and 

because the dataset features are changed it must 

repeat its hyperparameters tuning. The Optuna is used 

again to find the best hyperparameters and it used the 

same six hyperparameters used in the first 

optimization stage with the same range's value.  

The last stage is the classification stage: it 

constructs the XGBoost classification depending on 

70% of the data and the chosen hyperparameters from 

the previous stage. After the learning phase, the 

testing phase will begin using the testing data (30% 

of the dataset) with the XGBoost built in the learning 

phase. At the end of this stage, the final prediction of 

the lung cancer relapse will be obtained. 

XGBoost as a 

feature 

selection 

Optuna XGB 

XGBoost 

classification model 
DS Max. 

Pred. 

NDS 

70% 

30% 

Best hyperparameters value 

Feature Selection stage classification stage 

Optuna 

XGB 

Best hyperparameters value 

1st Optimization stage 2nd Optimization stage 



Received:  August 4, 2022.     Revised: October 24, 2022.                                                                                                136 

International Journal of Intelligent Engineering and Systems, Vol.16, No.1, 2023           DOI: 10.22266/ijies2023.0228.12 

 

6. Results and discussion 

This study used different metrics for evaluating 

the proposed model. These metrics are sensitivity, 

specificity, precision, f1_score, AUC (area under the 

curve), accuracy, and the time consumed for learning 

and testing data for each machine learning used in 

this study. The results are the average of five runs of 

each model. At first, it showed how Optuna_XGB 

works, then compared their obtained results with 

other machine learning. Finally, discussed the work. 

6.1 Analyzing optuna_XGB work 

Optimization algorithms navigate the search 

space of input variables to locate the optimal. The 

shape of the objective function and the algorithm's 

behavior in the search space is opaque in real-world 

problems. To analyze the Optuna algorithms, it tries 

to visualize the behavior of its optimization in the 

search space. Once the Optuna process is completed, 

it can obtain the best set of hyperparameters values 

for the XGBoost model. The best hyperparameters of 

the Optuna_XGB model after 100 trials when it was 

applied to the GSE8894 dataset were 

'colsample_bytree': 0.99, 'gamma': 2.51, 'eta': 

0.25,'max_depth': 2, 'n_estimators': 14, and sub-

sample: 0.61, and the best trial was 8, with a training 

accuracy value of 0.8125. In the GSE68465 dataset, 

the best trial was 32 with an accuracy value of 0.818, 

and the best hyperparameters were 'learning_rate': 

0.31, 'max_depth': 2, 'n_estimators': 43, 'subsample': 

0.76, 'gamma': 0.1, 'min_child_weight': 3, and 

'colsample_bytree': 0.93. 

The GSE8894 dataset results are used to represent 

the Optuna behavior in the search space. The 

optimization history of all trials is plotted in Fig. 3. 

That figure represented the accuracy of each trial and 

marked the best one from all trials that it currently 

had until it reached the best of all, which is the 

accuracy of 0.8925 in trial 76. Fig. 4 represents each 

hyperparameter value used in the optimization 

procedure in an independent slide. It shows the 

distribution value for each hyperparameter in each 

trial. The higher point in each slide has the best 

accuracy value, and the dark point represents the 

higher number of trials that have used the same 

hyperparameter value. It used this figure to update the 

limit range of optimization search space (see Table 2) 

by choosing a new range of each hyperparameter with 

a higher objective value. This updating improves the 

prediction accuracy and minimizes the time required 

to reach the best accuracy value. 

6.2 Comparing Optuna_XGB with the original 

XGBoost 

The use of the Optuna for XGBoost 

hyperparameter tuning enhanced the original 

XGBoost in predicting the lung cancer relapse 

probability when applied to both lung cancer datasets. 

The original XGBoost used the default tuning of the 

hyperparameters; see Table 2. In contrast, 

Optuna_XGB used the best hyperparameters chosen 

by the Optuna model.  

The Optuna_XGB applied to both datasets 

improved the original XGBoost performance in all 

metrics except the time metric (see Table 3 and Figs. 

5 and 6). The time spent in XGBoost is only 11 s and 

17 s, while Optuna_XGB is 01:22 (82) and 01:33 (93 

s) for GSE8894 and GSE68465, respectively. 

However, it is still an acceptable value 

6.3 Optuna_XGB comparison with other 

optimization models 

This comparison used two recent optimization 

models: the HyperOpt [32] optimization and the PSO 

optimization model used in the PSO_XGBoost model 

[21]. The results of both optimization models have 

accuracies of 0.83 and 0.86 in the GSE8894 dataset 

and 0.73 and 0.70 in the GSE68465 dataset for 

HyperOptXGB and PSOXGB, respectively. 

They both enhanced the original XGBoost model 

performance in most states, but not as Optuna did, 

which had accuracies of 0.93 and 0.81 in the 

GSE8894 and GSE68465 datasets, respectively. 

Table 3 and Fig. 7 and 8 show the remaining metrics. 

6.4 Optuna_XGB comparison with the other 

machine learning 

This section compares Optuna_XGB with some 

standard and current machine learning methods, such 

as KNN (k-nearest neighbors), naive Bayes, SVM 

(support vector machines) [33], and gcForest (deep 

forest) [34], to evaluate the effectiveness of 

Optuna_XGB. They are set to their default setting. 

The comparison results tabulated in Table 3 represent 

the efficiencies of the Optuna_XGB model compared 

to other machine learning models. Although in the 

GSE68465 dataset, the SVM obtained a higher 

sensitivity (the rate of detecting lung cancer relapse 

cases) than Optuna_XGB, it failed in specificity (the 

rate of detecting nonrelapse cases). In contrast, the 

KNN model has a higher value than Optuna_XGB in 

specificity, but it fell in the sensitivity metric. The 

performance of Optuna_XGB, in general, is still 

better than those of the other metrics, as seen in Table 

3 and Fig. 9 and 10.  
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Figure. 3 The plot shows the accuracies (objective values) for all tries and marks the best values during the 

optimization stage of the Optuna_XGB model when applied to the GSE8894 dataset 
 

 
Figure. 4 Slice plot for each hyperparameter 

 

Table 3. The comparison results for all models used in this study 

GSE8894 dataset 

Classifier Name Sensitivity Specificity Precision F1_score AUC Accuracy Time (hour) 

Optuna_XGB 1.00 0.86 0.87 0.93 0.93 0.93 00:01:22 

HyperOptXGB 0.80 0.86 0.84 0.82 0.83 0.83 00:41:37 

PSOXGB 0.80 0.71 0.73 0.76 0.76 0.76 00:01:40 

XGBoost 0.55 0.67 0.61 0.58 0.61 0.61 00:00:11 

SVM 0.65 0.43 0.52 0.58 0.54 0.54 00:00:05 

gcForest 0.40 0.67 0.53 0.46 0.53 0.54 00:02:47 

KNN 0.45 0.76 0.64 0.53 0.61 0.61 00:00:02 

Naive Bayes 0.50 0.62 0.56 0.53 0.56 0.56 00:00:01 

GSE68465 dataset 

Optuna_XGB 0.90 0.68 0.79 0.84 0.79 0.81 00:01:33 

HyperOptXGB 0.77 0.68 0.76 0.77 0.73 0.73 01:12:38 

PSOXGB 0.84 0.51 0.69 0.76 0.67 0.70 00:01:26 

XGBoost 0.81 0.57 0.71 0.76 0.69 0.71 00:00:14 

SVM 1.0 0.02 0.57 0.73 0.51 0.58 00:00:35 

gcForest 0.89 0.57 0.73 0.80 0.73 0.75 00:01:42 

KNN 0.41 0.72 0.67 0.51 0.57 0.55 00:00:03 

Naive Bayes 0.65 0.47 0.62 0.63 0.56 0.57 00:00:02 
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Figure. 5 The ROC and AUC values of the Optuna_XGB 

and the original XGBoost model when they were applied 

to the GES8894 dataset 

 

 
Figure. 6 The ROC and AUC values of the Optuna_XGB 

and the original XGBoost models when they were applied 

to the GES68465 dataset 

 

 
Figure. 7 The ROC and AUC values of the Optuna_XGB 

model and the representative optimization models when 

applied to the GES8894 dataset 

 

The time consumed in Optuna_XGB is not as 

good as most machine learning, but it is still 

acceptable. 

6.5 Optuna_XGB comparison with the other 

published papers 

To have a full view of Optuna_XGB performance its 

accuracy and AUC values compared with other 

recently published papers which are discussed in the 
 

 
Figure. 8 The ROC and AUC values of the Optuna_XGB 

model and the representative optimization models when 

applied to the GSE68465 dataset 

 

 
Figure. 9 The ROC and AUC values of Optuna_XGB and 

the other machine models on the GES8894 dataset 

 

 
Figure. 10 The ROC and AUC values of Optuna_XGB 

and the other machine models on the GES68465 dataset 
 

introduction section. This comparison used only the 

works that used the same datasets as illustrated in 

Table 4. Mu Teng et al. tried to use gene signatures 

related to EM prognostic to predict lung cancer 

relapse. They use the AUC matric to evaluate their 

work. The results for prediction of lung cancer 

relapse in the 1st, 3rd, and 5th stage were o,69, 0.63, 

and 0.63 respectively. Additionally, L. V. Povoa et al. 

used multi-learning training and then take the average 

result of all of them. The AUC was 0.6457. 
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Table 4. Comparison of Optuna_XGB with other published works have the same relapse datasets used in this study 

Dataset Author name Date Classification type Result 

GSE68465 
The current work 2022 Optuna_XGB AUC = 0.79., Acc.=0.81 

Mu Teng [16] 2022 Univariate Cox and LASSO 

+ nomogram 

AUCs=0.69 in 1st year, 0.63 in 

3rd year, and 0.63 in 5th years 

L. V. Povoa et al. [17] 2021 Multi Learning Training 

(MuLT) algorithm 
AUCs= 0.6457  

GSE8894 The current work 2022 Optuna_XGB Acc.=0.93 

Wang, Q. et al. [18] 2020 random forest with self-

paced learning (RFSPL) 

Acc.= 0.6905 

Russul A. et al. [7] 2019 
Deep genetic selection 

(DGS) 
Acc.= 0.8714 

 

 

Both of the previous works used the GSE68456. The 

same dataset is used by the Optuna_XGB and the 

results were AUC=0.86 and acc.= 0.87. The 

following two works used the GSE8894 dataset. The 

first article by R. Alanni et al. used Deep genetic 

selection to select the best genes. The AUC was 

0.8714. In the second article Q. Wang used the 

developed RFSPL. The acc. was 0.6905. while the 

proposed work accuracy in the same dataset was 0.93. 

6.6 Discussion 

The proposed methodology tried to improve the 

XGBoost model to enhance the accuracy of 

diagnosing the patient’s probability of relapse after 

successful surgery to support the doctor's assessment 

to have earlier decision-making for better patient 

treatment. These enhancements are dependent on the 

main tools; 

First, prepossessing the datasets to delete the 

whole samples that have the missing data. Doing that 

decreases the data noise. 

Second, feature selection selected the suitable 

genes to decrease the data noise and their high 

dimension and made the system faster and more 

accurate. 

Second, it can be seen from the results that the use 

of Optuna as an optimization model gives the 

XGBoost model two specifications; the first one is a 

good sampling. This sampling makes the model 

select the best hyperparameters sets for multi 

XGBoost, giving it the best classification metrics The 

second specification that Optuna provided is the 

pruning method, which made Optuna_XGB finish the 

learning time for all datasets within a short time 

compared to the other representative optimization 

method; PSO_XGB and Hyperopt_XGB models. 

Third, from the result, it can see that a lot of 

machine learning failed in the imbalance dataset, 

while the Optuna_XGB is slightly affected by this 

situation. That is because of the combination that let 

it suitable for a wide range of data. 

7. Conclusion 

This work aims to improve the opportunity to 

handle lung cancer earlier in the case of relapse 

prediction to enhance patient treatment. They used 

the gene expression data in the microarray dataset to 

have more accurate results. The bio datasets are 

severe from different drawbacks such as missing 

information, high dimension, noise, and imbalance 

class. This paper proposed a multistage method to 

overcome these drawbacks. This methodology 

consists of an optimization stage using the Optuna 

model to optimize the XGBoost hyperparameters that 

use as a feature selection for two lung cancer relapse 

datasets. It selects three features (probes), these 

probes with their gene symbols are 225389_at 

(BTBD6), 220239_at (KLHL7), and 204832_s_at 

(BMPR1A). In the third stage, it used the Optuna 

again to tune the XGBoost hyperparameters for 

perfect tree construction compatible with the new 

changes in datasets. In the end, it used the best 

hyperparameters in constructing the XGBoost 

classification. The experimental results show the 

Optuna_XGB improvement in both accuracy and 

AUC values. Where the proposed model has 

accuracies of 93% and 81% for the GSE8894 and 

GSE68465 datasets respectively. Which they are the 

highest lung cancer relapse prediction accuracy 

compared to other compared models.  Additionally, 

it has the highest AUC values for the GSE8894 and 

GSE68465 datasets; 93% and 0.79% respectively. 

Which is means the better handling the imbalance 

dataset (GSE68465) than the other compared models 

(HyperOptXGB, PSOXGB, original XGBoost, SVM, 

Random Forest, KNN, and Naive Bayes). 

For future work, it will take n top sets of 

hyperparameters from Optuna and run multiple 

XGBoost in parallel each one tuned with one of these 
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n top sets of hyperparameters to have different 

XGBoost constructions. Then take the average 

outputs. This improvement will increase the model 

diversity, so it can handle a wider range of data. 
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