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Abstract: This paper presents an artificial rabbits optimization (ARO) based optimization methodology for the optimal 

location and rating of solar photovoltaic systems (SPVs) and passive power filers (PPFs) to mitigate the effects of non-

fundamental frequencies due to the presence of non-linear and static loads in radial distribution networks (RDNs). The 

basic components of the distribution network are modelled for decoupled harmonic power flow (DHPF). The 

performance of RDN and harmonic levels is evaluated using DHPF. A multi-objective function using real power 

distribution loss (RPDL), voltage deviation index (VDI), total harmonic distortions in voltage (THDv), and current 

(THDi) is formulated by considering different equal and unequal planning and operational constraints. The 

effectiveness of the proposed methodology is evaluated on IEEE 33-bus RDN. Also, the computational efficiency of 

ARO is compared with other recent meta-heuristic approaches, namely the coyote optimization algorithm (COA), the 

butterfly optimization algorithm (BOA), the future search algorithm (FSA), and the pathfinder algorithm (PFA). The 

comparative analysis has highlighted the superiority of ARO in terms of global optima over the other compared 

algorithms. The reactive power losses and AVDI are reduced to 72.7865 kW, 50.6519 kW, and 0.0214 from 210.11 

kW, 143.03 kVAr, and 0.0637, respectively. Also, integration of SPVs and single-tuned PPFs at optimal locations with 

appropriate sizes results in significantly improving the RDN power quality and performance significantly. The 

maximum in the entire network is observed at 5.21% of the fundamental frequency at bus-13. As per the IEEE 519 

standards, it is required to maintain less than 5% and it is reduced to 3.98% with optimal PPF integration by the 

proposed method.  

Keywords: Artificial rabbits optimization, Decoupled harmonic power flow, Passive power filters, Power quality, 

Harmonics, Radial distribution network, Solar photovoltaic systems. 

 

 
 

1. Introduction 

In recent years, the use of renewable energy (RE) 

[1] and the adoption of electric vehicles (EVs) [2] in 

the energy and transportation sectors have greatly 

expanded throughout the world in consideration of 

global warming and sustainability [3]. The stochastic 

and intermittent character of these technologies, 

however, results in a number of common operational 

and control problems in distribution systems [4]. 

Power imbalances, high distribution losses, uneven 

voltage profiles, lower voltage stability and reliability 

margins, etc. are caused by improper locations, sizes, 

and their unpredictably high degrees of penetration. 

Contrarily, a variety of non-linear loads and their 

unpredictable loading profiles are a major cause of 

harmonics and poor power quality (PQ) problems. 

The main types of classified loads in distribution 

systems, such as residential, commercial, industrial, 

agricultural, and municipal loads, are very sensitive 

to changes in voltage and frequency when power 

electronics-based converters are used. As a result, a 

lot of research has been focused on finding the best 

ways to allocate distribution generation (DG), 
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capacitor banks (CBs), custom power devices (CPDs), 

energy storage systems (ESSs), and network 

reconfiguration (NR), among other technologies, to 

improve the techno-economic-environmental 

performance of modern distribution systems [5, 6]. 

The most commonly used methods for resolving PQ 

issues include distribution static synchronous 

compensator (DSTATCOM), active power filters 

(APF), passive power filters (PPF), active power 

conditioner (APC), unified power quality conditioner 

(UPQC), and dynamic voltage restorer (DVR) [7]. In 

addition to renewable energy (RE) sources [8], 

hybridization of the aforementioned methods with 

new trends like grid-scale ESSs [9] and electric 

vehicles [10] is receiving a lot of interest at the 

moment. To maintain the harmonic-related 

operational features in line with IEEE-519 standards, 

it is still a potential problem to identify the location 

and size of any form of PQ device(s) in distribution 

systems [11]. 

Due to their radiality configuration with low R/X 

distribution lines, metaheuristic approaches for 

solving the optimal allocation of PQ devices in radial 

distribution systems (RDSs) have received a lot of 

attention in recent work. A genetic algorithm (GA) is 

used in [12] to allocate PPFs in RDSs while 

considering multiple objectives such as loss 

reduction and PPF investment cost. In [13], different 

configured single-tuned passive filters are optimally 

located with their proper sizes in unbalanced 

distribution systems for THD mitigation using GA. In 

[14], the lion algorithm (LA) and crow search 

algorithm (CSA) are hybridised for optimally 

allocating UPQCs in RDSs considering loss 

reduction, VSI maximization, and reduction of the 

cost of UPQC. Under load tap changer (ULTC) and 

reactive power controls of photovoltaic-DGs are 

optimally tuned using phasor particle swarm 

optimization (PPSO) and gravitational search 

algorithm (GSA) towards Volt/controls in RDSs. In 

[16], the strength Pareto evolutionary algorithm 2 

(SPEA-II) is used for simultaneous allocation of CBs, 

single-tuned and high-pass passive filters, 

considering optimization of energy loss cost, 

installation cost, and THD. In [17], Harris-Hawks 

optimization (HHO) is used to find the best way to 

integrate resonance-free C-type harmonic filters to 

reduce harmonic overloading and, as a result, a 

number of PQ problems in distribution networks with 

loads that change with voltage and frequency. In [18], 

an improved discrete firefly algorithm (IDFA) with 

GA is proposed for optimally integrating APCs in 

RDSs for loss minimization, voltage profile 

improvement, THD, and investment cost. In [19], 

enhanced bacterial foraging optimization (EBFO) is 

proposed for identifying the location and sizes of 

different kinds of DFACTS/CPDs for loss reduction, 

load balancing, and voltage deviation index. [20, 21] 

present a modified adaptive binary imperialist 

competitive algorithm (MABICA) and a basic 

imperialist competitive algorithm (ICA) with fuzzy 

logic for allocating APFs while taking techno-

economic goals into account. In [22], the grey wolf 

optimizer (GWO) is used for optimal allocation of 

multiple APFs for solving PQ issues due to non-linear 

loads. In [23], a fuzzy-lightning search algorithm 

(FLSA) is proposed for optimal allocation of 

DSTATCOM in PV integrated distribution systems 

for loss reduction, voltage profile improvement, and 

voltage stability enhancement. Also like this are the 

improved bacterial foraging search algorithm (IBFA) 

[24], the gravitational search algorithm (GSA) [25], 

the imperialist competitive algorithm (ICA) [26], the 

rooted tree optimization (RTO) [27], the different 

types of PSOs [28], the bat algorithm (BA) [29], and 

the cuckoo search algorithm (CSA) [30].  

According to this work, optimal location and 

sizing of PQ devices helps handle RE uncertainty and 

non-linear loads in distribution systems. The NFL 

theorem states that no single optimization algorithm 

can solve all optimization problems [31]. Researchers 

are still inspired to develop new algorithms or hybrid 

algorithms. ARO was introduced in 2022 by inspiring 

rabbits' social and survival behaviours [32]. This 

paper used ARO to optimise SPV system allocation 

by minimising loss and voltage deviation index. In 

the second stage, APFs are analysed and compared 

for handling PQ issues under harmonic current 

sources by BESS. In both stages, ARO's 

computational efficiency is compared to literature 

and metaheuristic algorithms. Different scenarios are 

simulated on the IEEE 33-bus RDN. The rest of the 

paper is organised as follows. In section 2, 

mathematical modelling of distribution and SPV 

systems, and section 3, the proposed multi-objective 

function and different constraints are explained. 

Section 4 discusses ARO modelling. Section 5 

discusses 33-bus RDN simulation results. Section 6 

summarises the paper's contributions and research 

findings.   

2. Mathematical modelling of concepts 

In this section, the mathematical modelling of 

different components associated with distribution 

system is explained as suitable for decoupled 

harmonic power flow [33].     
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2.1 Modelling of components 

The basic components of harmonic distribution 

system such as branch admittances 𝑦𝑝𝑞(ℎ) , linear 

loads 𝑦𝑑,𝑘(ℎ) , non-linear loads �̅�𝑑,𝑘(ℎ) , shunt 

capacitors𝑦𝑠ℎ,𝑘(ℎ), and shunt passive filters 𝑦𝑓𝑙,𝑘(ℎ), 

are modelled in admittance form considering 

harmonic frequencies as given by [22], 

 

𝑦𝑝𝑞(ℎ) =
1

𝑅𝑝𝑞+𝑗2𝜋𝑓(ℎ)𝐿𝑝𝑞
, 𝑝𝑞 ∈ 1: 𝑛𝑏𝑟              (1) 

 

𝑦𝑑.𝑘(ℎ) =
𝑃𝑑,𝑘

|𝑉𝑘(1)|
2 − 𝑗

𝑄𝑑,𝑘

𝑓(ℎ)|𝑉𝑘(1)|
2 , 𝑝𝑞 ∈ 1: 𝑛𝑏    (2) 

 

𝐼𝑑,𝑘(1) = (
�̅�𝑑,𝑘+𝑗�̅�𝑑,𝑘

|𝑉𝑘(1)|
)

∗

, 𝑘 ∈ 1: 𝑛𝑏𝑢𝑠   (3) 

 

𝐼�̅�,𝑘(ℎ) = 𝑘(ℎ)𝐼𝑑,𝑘(1), 𝑘 ∈ 1: 𝑛𝑏𝑢𝑠   (4) 

 

𝑦𝑠ℎ,𝑘(ℎ) = 𝑓(ℎ)𝑦𝑠ℎ,𝑘(1), 𝑘 ∈ 1: 𝑛𝑠ℎ   (5) 

 

𝑦𝑓𝑙,𝑘(ℎ) =
1

𝑍𝑓𝑙(ℎ)
, 𝑘 ∈ 1: 𝑛𝑓𝑙    (6) 

 

where𝑅𝑝𝑞and𝐿𝑝𝑞are the resistance and inductances 

of a branch connected between buses p and q, 

respectively; 𝑓(ℎ)is the harmonic order, 𝑃𝑑,𝑘 and 𝑄𝑑,𝑘 

are the real and reactive components of linear load at 

bus-k, respectively, �̅�𝑑,𝑘  and �̅�𝑑,𝑘  are the real and 

reactive components of non-linear load at bus-k, 

respectively, 𝑦𝑠ℎ,𝑘(1) is the shunt capacitive 

admittance at fundamental frequency, 𝑍𝑓𝑙(ℎ) is the 

impedance of shunt filter at bus-k,𝐼𝑑,𝑘(1) and 𝐼�̅�,𝑘(ℎ) 

are the non-linear load currents at fundamental 

frequency and hth harmonic order at bus-k,𝑘(ℎ)is the 

ratio of the hth harmonic current to fundamental 

current, 𝑛𝑏𝑟 , 𝑛𝑏 , 𝑛𝑠ℎ  and 𝑛𝑓𝑙 are the number of 

branches, number buses, number of shunt capacitors, 

number of filters in the network, respectively.  

2.2 Decoupled harmonic power flow  

By determining the bus admittance 

matrix 𝑌𝑏𝑢𝑠(ℎ), and current injection vector 𝐼𝑏𝑢𝑠(ℎ) at 

the hth harmonic order, the bus voltage 

vector𝑉𝑏𝑢𝑠(ℎ)can be determined by,  

 

𝑉𝑏𝑢𝑠(ℎ) = [𝑌𝑏𝑢𝑠(ℎ)]
−1

𝐼𝑏𝑢𝑠(ℎ)   (7) 

 

𝐼𝑏𝑢𝑠(ℎ) = [𝐼1(ℎ), 𝐼2(ℎ), … , 𝐼𝑛𝑏(ℎ)]
𝑇

   (8) 

 

𝑉𝑏𝑢𝑠(ℎ) = [𝑉1(ℎ), 𝑉2(ℎ), … , 𝑉𝑛𝑏(ℎ)]
𝑇

   (9) 

 

where 𝐼𝑖(ℎ) and 𝑉𝑖(ℎ) are the injection current and 

voltage at bus-i, respectively. The diagonal 𝑌𝑝𝑝(ℎ)and 

off-diagonal elements𝑌𝑝𝑞(ℎ)in𝑌𝑏𝑢𝑠(ℎ)are determined 

by Eq. (10) and (11), respectively,  

 

𝑌𝑝𝑝(ℎ) = ∑ 𝑦𝑝𝑞(ℎ)𝑝 + 𝑦𝑑,𝑝(ℎ) + 𝑦𝑠ℎ,𝑝(ℎ) +         

                       𝑦𝑓𝑙,𝑝(ℎ), 𝑝 ∈ 1: 𝑛𝑏 (10) 

 

𝑌𝑝𝑞(ℎ) = 𝑌𝑞𝑝(ℎ) = −𝑦𝑝𝑞(ℎ), 𝑝𝑞 ∈ 1: 𝑛𝑏𝑟        (11) 

 

By using harmonic bus voltages determined using 

Eq. (7), the RMS and 𝑇𝐻𝐷𝑉levels can be evaluated. 

The total active power distribution losses𝑃𝑙𝑜𝑠𝑠(ℎ)can 

be evaluated by, 

 

𝑃𝑙𝑜𝑠𝑠(ℎ) = ∑ ∑𝑛𝑏𝑟
𝑝𝑞=1

𝐻
ℎ=1  

{𝑅𝑝𝑞(|𝑉𝑝(ℎ)| − |𝑉𝑝(ℎ)|) ||𝑌𝑝𝑞(ℎ)||}
2
    (12) 

2.3 Solar photovoltaic system  

The energy generation from a SPV 

system𝑃𝑆𝑃𝑉(𝑡)is dependent on climatic conditions of 

a location and its various design parameters. It can be 

estimated mathematically by,  

 

𝑃𝑆𝑃𝑉(𝑡) = 𝑆𝑃𝑉𝑟 × 𝜇𝑑 ×
𝐺(𝑡)

𝐺𝑟
[1 + 𝜏𝑡(𝑇𝑐 − 𝑇𝑟)]  (13) 

 

𝑇𝑐 = 𝑇𝑎 + 𝐺(𝑡) × (
𝑁𝑂𝐶𝑇−20

0.8
)     (14) 

 

where 𝜏𝑡 = −3.7×10-3 (1/oC) for poly-crystalline and 

mono-silicon panels. 𝑇𝑐 ,  𝑇𝑎, 𝑇𝑟  and NOCT are the 

cell, ambient, reference/STC and, normal operating 

cell temperatures in oC, respectively, 𝐺(𝑡) and 𝐺𝑟 are 

the actual and reference radiation at a location, 

respectively; 𝑆𝑃𝑉𝑟 and 𝜇𝑑 are the SPV rated capacity 

and degrading efficiency of the panels, respectively. 

In general, SPV system connects with grid 

directly via DC-AC converter which operates at unity 

power factor. Thus, the reactive power injection by 

SPV system is zero. Since, the power generation by 

SPV systems are highly intermittency in nature, this 

research assumes that they are first integrated to 

battery energy storage system (BESS) via DC-DC 

converter and later, BESS is integrated with grid via 

DC-AC inverter which can capable to operate at 

different power factors. Hence, Eq. (15) and Eq. (16) 

are given for real and reactive power injections by 

SPV system at a bus-k, respectively.   

 

�̅�𝑑,𝑘 = 𝑃𝑑,𝑘(0) − 𝑃𝑆𝑃𝑉(𝑡)                    (15) 
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�̅�𝑑,𝑘 = 𝑄𝑑,𝑘(0) − 𝑃𝑆𝑃𝑉(𝑡) × 𝑡𝑎𝑛(∅𝑘)             (16) 

 

where 𝑃𝑑,𝑘(0) and 𝑄𝑑,𝑘(0) are the real and reactive 

powers of bus-k before SPV integration, 

respectively; �̅�𝑑,𝑘 and �̅�𝑑,𝑘 are the real and reactive 

powers of bus-k after SPV integration, respectively; 

𝑝𝑓𝑘 = 𝑐𝑜𝑠(∅𝑘) is the inverter’s operating power 

factor at bus-k. 

By this modelling, SPV system with BESS can be 

treated as dispatchable generator in the load flow 

studies.   

3. Problem formulation 

In this paper, four major objective functions are 

considered for multi-objective function.       

The first objective is to minimize total real power 

distribution losses, given by,  

 

𝑜𝑓1 = 𝑚𝑖𝑛(𝑃𝑙𝑜𝑠𝑠(ℎ))             (17) 

 

where 𝑃𝑙𝑜𝑠𝑠(ℎ) is the real power loss at time-t and 

frequency-h, T and H are time duration and maximum 

harmonic order under consideration, respectively.  

The second objective is to minimize average 

voltage deviation index (AVDI), given by, 

 

𝑜𝑓2 = 𝑚𝑖𝑛 {
1

√𝑛𝑏

√∑ (
(|𝑉𝑘(ℎ)|−|𝑉𝑘(1)|)

|𝑉𝑘(1)|
)

2
𝑛𝑏
𝑘=1 }    (18) 

 

The third and fourth objectives are to maximize 

power quality by minimizing both𝑇𝐻𝐷𝑣 and 𝑇𝐻𝐷𝑖as 

given by [22],   

 

𝑜𝑓3 = 𝑚𝑖𝑛 {
𝑚𝑎𝑥

𝑘 ∈ 𝑛𝑏
(

1

|𝑉𝑘(1)|
) √∑ (|𝑉𝑘(ℎ)|)

2𝐻
ℎ=2 }  (19) 

 

𝑜𝑓4 = 𝑚𝑖𝑛 {
𝑚𝑎𝑥

𝑘 ∈ 𝑛𝑏
(

1

|𝐼𝑘(1)|
) √∑ (|𝐼𝑘(ℎ)|)

2𝐻
ℎ=2 }   (20) 

 

where|𝑉𝑘(ℎ)| and |𝑉𝑘(1)|are the voltage magnitudes 

of bus-k  at fundamental and frequency-h, 

respectively, |𝐼𝑘(ℎ)|  and |𝐼𝑘(1)| are the current 

magnitudes of bus-k at fundamental and frequency-h, 

respectively.  

The bus voltages, SPV capacity, filter capacity, 

vTHD and iTHD limits are considered, as given by, 

 

|𝑉𝑟𝑚𝑠(𝑘)
𝑚𝑖𝑛 | ≤ (√∑ (|𝑉𝑘(ℎ)|)

2𝐻
ℎ=2 ) ≤ |𝑉𝑟𝑚𝑠(𝑘)

𝑚𝑎𝑥 |  (21) 

 

𝑆𝑃𝑉𝑟
𝑚𝑖𝑛 ≤ 𝑆𝑃𝑉𝑟 ≤ 𝑆𝑃𝑉𝑟

𝑚𝑎𝑥𝑥              (22) 

 

𝑆𝑓𝑙
𝑚𝑖𝑛 ≤ 𝑆𝑓𝑙(𝑘) ≤ 𝑆𝑓𝑙

𝑚𝑎𝑥              (23) 

 

𝑇𝐻𝐷𝑣(𝑘) ≤ 𝑇𝐻𝐷𝑣
𝑚𝑎𝑥              (24) 

 

𝑇𝐻𝐷𝑖(𝑘) ≤ 𝑇𝐻𝐷𝑖
𝑚𝑎𝑥                (25) 

 

where min  and max denotes the minimum and 

maximum limits of the variable, respectively; 

𝑇𝐻𝐷𝑣(𝑘)  and 𝑇𝐻𝐷𝑖(𝑘) are the distortion in voltage, 

current at bus-k, respectively.   

4. Artificial rabbits optimization 

In order to survive, rabbits in nature use detour 

foraging and random concealment techniques, which 

they use during the exploration and exploitation 

phases of their life cycle [32]. The mathematical 

modelling of these tactics in artificial rabbits 

optimization (ARO) is provided in this section.        

4.1 Exploration phase 

When searching for food, rabbits don't focus on 

what is nearby and instead look in the distance. When 

they only consume grass from areas other than their 

home range, this is known as detour foraging. 

Consider a swarm of bunnies, each with its own 

territory filled with grass and its burrows, and visiting 

each other at random to eat. In areas with an 

abundance of food, rabbits search for it. Each search 

individual tends to update its position toward a 

random swarm member and contribute a disturbance 

when an ARO is looking for food. Model for rabbit 

foraging diversion proposed: 

 

�̅�𝑝𝑖
𝑘+1 = �̅�𝑝𝑖

𝑘 + 𝑘𝑟 × (𝐴𝑝𝑖
𝑘 − 𝐴𝑝𝑗

𝑘 ) + 𝑟𝑜𝑢𝑛𝑑 

(0.5 × (0.05 + 𝑟1)) × 𝑘𝑟1,    𝑖, 𝑗 = 1: 𝑛𝑝, 𝑗 ≠ 𝑖  (26) 

 

𝑘𝑟 = 𝑎𝐿 × 𝜌(𝑚)           (27) 

 

𝑎𝐿 = (𝑒 − 𝑒
(𝑘−

1

𝑘𝑚𝑎𝑥
)

2

) × 𝑠𝑖𝑛(2𝜋𝑟2)      (28) 

 

𝜌(𝑚) = {
1 𝑖𝑓 𝑚 == 𝑥(𝑦)

0 𝑒𝑙𝑠𝑒                   
, 𝑚 = 1: 𝑛𝑑& 

 𝑦 = 1,2, … , (𝑟3𝑛𝑑)        (29) 

 

𝑥 = 𝑟𝑎𝑛𝑑𝑝𝑒𝑟𝑚(𝑛𝑑)&𝑘𝑟1~𝑁(0,1)         (30) 

 

where�̅�𝑝𝑖
𝑘+1and 𝐴𝑝𝑖

𝑘 are the ith rabbit at iteration (k+1) 

and k, respectively; 𝑛𝑝 and 𝑛𝑑 are the number of 



Received:  September 22, 2022.     Revised: October 18, 2022.                                                                                        104 

International Journal of Intelligent Engineering and Systems, Vol.16, No.1, 2023           DOI: 10.22266/ijies2023.0228.09 

 

rabbits (population) and number of burrows 

(dimension), respectively; 𝑘𝑚𝑎𝑥 is the number of 

maximum iterations, 𝑟1, 𝑟2 and 𝑟3 are the random 

numbers with uniform distribution and 𝑘𝑟1 is a 

normal distribution random number; 𝑎𝐿  is running 

length of rabbits for dynamic behaviour of rabbits, 

which results for exploration phase with longer step 

or exploitation phase with shorter step size, 𝑘𝑟 is 

demonstrates the running characteristics of a rabbit, 

𝜌(𝑚) is a mapping vector that helps the algorithm 

randomly alter search individuals’ foraging 

behaviour. 

Based on their positions, Eq. (26) shows that 

searchers look for food in a random way. This lets a 

rabbit go to the homes of other rabbits. This tendency 

of rabbits to visit other nests instead of their own 

helps to explore and makes sure that the ARO 

algorithm can search all over the world. 

4.2 Exploitation phase 

Rabbits construct𝑛𝑝burrows around their nests as 

a means of child protection. In ARO, the rabbit 

always excavates tunnels around itself in all 

directions. Then, in order to reduce its chances of 

being eaten, it randomly chooses a hole to hide in. Eq. 

(31) provides the random concealment method,  

 

�̅�𝑝𝑖
𝑘+1 = 𝐴𝑝𝑖

𝑘 + 𝑘𝑟 × (𝑟4𝐵𝑖𝑗
𝑘 − 𝐴𝑝𝑗

𝑘 )   𝑖 = 1: 𝑛𝑝   (31) 

 

Here, 𝐵𝑝𝑖
𝑘 is the burrow chosen at random for 

shielding from its𝑛𝑑 burrows, and defined by,  

 

𝐵𝑝𝑖
𝑘 = 𝐴𝑝𝑖

𝑘 + 𝑁𝑟𝛾𝐴𝑝𝑖
𝑘 , 𝑖 = 1: 𝑛𝑝, 𝑚 = 1: 𝑛𝑑    (32) 

 

𝑁𝑟 = 𝑟4 × (
𝑘𝑚𝑎𝑥−𝑘+1

𝑘𝑚𝑎𝑥
)           (33) 

 

𝜌(𝑚) = {
1 𝑖𝑓 𝑚 == [𝑟5 × 𝑛𝑑]

0 𝑒𝑙𝑠𝑒                           
, 𝑚 = 1: 𝑛𝑑 (34) 

 

where𝑟4and𝑟5are the uniformly distributed random 

numbers between 0 and 1, respectively.  

At this stage, ARO changes the global position 

and solution at this point using the detour foraging or 

hiding behaviour defined by, 

 

𝐴𝑝𝑖
𝑘+1 = {

𝐴𝑝𝑖
𝑘 𝑓(𝐴𝑝𝑖

𝑘 ) ≤ 𝑓(�̅�𝑝𝑖
𝑘+1)

�̅�𝑝𝑖
𝑘+1 𝑓(𝐴𝑝𝑖

𝑘 ) > 𝑓(�̅�𝑝𝑖
𝑘+1)

      (35) 

 

This equation states that if the fitness of the ith 

rabbit's position is greater than the fitness of the 

current position, the rabbit will abandon the current 

position and remain at the candidate position 

generated by either Eq. (26) or Eq. (31). 

4.3 Switching between phases   

In ARO, rabbits forage at the start of iterations 

and hide at the end. Detours make foraging harder. 

This search method uses rabbit energy, which will 

shrink over time. Exploration to exploitation phases 

requires an energy factor model. The energy factor 

𝐸𝑓(𝑘)in ARO is defined by, 

 

𝐸𝑓(𝑘) = 4 × 𝑙𝑛 (
1

𝑟6
) × (1 −

1

𝑘𝑚𝑎𝑥
)         (36) 

 

If a rabbit has a high energy factor, it can forage 

in a new region. Low energy makes a rabbit less 

active and needing to hide. When 𝐸𝑓(𝑘) > 1, a rabbit 

will detour browse in other rabbits' territories and 

when 𝐸𝑓(𝑘) ≤ 1, a rabbit will randomly use its own 

burrows. 

5. Results and discussion 

The proposed ARO for the optimal allocation of 

SPV systems and PPFs is evaluated on IEEE 33-bus 

RDN. Simulations are performed for two different 

scenarios. In scenario 1, optimal allocation of SPV 

systems is presented. In scenario 2, optimal allocation 

of PPFs is presented. 

5.1 Optimal allocation of SPV systems 

It serves totally 3715 kW and 2300 kVAr, real 

and reactive power loads, respectively. The operating 

voltage of the network is 12.66 kV. By implementing 

the DHLF at fundamental harmonic order using 

ETAP software, the distribution losses are 

determined as 210.9976 Kwand 143.0325 kVAr, 

respectively. The network observed for lowest 

voltage magnitude and it is registered as 0.9038 p.u. 

at bus-18. The AVDI of the network is estimated as 

0.0637 p.u. The results of ETAP software are given 

in Fig. 1. This operating condition is considered as 

base case.  

In this first scenario, the network is assumed as 

harmonics-free network and the SPV systems are 

optimally integrated to minimize simultaneously real 

power loss and AVDI, i.e.,𝑚𝑖𝑛(𝑜𝑓1 + 𝑜𝑓2). Also, the 

inverter operating power factor of SPV systems’ is 

considered as unity and thus, the reactive power 

injection by SPV systems are zero.  
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Figure. 1 Network model in ETAP software 

 

Table 1. Optimal locations and sizes of SPV systems by different algorithms and comparison of their convergence 

characteristics over 50 independent runs 

Algorithm SPV Locations SPV Sizes (kW) 
Target Value 

Best Worst Median Std.  

COA 24 13 30 1075.306 811.245 1046.969 72.8152 85.7251 76.2533 2.8190 

BOA 14 6 31 646.910 1189.675 686.418 78.4740 113.9889 78.5063 6.3852 

FSA 30 3 14 1008.547 1711.595 746.421 77.9144 117.8797 77.9145 5.9028 

PFA 12 24 30 895.987 1074.630 1016.916 73.3646 110.2622 75.2847 9.6621 

ARO 30 13 24 1053.585 802.441 1089.637 72.8079 97.2630 73.3946 4.3376 

 

Table 2. Comparison of ARO with literature works 

Reference  SPV Locations SPV Sizes (kW) 
Network Performance 

Ploss (kW) Qloss (kVAr) AVDI 

Base  - - - - - - 210.9976 143.0325 0.0637 

MOIDSA [37] 30 13 25 968.7 800 1036.3 74.2564 51.6199 0.0229 

PSO [36] 14 24 29 691 986.1 1277.3 74.0977 51.8412 0.0213 

SKHA [34] 24 14 30 914.98 750.199 1142.405 73.2966 50.9849 0.0214 

MRFO [39] 13 24 30 788 1017 1035 72.9008 50.6596 0.0223 

PO [35] 13 24 30 800 1069 1064 72.7944 50.6541 0.0214 

HGWO [38] 13 24 30 802 1090 1054 72.7865 50.6519 0.0214 

ARO 30 13 24 1053.585 802.441 1089.637 72.7865 50.6519 0.0214 

 

 
Figure. 2 Convergence characteristics of different 

algorithms SPV systems allocation 

In order to find the optimal locations for SPV 

systems, all buses except sub-station bus are 

considered as search space. The maximum limit for 

SPV system capacities is considered as total network 

real power load i.e., 3715 kW. However, the 

summation of all SPV system capacities should not 

be more than total load demand. Considering number 

maximum iterations and population as 50 and 30 

respectively, ARO is implemented for finding the 

optimal locations and sizes of SPV systems. The 

optimal results provided by ARO and other 

algorithms are given in Table 1. In order to validate 

the computational efficiency of ARO, 50 independent 

runs are performed and the comparison of statistical 
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Figure. 3 Convergence characteristics of different 

algorithms for PPFs allocation 

 

parameters is also given in Table 1. Also, the 

computational efficiency of ARO is compared with 

other recent meta-heuristic approaches, namely the 

coyote optimization algorithm (COA), the butterfly 

optimization algorithm (BOA), the future search 

algorithm (FSA), and the pathfinder algorithm (PFA). 

As per the overall target value and median values, 

ARO is performed highly competitive with COA. 

With least worst and std. values, COA is stood in the 

2nd place in comparison. The convergence 

characteristics of all algorithms are given in Fig. 2.  

The optimal locations and SPV systems by ARO 

are as follows: locations bus 30, 13 and 24 and 

capacities of 1053.585 kW, 802.441 kW, and 

1089.637 kW, respectively. By having these SPV 

systems, the network performance is improved as 

follows:  the distribution losses are determined as 

72.7865 kW (𝑜𝑓1) and 50.6519 kVAr, respectively. 

The network observed for lowest voltage magnitude 

and it is registered as 0.9687 p.u. at bus-33. The 

AVDI (𝑜𝑓2) of the network is estimated as 0.0214 p.u. 

In comparison to the base case, both 𝑜𝑓1 and 𝑜𝑓2 

are reduced significantly and the network 

performance is said to be improved. The losses are 

reduced and voltage profile is improved significantly. 

On the other hand, the optimal results of ARO are 

compared with literature works and the comparison 

is given in Table 2. From the results, ARO results are 

superior in terms of network performance than 

MOIDSA [4], PSO [3], SKHA [1], MRFO [6], PO 

[2] and HGWO [5]. However, the results obtained by 

ARO are highly competitive with HGWO. From this 

comparison, ARO is said to be global optimization 

algorithm with high accuracy. 

However, as per NFL [31], the performance of 

ARO is still needed to compare with recent meta-

heuristics such as fixed step average and subtraction 

based optimizer (FS-ASBO) [40], stochastic komodo 

algorithm (SKA) [41], mixed leader based optimizer 

(MLBO) [42], three influential members based 

optimizer (TIMBO) [43], random selected leader 

based optimizer (RSLBO) [44], puzzle optimization 

algorithm (POA) [45], and ring toss game-based 

optimization algorithm (RTGBO) [46]. This can be 

treated as one of the future scopes of this work.       

5.2 Optimal allocation of PPFs systems 

In this second scenario, PPFs are optimally 

designed and integrated at each SPV location. BESS 

are treated as static loads for harmonic sources. In this 

scenario, the overall objective function is to minimize 

all proposed objectives simultaneously. The optimal 

locations obtained for SPV systems by ARO are 

buses 13, 24 and 30 and thus they are considered as 

harmonic current sources due to the presence of DC-

DC converters and DC-AC inverters with BESS.  

In first case, for creating harmonics in the network, 

three BESSs of (0.392+j0.08), (0.49+ j0.099) and 

(0.49+j0.099) in MVA are considered at buses 13, 24 

and 30, respectively. By modelling BESS as static 

loads in ETAP software, the harmonic load flow 

analysis is performed. Typical IEEE 6 Pulse 1 model 

is considered as current harmonic source for all static 

loads. For integrating single-tuned filters, the 

convergence characteristics are given in Fig. 3 and 

comparison of THDv for different cases are given in 

Fig. 4.  

The optimized PPF parameters at buses 24 and 30 

are as follows: kVAR = 99.499, C = 1.976 μF, X = 

64.6332, and Q-factor = 100. Similarly, at bus 13 are 

follows: kVAR = 79.599, C = 1.581 μF, X = 80.5415, 

and Q-factor = 100.  

6. Conclusion 

Radial distribution networks (RDNs) perform 

poorly due to radiality and non-linear loads. This 

research proposes Artificial rabbit optimization 

(ARO) for the best position and rating of solar PV 

systems (SPVs) and passive power filers (PPFs) to 

mitigate non-fundamental frequencies in RDN. 

Decoupled harmonic power flow (DHPF) is 

modelled on distribution network components. 

DHPF evaluates RDN and harmonics. A proposed 

approach was tested on the IEEE 33-bus RDN. 

ARO's computing efficiency is compared to ETAP 

12.6.5. Comparative analysis indicates ARO's global 

optimality advantage. SPVs and single-tuned PPFs 

improve RDN power quality and performance. Real 

power losses, reactive power losses, and VDI decline 

from 210.11 kW, 143.03 kVAr, and 0.0637 to 

72.7865 kW, 50.6519 kW, and 0.014. Also, at bus-13, 
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Figure. 4 Comparison of THDv for different cases 

 

 the fundamental frequency has the greatest THDv of 

5.21%. The IEEE 519 standards require less than 5%, 

while the proposed approach reduces it to 3.98 % by 

integrating PPFs. Form this, integrating SPVs and 

single-tuned PPFs in the proper positions and sizes 

improves RDN power quality and performance. 
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