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Abstract: The appropriate categorization of tumors from a vast quantity of Gene Expression Data (GED) is one of 

the most difficult processes in clinical diagnosis. To combat this challenge, a Weighted Consensus of Lion 

Optimized K-means Ensemble with Peak Density Clustering (WECLO K-means-PDC) algorithm has been 

developed that calculates the Symmetric Neighborhood (SN) correlation among Data Points (DPs) using the lion 

optimization. An SN Graph (SNG) was created to select the number of Cluster Centroids (ClustCenter) at every 

iteration of clustering. But, it was not suitable if the dataset was sparse, as well as the constant density threshold may 

influence the distinguishing DPs within the cluster boundaries. In this paper, an Adaptive Local resultant Force 

neighborhood PDC for WECR K-means (WECLO K-means-ALFPDC) algorithm is proposed, which considers 

additional measures to determine the symmetric neighborhood correlation among the DPs when the dataset is sparse. 

The major goal is to consider the distinct variances between the sizes and orientations of the DPs nearer to the 

ClustCenters and edges. To find such variations, two novel local measures called Centrality (CR) and Coordination 

(CO) are introduced instead of SNG to select the ClustCenters and obtain more precise clustering for classifying 

cancer from genomic data. Finally, the test results show that the WECLO K-means-ALFPDC algorithm attains 

88.7%, 89.1%, 88.42%, 88.38% and 89.04% accuracy on leukemia, lymphoma, prostate cancer, SRBCT and breast 

cancer databases, respectively compared to the WECLO K-means-PDC algorithm. 

Keywords: Gene expression data, WECLO K-means, Peak density clustering, Symmetric neighborhood correlation, 

Centrality, Coordination. 

 

 

1. Introduction 

Medical diagnostics, including the 

categorization of malignancy into various disease 

groups that may appear almost identical in classical 

pathology conducted molecularly, are increasingly 

using GED. In this regard, machine-assisted imagery 

might support linking histopathologists' 

observations. The effectiveness of GED 

investigation backs them up for malignancies 

classification [1]. Nonetheless, studying GED 

provides a considerable problem because of the 

large number of chromosomes in the microarray 

collection. 

The analysis gets progressively complicated as 

the volume of relevant data offered lowers. So, 

finding a small number of usable genes from a large 

number of genomic sequences to accurately describe 

the data becomes problematic. To solve this problem, 

gene selection procedures are often classified into 

one of two categories [2]. Before categorization, the 

chromosomal selection is performed using filtering 

approaches. In the wrapper approach, which is used 

to classify genes, the best genes in each 

chromosomal group are sought [3-5]. 

The t-test, Gini index and Wilcoxon rank-sum 

analyses are examples of filtering approaches or 

biomarker procedures and they are far more 

extensible than wrapper strategies. A few of the 

chosen genes can be deemed unnecessary because 

they don't contribute any further information to the 

subclass while using biomarker schemes. Different 

tumors and sub-tumors have a similar set of genes 

preferred over filtering procedures since they 

measure the amount of inter-correlation across 
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distinct genes [6-8]. However, when dealing with 

large-scale datasets, such approaches entail a 

substantial computational overhead. 

As a result, clustering algorithms have proven to 

be effective in investigating chromosomal processes, 

their regulation, parameters, and cell subdivisions. If 

2 genes have similar activity characteristics (co-

expressed chromosomes), then those genes can be 

clustered. This strategy results in a better 

understanding of the function of several 

chromosomes that were formerly identified [9-10]. 

To merge the findings of several grouping 

techniques, the Cluster Ensemble (CE) was recently 

evolved as a promising approach. It employs a 

consensus mechanism to ensure harmony across 

information chunks. Based on accuracy and 

consistency, it exploits all clusters in the 

composition [11]. Few researchers worked on Semi-

Supervised CE (SSCE) that integrates SSC and CE 

[12-14]. SSCE frequently employs a low level of 

control in the primary step of CE, i.e. composite 

formation, by running several rounds of SSC 

techniques [15]. Nonetheless, in a dynamic learning 

scenario with shifting constrained control, it is 

neither computationally effective nor flexible. 

To address this issue, a new algorithm known as 

the Weighted Consensus of Random K-means 

ensemble (WECR K-means) algorithm was 

designed [16], which considers the grouping 

intrinsic test rates and satisfaction level of a coupled 

rule. It was capable of dealing with non-spherical 

clusters. Conversely, if the database was very huge, 

the complexity of this algorithm becomes 

impractical. The condition applied to more attributes 

was a time-consuming procedure. As a result, while 

categorizing the massive quantity of genomic data, 

the grouping should be improved for Less 

Informative Composite Clusters (LICCs). So, the 

WECLO K-means-PDC algorithm was introduced 

[17] to remove the LICCs for the classification of 

GED. In this algorithm, a lion optimization 

algorithm was adopted rather than random subspace 

and sampling to achieve efficient clustering based 

on the fitness function, i.e. cluster validation metrics. 

Then, the SNG was created by the dynamic PDC 

coupled with K-means grouping for all DPs. The 

SNG was used to select the ClustCenters and update 

every group in all iterations of the K-means 

grouping without determining the cutoff value 

among DPs. According to this SNG, the outliers 

were identified as the DPs smaller than 2 adjacent. 

Also, each DP was assigned to an appropriate group 

using the breadth-first search on SNG and the 

LICCs were efficiently eliminated. On the other 

hand, the symmetric neighborhood correlation, i.e. 

SNG was formed only based on the distance and 

density. These two metrics were not satisfactory to 

form clusters while the dataset was sparse. Also, 

differentiating DPs within the boundary regions of 

clusters was difficult because of using a fixed 

threshold value of density. 

So, this article develops a novel algorithm called 

the WECLO K-means-ALFPDC algorithm, which 

introduces additional metrics to handle the sparse 

dataset and categorizes the DPs as inner, inner edge, 

edge, or noisy points for enhancing cluster 

formation. The major goal is to consider the distinct 

variances between the sizes and orientations of the 

DPs nearer to the ClustCenters and edges. To find 

such variations, two novel local measures called CR 

and CO are introduced. The 𝐶𝑅 ∈  [−1,1]  is a 

parameter. If 𝐶𝑅 > 0, then the DP is marked as an 

inner point and if 𝐶𝑅 < 0, then the DP is an edge 

point. It is simpler to differentiate DPs in the 

ClustCenters and cluster boundaries. The 𝐶𝑂  is a 

measure of how well a DP fits in with its 

surroundings. If 𝐶𝑂 > 0 , then the DPs have an 

approximately similar orientation to their 

surroundings and are marked as an edge point. 

Based on these measures, the ClustCenters are 

chosen at all iterations and more precise clusters are 

formed. Thus, the GED clustering is efficiently 

improved for enhancing their classification. 

The following are the remaining portions of this 

article: Section 2 investigates the study on tumor 

classification from GED. Section 3 describes the 

WECLO K-means-ALFPDC algorithm and Section 

4 demonstrates its performance. Section 5 

summarizes the study and discusses future work. 

2. Literature survey 

Gclust, a parallel technique was developed [18] 

to group entire or partial gene data. In this model, a 

new multithreading mechanism and a rapid gene 

evaluation technique were adopted by the Sparse 

Suffix Arrays (SSAs) to speed up the grouping. Also, 

gene similarity across any pairs was determined 

according to their Maximal Exact Matches (MEMs). 

But, its scalability was less because the parallelism 

was not optimized. 

A Distributed Density-based Hesitant Fuzzy 

Clustering (DDHFC) was introduced [19] using 

Apache spark to group the GED. In this method, a 

new weighted correlation metric was applied as a 

measurement for gene similarity analysis. Also, 

multi-valued inputs under HFC rules were integrated 

to increase the robustness to noise bias impacts. But, 

it needs to use a more informative GED to improve 

decision-making. 
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A new hybrid fuzzy means clustering and the 

majority vote was designed [20] to estimate the 

missing values in the GMD. But, the parameters 

were not optimized, which impacts the pre-

processing stage. Also, it needs to consider the local 

and global strategy of missing values compared to a 

unified method. 

Integrated grouping using non-Negative Matrix 

Factorization (nNMF) was developed [21] to group 

many varieties of interrelated databases that were 

tested on similar malignant instances. First, patient 

data were linked together using consensus matrices 

created by the nNMF on all varieties of data. A 

complete network pattern was generated by merging 

various networks and maximizing the correlation 

robustness. The resultant network data was also 

subjected to spectral grouping to estimate the 

groupings. But, the cost was high while using 

multiple categories of high-dimensional data. 

A PCA and K-means clustering was suggested 

[22] to choose the most appropriate features and 

categorize microarray data of L1000 landmark genes. 

But, it needs to analyze the correlation between 

genetic and medicinal variables by considering the 

coding and non-coding genetic variants.  

An Enhanced ANFIS (EANFIS) scheme was 

developed [23] to categorize the tumor genes. 

Initially, the input data was pre-processed by the 

Ensemble Kalman Filter (EnKF). Then, the genes 

having similar properties were grouped by an 

Adaptive Density-Based Spatial Clustering with 

Noise (ADBSCAN) method. But, it has high 

computation cost while increasing the number of 

samples. 

An efficient technique was designed [24] to 

choose the most discriminatory sequences from 

high-dimensional GMD for malignant categorization. 

Initially, the affinity matrices were created for 

samples and genes, which define the correlation data 

between samples and genes, correspondingly. After 

that, the dual latent interpretation training was 

modeled using nNMF of the similarity matrices. The 

low-dimensional latent interpretation matrix of 

sample space was regarded as a pseudo-label matrix 

to assist data projection. The sample projection 

matrix was combined with the gene space latent 

interpretation matrix. Further, an alternated method 

was adopted to solve the final optimization issue. 

But, it has a high computational complexity while 

increasing the amount of data. 

2.1 Research gap 

Most of the existing algorithms find a 

relationship between the data with the neighborhood 

only based on distance and density. The cluster 

formation of these two metrics is not sufficient when 

the dataset is sparse. So, new metrics are required to 

find high-quality clusters. 

3. Proposed methodology 

In this section, the WECLO K-means-ALFPDC 

algorithm is explained briefly. Table 1 lists the 

notations used in this study. 

Let the data matrix of size 𝑎 × 𝑏 , 𝐹 =
{𝑓1, … , 𝑓𝑎  }  be the group of 𝑎  instances with 𝑓𝑥 

defining a 𝑏-dimensional vector. The CE exists for a 

consensus partition 𝛿 according to the collection of r 

partitions (𝛿1, … , 𝛿𝑟)  of the corpus 𝐹 . The Co-

association Matrix-based (CaM) consensus method 

is developed using this WECLO K-means and is 

used to fuse different groupings. This is according to 

the supposition that the effectiveness of the base 

partitions in the combination varies from single base 

partition to the next. Also, remember that entities 

with similar clusters still have different levels of 

efficacy. To reach the final consensus, they should 

have a variety of contributions. 

 
Table 1. Lists of notations 

Notations Description 

𝑎 × 𝑏 Data matrix 

𝐹 GEM Corpus 

𝛿 Consensus partition 

𝑟 Number of partitions 

𝑎 Number of instances 

𝛿′  Ground truth groupings 

𝑘  Number of adjacent 

𝑝1 and 𝑝2  Two point masses 

�⃗�𝑝1𝑝2
 Force between 𝑝1 and 𝑝2 

𝐷𝑝1𝑝2
 Distance between 𝑝1 and 𝑝2 

𝐺 Gravitational constant 

�̂�𝑝1𝑝2
 

Orientation of the line, which links 𝑝1 and 

𝑝2 

𝑥 Data 

�̂�𝑥𝑦  
Orientation information between 𝑥 and its 

adjacent, as well as, the group of 𝑝𝑦 

�⃗�𝑥  Local resultant force 

𝑝𝑥   Mass of a DP 𝑓𝑥 

𝐶𝑅𝑥   CR of the DP 𝑓𝑥 

�⃗⃗⃗�𝑦𝑥  
Displacement vector from 𝑦𝑡ℎ adjacent of 𝑓𝑥 

to it 

𝐶𝑂𝑥  CO of 𝑓𝑥 

�⃗�𝑦  Force related to the adjacent of 𝑓𝑥 

𝐶𝑅𝑡ℎ𝑟𝑒𝑠  Centrality threshold 

𝑀  Initial momentum 

𝜃  Threshold size of 𝑓𝑥 

𝜓  Force size threshold 

𝑄  Queue 
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This WECLO K-means predicts the proximity 

between the base and ground truth groupings 𝛿′ via 

the direct and indirect evaluations of every cluster in 

base partitions. Then, based on proximity, distinct 

weights are given to each cluster. In this case, 

dynamic PDC and lion optimization K-means 

ensemble based on the 2 measures called CO and 

CR is used to efficiently select the ClustCenters and 

ideal base partitions. 

Fig. 1 depicts the model of the WECLO K-

means-ALFPDC algorithm for GED clustering. It 

encompasses the following tasks: (1) CE using K-

means with lion optimization algorithm; (2) weight 

allocation for clusters using an adaptive PDC, which 

supports the selection of ClustCenters according to 

the CO and CR, as well as, performs modification 

on the real CaM; and (3) CaM partition based on the 

Cluster-based Similarity Partitioning (CSPA) to get 

the target consensus clustering. Initially, a lion 

optimization is applied to the feature vectors before 

every K-means clustering and then K-means is 

conducted on the new database [27]. A relatively 

maximum range of the parameter 𝑘 and the number 

of clusters are chosen to get the neighborhood 

allocation of data so that many groups are formed in 

every clustering. 

Thus, this algorithm includes 2 primary 

objectives: (i) to perform diverse base partitions, 

which provide multiple viewpoints on the real data, 

produce a very robust consensus and increase the 

possibility of finding the ground truth outcome; (ii) 

to do clustering in low-dimensional feature space for 

simplifying the dimensionality reduction. 

 

 
Figure. 1 Overview of WECLO K-means with ALFPDC 

algorithm 

3.1 Dynamic configuration of cluster centroids 

based on local force of gravity in K-means 

clustering 

A dynamic PDC is utilized during all K-means 

clustering iterations to choose the ClustCenters, 

preventing loss from biased input as the 

ClustCenters and ambiguity from automatically 

choosing the ClustCenters. The PDC approach is 

used with K-means grouping at all iterations to 

automatically choose the ClustCenters. The 

ClustCenters are determined by their distance from 

the next bigger density element and their substantial 

neighborhood density. However, in actual use, it 

includes complications and subjectivity. Observe 

that a cluster contains a large number of density 

peak components. Choosing the right number 

ClustCenters is difficult if the distribution of these 

items is uniform. Based on the input and 

neighborhood density distributions, a dynamic 

choice of ClustCenters is used to address this issue. 

The statistical distribution is first measured by 

computing the kurtosis of the gap from the nearby 

bigger density factor of all data. The data element 

with a neighborhood density greater than the mean 

of the neighborhood densities of all the other data is 

then selected to serve as the ClustCenter. Thus, the 

conditions to select the ClustCenters are: (a) to 

measure the 𝐶𝑂  and 𝐶𝑅  for every instance for 

determining the neighborhood density and proximity 

of every instance and (c) group from the highest 

density and proximity according to the 𝐶𝑂 and 𝐶𝑅. 

The local force of gravity in GEM clustering 

defines the association between a DP and its 

proximate adjacent. According to the concept of 

gravity, the attraction force between 2 point masses 

(𝑝1 and 𝑝2) is calculated by 

 

�⃗�𝑝1𝑝2
= 𝐺

𝑝1𝑝2

𝐷𝑝1𝑝2
2 �̂�𝑝1𝑝2

                    (1) 

 

In Eq. (1), �⃗�𝑝1𝑝2
 is the force between 𝑝1 and 𝑝2, 

𝐷𝑝1𝑝2
 is the distance between 𝑝1  and 𝑝2 , 𝐺  defines 

the gravitational constant and the unit vector �̂�𝑝1𝑝2
 

stands for the orientation of the line, which links 𝑝1 

and 𝑝2. 

3.1.1. Local resultant force in K-means clustering 

In a vicinity area, consider that the distances 

between the present data and its varied adjacent do 

not differ noticeably so Eq. (1) is simplified by Eq. 

(2). 

 

�⃗�𝑝1𝑝2
= 𝐺𝑝1𝑝2�̂�𝑝1𝑝2

                    (2) 
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The resulting force on data 𝑥 because of its 𝑘-

NN is determined by 

 

�⃗�𝑥 = ∑ �⃗�𝑥𝑦
𝑘
𝑦=1 = 𝐺𝑝𝑥 ∑ 𝑝𝑦

𝑘
𝑦=1 �̂�𝑥𝑦          (3) 

 

In Eq. (3), the unit vector �̂�𝑥𝑦  summarizes the 

orientation information between 𝑥 and its adjacent, 

as well as, the group of 𝑝𝑦 values contributing the 

part of weighting variables in composing the forces 

in the vicinity. According to this perspective, data 

having greater masses have higher influence over 

their adjacent, whereas data with lesser masses have 

a greater sensitivity to the influence from their 

adjacent. So, a novel description of the local 

resultant force is considered that substitutes 

Newton's idea of gravitation in the clustering: 

 

�⃗�𝑥 =
1

𝑝𝑥
∑ �̂�𝑥𝑦

𝑘
𝑦=1                         (4) 

 

In Eq. (4), the mass 𝑝𝑥 of a DP 𝑓𝑥 is described by 

 

𝑝𝑥 = 1
∑ 𝐷𝑥𝑦

𝑘
𝑦=1

⁄                         (5) 

 

Based on Eq. (5), the masses of these DPs will 

grow higher since they will be closer to their 

adjacent in larger density regions. But, the masses of 

the DPs get lesser in lower-density regions. So, the 

mass of a DP is termed an alternated method to 

determine the neighborhood density in clustering. 

This is also employed in the local resultant force in 

Eq. (4): in greater density regions, a DP is enclosed 

by adjacent DPs in a highly regular manner that 

provides a limited size for ∑ �̂�𝑥𝑦
𝑘
𝑦=1  and a great 𝑝𝑥. 

In lower-density regions, a DP is normally enclosed 

by adjacent DPs in a regular manner that provides 

an imbalanced resulting force. The size of ∑ �̂�𝑥𝑦
𝑘
𝑦=1  

in low-density regions is normally greater and 𝑝𝑥 is 

lesser. Based on Eq. (4), the resulting force �⃗�𝑥 can 

contain a high size and a high dissimilar orientation 

toward the ClustCenter. 

3.1.2. Correlation across local resultant forces 

The fundamental concept of this presented 

grouping algorithm is that there is a major variance 

between the local resultant forces of the DPs nearer 

to the ClustCenters and those at the margin of the 

cluster. The local resultant force defines the 

correlation between all DPs and their adjacent.  

To consider the advantage of the data contained 

in the local resultant force, two local clustering 

measures according to the local force of gravity 

called the 𝐶𝑅 and the 𝐶𝑂 are introduced. The 𝐶𝑅 of 

the DP 𝑓𝑥 is described by 

 

𝐶𝑅𝑥 = ∑
cos(�⃗�𝑦,�⃗⃗⃗�𝑦𝑥)

𝑘
𝑘
𝑦=1                     (6) 

 

In Eq. (6), �⃗⃗⃗�𝑦𝑥is the displacement vector from 

𝑦𝑡ℎ adjacent of  𝑓𝑥 to it and k denotes the number of 

adjacents. The DP has a 𝐶𝑅 value 𝐶𝑅𝑥 > 0 defines 

that most of the local resultant forces of its adjacent 

are spotted in Eqs. (7) and (8) 
 

−1 ≤ 𝑐𝑜𝑠(�⃗�𝑦, �⃗⃗⃗�𝑦𝑥) ≤ 1                 (7) 

 

−𝑘 ≤ ∑ 𝑐𝑜𝑠(�⃗�𝑦, �⃗⃗⃗�𝑦𝑥)𝑘
𝑦=1 ≤ 𝑘            (8) 

 

This algorithm possesses the 𝐶𝑅 property in Eq. 

(9) 

 

−1 ≤ 𝐶𝑅𝑥 ≤ 1                         (9) 

 

Similarly, the 𝐶𝑂 of 𝑓𝑥 is described by 

 

𝐶𝑂𝑥 = ∑ (�⃗�𝑥 ∙ �⃗�𝑦)𝑘
𝑦=1                  (10) 

 

In Eq. (10), �⃗�𝑥 is the local resultant force of 𝑓𝑥 

and �⃗�𝑦  is the force related to its adjacent. The 

𝐶𝑂 defines the coherence between a certain DP and 

its adjacent. The DP having 𝐶𝑂𝑥 > 0 defines that its 

local resultant force has an approximately similar 

orientation to its adjacent and it is situated in the 

margin. 

Thus, the variances between interior points and 

margin points for the mass, the size of the local 

resultant force, the 𝐶𝑅 and the 𝐶𝑂 are observed as: 

• DPs with huge densities, limited sizes of 

local resultant forces, high 𝐶𝑅  and less 𝐶𝑂  values 

are recognized as interior points. 

• Margin points contain the small masses, 

large sizes of the local resultant forces, small 𝐶𝑅 

and high 𝐶𝑂 values. 

By considering the variances between interior 

and margin DPs, more and LICCs are discovered. If 

the groupings have fewer interior DPs and more 

margin DPs, then those clusters are termed as LICCs, 

which are discarded. 

In contrast, if the clusters have more interior 

DPs and fewer margin DPs, then those clusters are 

termed more informative composite clusters, which 

are considered to create the CaM. Moreover, the 

CSPA is used to divide the resulting consensus 

clustering. 
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Algorithm for WECLO K-means-ALFPDC 

Input: GEM databases (𝐹) , the number of 

adjacent (𝑘) , the centrality threshold 𝐶𝑅𝑡ℎ𝑟𝑒𝑠  and 

the initial momentum (𝑀) 

Begin 

𝒇𝒐𝒓(𝑎𝑙𝑙 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 𝑓𝑥)  

Determine its mass 𝑝𝑥 using Eq. (5); 

Determine its local resultant force �⃗�𝑥 using Eq. (4); 

Determine 𝐶𝑅𝑥 and 𝐶𝑂𝑥 using Eq. (6) to Eq. (10), 

respectively; 

𝒊𝒇(𝐶𝑅𝑥 < 𝐶𝑅𝑡ℎ𝑟𝑒𝑠 && 𝐶𝑂𝑥 ≥ 0)  

Identify 𝑓𝑥 as a margin point; 

𝒆𝒍𝒔𝒆𝒊𝒇(𝐶𝑅𝑥 ≥ 0)  

Identify 𝑓𝑥 as an interior point; 

𝒆𝒏𝒅 𝒊𝒇  

𝒆𝒏𝒅 𝒇𝒐𝒓  

𝒘𝒉𝒊𝒍𝒆(𝑛𝑜𝑡 𝑒𝑣𝑒𝑟𝑦 𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑝𝑜𝑖𝑛𝑡 𝑖𝑠 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑒𝑑)  

Discover such an unclustered interior point 𝑓𝑥 and 

include it in the new cluster 𝐶𝑓𝑥
; 

Set the threshold size of 𝑓𝑥  as 𝜃 = 𝑀 ∙ 𝜓  ( 𝜓 

defines a force size threshold); 

Set a queue 𝑄 = 𝑓𝑥; 

𝒘𝒉𝒊𝒍𝒆(𝑄 ≠ ∅)  

Arrange every 𝑘 − 1 adjacent of 𝑓𝑥 based on their 

distances and get a sorted set 𝛱; 

𝒇𝒐𝒓 (𝑎𝑙𝑙 𝑝𝑜𝑖𝑛𝑡𝑠 𝑓𝜋𝑦
) in 𝛱; 

𝒊𝒇(𝜗 ≤ 𝜃)  

𝒊𝒇 (𝑓𝜋𝑦
 ℎ𝑎𝑠 𝑏𝑒𝑒𝑛 𝑙𝑎𝑏𝑒𝑙𝑒𝑑 𝑎𝑠 𝑎 𝑚𝑎𝑟𝑔𝑖𝑛 𝑝𝑜𝑖𝑛𝑡)  

Modify 𝜗 as 𝜗 = 𝜗 + �⃗�𝑓𝜋𝑦
; 

Include 𝑓𝜋𝑦
 into 𝐶𝑓𝑥

; 

𝒆𝒍𝒔𝒆𝒊𝒇 (
𝑓𝜋𝑦

 𝑖𝑠 𝑙𝑎𝑏𝑒𝑙𝑒𝑑 𝑎𝑠 𝑎𝑛 𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑝𝑜𝑖𝑛𝑡

𝑎𝑛𝑑 𝑓𝜋𝑦
𝑖𝑠 𝑛𝑜𝑡 𝑏𝑒𝑒𝑛 𝑔𝑟𝑜𝑢𝑝𝑒𝑑

)  

Include 𝑓𝜋𝑦
 into 𝐶𝑓𝑥

; 

Dequeue 𝑓𝑥 from 𝑄 and Enqueue 𝑓𝜋𝑦
 into 𝑄; 

𝒆𝒍𝒔𝒆𝒊𝒇 (
𝑓𝜋𝑦

 𝑖𝑠 𝑛𝑜𝑡 𝑙𝑎𝑏𝑒𝑙𝑒𝑑 𝑓𝜋𝑦
 𝑖𝑠 𝑛𝑜𝑡 

𝑔𝑟𝑜𝑢𝑝𝑒𝑑
)  

Include 𝑓𝜋𝑦
 into 𝐶𝑓𝑥

; 

𝒆𝒏𝒅 𝒊𝒇  

𝒆𝒏𝒅 𝒊𝒇  

𝒆𝒏𝒅 𝒇𝒐𝒓  

𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆  

𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆  

Cluster all data instances in the given database; 

Find the less informative and more informative 

clusters; 

Discard the less informative clusters and use more 

informative clusters to create CaM; 

Apply CSPA to divide the final consensus 

grouping; 

End 

Thus, the abovementioned algorithm describes 

the presented clustering, wherein data elements are 

coupled as groups (clusters). Particularly, the 

interior points can couple to their adjacent and 

include such adjacent into their groups, when the 

edge points are considered as outliers. According to 

this, less informative and more informative clusters 

are created. 

4. Results and discussion 

In this part, the effectiveness of the WECLO K-

means-ALFPDC algorithm is assessed by executing 

it in MATLAB 2017b with 5 distinct kinds of 

tumor-associated genomic corpora. As well, a 

comparative analysis is performed with the classical 

algorithms implemented by using the considered 

corpora, including WECR K-means [16], WECR K-

means-PDC [17], DDHFC [19], nNMF [21] and 

EANFIS [23] in terms of various metrics. The 

details about 5 various corpora are given below. 

1. Prostate Cancer: Records on 50 prostate 

tumors and 52 typical cases make up the 

102 total DPs. There are 10509 genomes in 

all records [25]. 

2. SRBCT Data: There are 2308 genomes in 

each of the 83 chunks of information. It is a 

case of Burkett's Lymphoma (BL), the 

Ewing tumor family (EWS), Neuro 

Blastoma (NB), and Rhabdomyo Sarcoma 

(RMS) (RMS). For training, there are 63 

samples, and 20 samples are chosen for 

testing. There are 8, 23, 12, and 20 DPs in 

the BL, EWS, NB, and RMS training sets. 

For the BL, EWS, NB, and RMS tests, the 

data set includes 3, 6, 6, 6 and 5 samples 

[26]. 

3. Leukemia: It holds 7129 genes in use over 

72 models. It comprises 72 data, 25 data on 

Acute Myeloid Leukemia (AML) and 47 

data on Acute Lymphoblastic Leukemia 

(ALL). A basis of the GEM values is 

obtained from 63 bone marrow data and 9 

peripheral blood data [27]. 

4. Lymphoma: 24 Generic B-like and 23 files 

activated DLCLs are involved in this 

collection. 42 files of Diffuse Large B-cell 

lymphoma (DLBCL), 9 files of Follicular 

Lymphoma (FL), and 11 files of Chronic 

Lymphocytic Leukemia (CLL) are all 

included. The total number of DNA/RNAs 

in this dataset is 4026. In addition, the KNN 

assigns a few rates that are lacking [28]. 

5. Breast cancer: This is the Wisconsin breast 

cancer prognostic dataset from the UCI 
 



Received: September 15, 2022.     Revised: October 12, 2022.                                                                                         653 

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022           DOI: 10.22266/ijies2022.1231.57 

 

Table 1. Gene database characteristics 

Databases #DNA/RNA #Sample #Tag 

Leukemia 7129 72 2 

Lymphoma 4026 62 3 

Prostate cancer 10509 102 2 

SRBCT 2308 83 4 

Breast cancer - 569 2 

 
machine learning repository [29]. B and M 

samples are included in this section. It has 

569 samples and 32 features, including 30 

true input features. There are 357 cases of B 

and 212 examples of M in the 569 Details 

about these databases may be found in 

Table 1. 

4.1 Accuracy 

It is a measure of how many properly grouped 

DPs there are out of all the ones in the database. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1

𝑛
∑ 𝜗(𝑟𝑖, 𝑚𝑎𝑝(𝑆𝑖))𝑛

𝑖=1           (11) 

 

In Eq. (11), 𝑟𝑖 is the original group tag and 𝑆𝑖 is 

the index value acquired by grouping. If 𝑢1 = 𝑢2 , 

then 𝜗(𝑢1, 𝑢2) = 1; or else, 𝜗(𝑢1, 𝑢2) = 0. Higher 

grouping efficacy is defined by a wider range of 

accuracy.  

Fig. 2 demonstrates the accuracy achieved by 

various ensemble clustering algorithms implemented 

on 5 distinct databases. It addresses that the 

WECLO K-means-ALFPDC ensemble 

accomplishes a greater accuracy than all existing 

algorithms to group the vast quantity of GED. That 

is, in the case of grouping the SRBCT database, the 

 

 
Figure. 2 Accuracy vs. databases 

 

 
Figure. 3 Precision vs. databases 

 

accuracy of WECLO K-means-ALFPDC is 26.98% 

superior to the DDHFC, 20.57% superior to the 

nNMF, 13.75% superior to the EANFIS, 9.67% 

superior to the WECR K-means and 4.9% superior 

to the WECLO K-means-PDC algorithms. 

4.2 Precision 

It is the ratio of accurately grouped data items at 

True Positive (TP) and False Positive (FP) rates. 

Fig. 3 exhibits the precision achieved by the 

different ensemble grouping algorithms applied to 

the 5 distinct databases. It notices that the WECLO 

K-means-ALFPDC ensemble realizes a higher 

precision than the existing algorithms for clustering 

the large GED corpora. That is, in the case of 

grouping the leukemia database, the precision of 

WECLO K-means-ALFPDC is 21.52% increased 

than the DDHFC, 16.01% increased than the nNMF, 

10.03% increased than the EANFIS, 5.22% 

increased than the WECR K-means and 2.29% 

increased than the WECLO K-means-PDC 

algorithms. 

4.3 Recall 

It is the rate of accurately grouped data items at 

TP and False Negative (FN) rates. 

Fig. 4 portrays the recall achieved by various 

ensemble clustering algorithms tested on 5 distinct 

databases. It addresses that the WECLO K-means- 

ALFPDC ensemble algorithm realizes greater recall 

than the existing algorithms for clustering the large 

GED corpora. That is, in the case of clustering the 

breast cancer database, the recall of WECLO K-

means-ALFPDC is 23.4% superior to the DDHFC,  
 

60

65

70

75

80

85

90

L
eu

k
em

ia

L
y
m

p
h

o
m

a

P
ro

st
a
te

 c
a

n
ce

r

S
R

B
C

T

B
re

a
st

 c
a

n
ce

r

A
cc

u
ra

cy
 (

%
)

Dataset Name

DDHFC

nNMF

EANFIS

WECR K-

means

WECLO K-

means-PDC

WECLO K-

means-

ALFPDC

65

70

75

80

85

90

L
eu

k
em

ia

L
y
m

p
h

o
m

a

P
ro

st
a
te

 c
a

n
ce

r

S
R

B
C

T

B
re

a
st

 c
a

n
ce

r

P
re

ci
si

o
n

 (
%

)

Dataset Name

DDHFC

nNMF

EANFIS

WECR K-

means

WECLO K-

means-PDC

WECLO K-

means-

ALFPDC

http://csse.szu.edu.cn/staff/zhuzx/Lymphoma.zip


Received: September 15, 2022.     Revised: October 12, 2022.                                                                                         654 

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022           DOI: 10.22266/ijies2022.1231.57 

 

 
Figure. 4 Recall vs. databases 

 

19.85% superior to the nNMF, 15.6% superior to the 

EANFIS, 9.74% superior to the WECR K-means 

and 4.96% superior to the WECLO K-means-PDC 

algorithms. 

4.4 Root mean squared error (RMSE) 

It measures the efficacy of the clustering 

algorithm as: 

 

𝑅𝑀𝑆𝐸 = √
∑ ∑ (𝑢𝑎−�̅�𝑖𝑗)

2𝑛𝑖𝑗
𝑎=1

𝑖=1,…𝑘
𝑗=1,…,𝑝

∑ (𝑛𝑖𝑗−1)𝑖=1,…,𝑘
𝑗=1,…,𝑝

            (12) 

 

In Eq. (12), 𝑘 is the amount of groups, 𝑝 is the 

amount of independent attributes in the corpus, �̅�𝑖𝑗  

 

Figure.5 RMSE vs. databases 

is the average of elements in attribute 𝑗 and group 𝑖 
and 𝑛𝑖𝑗  is the amount of elements that are in 

attribute 𝑝 and group 𝑘. 

Fig. 5 depicts the RMSE achieved by various 

ensemble grouping algorithms tested on 5 distinct 

databases. It observes that the WECLO K-means-

ALFPDC ensemble algorithm accomplishes a 

minimum RMSE compared to the existing grouping 

algorithms for the large-scale GED corpora. That is, 

in the case of clustering the prostate cancer database, 

the RMSE of WECLO K-means-ALFPDC is 

23.55% less than the DDHFC, 22.61% less than the 

nNMF, 21.48% less than the EANFIS, 20% 

decreased than the WECR K-means and 6.08% 

decreased than the WECLO K-means-PDC 

algorithms. 

4.5 Time cost 

It determines the time needed for obtaining a 

final consensus using the different clustering 

algorithms. 

Fig. 6 portrays the average time cost (sec) of the 

different ensemble grouping algorithms tested on 5 

distinct databases. It observes that the WECLO K-

means-ALFPDC ensemble algorithm accomplishes 

a minimum time cost compared to the existing 

grouping algorithms for the large-scale GED 

corpora. That is, in the case of clustering the 

SRBCT database, the average time cost of WECLO 

K-means-ALFPDC is 82.14% less than the DDHFC, 

74.11% less than the nNMF, 67.61% less than the 

EANFIS, 38.22% decreased than the WECR K-

means and 17.95% decreased than the WECLO K-

means-PDC algorithms. 

 

Figure.6 Average time cost vs. databases 
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5. Conclusion 

In this study, the WECLO K-means-ALFPDC 

algorithm was designed for enhancing the efficiency 

of clustering the large-scale GED. It was used to 

adjust the clusters by considering the distinct 

variances between the sizes and orientations of the 

DPs nearer to the ClustCenters and edges in every 

iteration. The lion optimization scheme was applied 

that treats inter-and intra-group gaps as fitness 

values for efficient clustering. Also, 𝐶𝑅  and 

𝐶𝑂 measures were determined for all DPs, which 

support choosing the ClustCenters and removing the 

LICCs with more margin points and fewer interior 

points. Thus, the more precise composite groupings 

were obtained for GED classification. At last, the 

experimental findings proved that the WECLO K-

means-ALFPDC algorithm on leukemia, lymphoma, 

prostate cancer, SRBCT and breast cancer corpora 

has 88.7%, 89.1%, 88.42%, 88.38% and 89.04% 

accuracy, correspondingly than the DDHFC, nNMF, 

EANFIS, WECR K-means and WECLO K-means-

PDC algorithms. 
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