
Received: September 12, 2022. Revised: September 28, 2022. 599

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.53

MMMRR: a Modified Median Mean Round Robin Algorithm for Task

Scheduling

Afaf Abdelkader1 Nermeen Ghazy1* Mervat S. Zaki1 Kamal A. ElDahshan2

1Department of Mathematics, Faculty of science (Girls), Al-Azhar University, Cairo, Egypt

2Department of Mathematics, Faculty of science, Al-Azhar University, Cairo, Egypt

* Corresponding author’s Email: nermeena207@gmail.com

Abstract: Real-time task scheduling is a critical part of systems since processes must finish their work at a certain

time. Large data streams require high energy efficiency and rapid response times. Real-time system performance

must be improved through task scheduling on resources. Numerous researchers have recently and rapidly proposed

enormous efforts with enhancements in numerous task scheduling methods. Round Robin algorithm has been

commonly utilized in task scheduling. In this paper, a Modified Median Mean Round Robin (MMMRR) algorithm is

proposed to significantly enhance the performance of the Round Robin algorithm. The proposed algorithm finds an

ideal dynamic time quantum └(median+ mean)/2)┘ and generated for each round depending on the remaining burst

time of the processes. The system performance has been enhanced in terms of waiting time, turnaround time and

context switching. The experimental results show that the proposed algorithm outperforms ADRR, HYRR, EDRR,

MARR and MMRR algorithms.

Keywords: Task scheduling, CPU scheduling, Dynamic time quantum, Round robin, MMRR, MMMRR.

1. Introduction

Scheduling is a mechanism for allocating

resources to particular tasks in order to carry them

out successfully. The main goals of scheduling are

to:

1) maximize resource utilization while

minimizing makespan, 2) maximize resource

utilization, 3) maximize server utilization for tasks

and 4) execute activities with higher priority while

reducing overall average waiting time and

completion time [1]. Moreover, improving

performance and increasing system throughput are

the primary benefits of effective scheduling. Task

scheduling is the process of allocating incoming

tasks in a specific way to make the most use of the

available resources. In systems without scheduling,

waiting times for jobs may be higher, and some

short-term tasks may fail as a result of the delay.

At the time of scheduling, the scheduler must

take into account a number of restrictions, including

the task's nature, size, execution time, resource

availability, task queue, and resource load. Task

scheduling is one of the major problems in real-time

systems. The effective use of resources may result

from proper task scheduling [2].

The usage of scheduling algorithms is extremely

important. When there are multiple runnable

processes, scheduling is an important function that

determines which process to start. First Come First

Served (FCFS), Shortest Job First (SJF), Round

Robin (RR), and Priority Based Scheduling are a

few examples of scheduling algorithms[1]. With the

exception of Round Robin scheduling, the most of

these algorithms are thought to be ineffective in

real-time systems due to their poor performance[1].

Round Robin (RR) is a commonly used

scheduling algorithm. It gives every process the

same priority [2]. It uses a small period of time

known as a time quantum (TQ) to execute the

process[3]. A process is pre-empted and put back on

the ready queue if its CPU burst exceeds one time

quantum. If a new process enters, it is added to the

Received: September 12, 2022. Revised: September 28, 2022. 600

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.53

circular queue's tail. RR approach is among the most

widely used algorithms for time sharing in multiuser

operating systems. [4, 5]. The size of the time

interval affects how well the RR algorithm works

(Each process is given a certain amount of time). If

the chosen TQ is very large based on the RR

technique, it will result in the starving problem (a

process using a lot of CPU will be held for a long

time) [6]. On the other hand, a short time interval

will result in numerous context switches [7]. RR

enhances response times and effectively utilises

shared resources. Static time quantum is used, which

results in longer waiting times, unwanted overhead

and increased turnaround times for processes with

different CPU bursts. To enhance the performance

of RR algorithm, it automatically adapts to tasks in

the queue by using a dynamic time quantum with

RR. Although certain characteristics are not used by

the algorithms currently in use for choosing a

dynamic time quantum, these parameters have an

impact on the scheduling process and the system

performances [8].

The main contribution of this paper is to enhance

the RR algorithm by selecting intelligent TQ for

candidate processes in real time without affecting its

fairness. It is suggested to use a new algorithm to

dynamically change the time quantum at different

ready queue states. The proposed algorithm

outperforms the standard RR algorithm in terms of a

variety of performance parameters, including

average waiting time (AWT), turnaround time

(ATT) and number of context switches according to

a mathematical model developed to prove this. The

experimental results show that the suggested

modified RR algorithm performs better than the

standard RR algorithm. By using a progressive time

quantum that is repeatedly adjusted in accordance

with the remaining burst time of active processes,

the suggested technique resolves the issue. The

processes are ordered in ascending order and

implemented to each process to reduce turnaround

time, waiting time and number of context switches.

The disadvantages of the presented algorithms, such

as Amended Dynamic Round Robin (ADRR) [9],

Efficient Dynamic Round Robin (EDRR) [10],

Hybrid Round Robin (HYRR)[11], Median Average

Round Robin (MARR)[12] and Median Mean

Round Robin (MMRR)[13] are that they provide a

higher AWT and ATT. The contribution of this

proposed algorithm is to: 1- Decreasing AWT. 2-

Decreasing ATT. 3- Decreasing the number of

context switches compared to RR, ADRR, EDRR,

HYRR, MARR, and MMRR algorithms. The

remainder of the paper is arranged as follows. In

Section 2, the drawbacks of the RR scheduling

algorithm are reviewed. Section 3 explains some

related work. In Section 4, the proposed algorithm is

presented in detail. Section 5 discusses the

experimental results. In Section 6, result analysis is

explained. The paper is concluded and described

future work in Section 7.

2. Drawbacks of the standard RR

scheduling algorithm

RR algorithm has many drawbacks, which are as

the following:

2.1 Low throughput

Throughput is the number of processes

completed per unit of time. RR has a large number

of context switches as a result of its TQ, which

lowers the overall system performance (throughput)

[14].

2.2 High average turnaround time

Turnaround time is the total time it takes for the

process to execute, from the time of submission

until the time of completion [15] and calculated as

in Eq. (1):

TATi = Tcti – Tati (1)

The average turnaround time (ATT) is calculated

as in Eq. (2):

ATT =
∑ 𝑇𝐴𝑇𝑖

𝑛
𝑖=0

𝑛
 (2)

Where TATi is the processes’ turnaround time,

Tcti is the completion time of the processes; Tati is the

processes’ arrival time, n is the processes’ number

and ATT is the processes’ average turnaround time.

The RR algorithm is distinguished by a high

turnaround time.

2.3 High response time

Response time is the time between the

submission of a process and the time at which it

receives its first response (allocated to the CPU)

[15]. RR algorithm is considered that has large

response time.

2.4 High average waiting time

Waiting time is the total time the process spent

in ready queue[16]. It is calculated as in Eq. (3).

WTi = Ttati– Tbti (3)

Received: September 12, 2022. Revised: September 28, 2022. 601

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.53

The average waiting time (AWT) is calculated

as in Eq. (4):

AWT =
∑ 𝑊𝑇𝑖

𝑛
𝑖=0

𝑛
 (4)

Where WTi is the processes’ waiting time, Tbti is

the processes’ burst time and AWT is the processes’

average waiting time. In RR, the process waits its

turn to own the processor by waiting in the ready

queue. Processes are forced to leave the processor

and return to the waiting state because time quantum

is present. The biggest drawback of this operation is

the lengthy of the resulting average waiting time.

2.5 Context switching

The process must exit the CPU after the time

slice is complete. The scheduler allots the CPU to

the following process in the ready queue after

storing the context of the current process in a stack

or register[17]. Context switching, which wastes

time and increases scheduler overhead [18].

Each scheduling algorithm has a unique set of

properties that help determine which scheduling

algorithm will be more useful for the current issue

[19]. Main objectives of a good scheduling

algorithm are:

• Maximize CPU utilization.

• Maximize throughput.

• Minimize turnaround time.

• Minimize response time.

• Minimize waiting time.

• Minimize the number of context switching.

3. Related work

Several CPU scheduling algorithms have been

created for allocation processes. By combining the

most advantages features of each algorithm to

produce the best algorithm possible for the situation.

In [20], the author proposed the VORR (Variant

On Round Robin) technique, one of the upgrades

and additions to the RR algorithm. By establishing

an effective TQ based on the median of burst times,

it efficiently exploits the CPU. When compared to

the standard RR algorithm and some of its

improvements in terms of AWT, ATT and number

of context switches, the experiments show good

results. Additionally, it improves some RR

algorithms' response times. In [21], The authors

proposed the average max Round Robin algorithm.

In this algorithm, processes are added to the ready

queue (RQ) and scheduled for execution from there,

indicating that they have already been added. Each

process in the ready queue has a zero arrival time.

The processes are arranged in ascending order, and

for each process, the time quantum is equal to

(average + maximum burst time)/2 is determined.

As the first iteration of a process is finished, certain

processes are executed, and then they are removed

from the ready queue. The same procedure will be

repeated until the ready queue is empty. The average

wait time and turnaround time are then computed. In

[22], a new median Round Robin algorithm has

been presented (MMRRA). The authors used the

square root of the process's median and highest burst

time to calculate a dynamic TQ. An essential factor

is included of this algorithm. The CPU will finish

the processes if any process completes its first cycle

of time quantum processing and its remaining burst

time is larger than 20% of its total burst time;

otherwise, the process will run for a second cycle of

processing. In [23], a modified Round robin is

suggested. It works on the concept of the dynamic

time quantum. The dynamic time quantum is

calculated considering priority and shortness as well

as burst times of the processes. Using the shortness

component, a new time quantum is determined for

each round and each process. As a result, the

algorithm includes components from the priority

scheduling strategy and the Shortest Job First

algorithm. The AWT and ATT are decreased. In

[18], an Optimized Round Robin (ORR) algorithm

is suggested for operating systems’ time-sharing.

The ORR and RR are experimentally compared. The

experimental findings indicate that ORR

outperforms at reducing AWT and ATAT. In [24],

Priority-based Round Robin (PBRR) CPU

scheduling technique is an improved Round Robin

scheduler. It could be improved somewhat to be

nearly RR. It considers priorities depending on task

management. Each process is given a priority index,

after which the processes in the ready queue are

sorted by priority index. This approach chooses the

first process in the ready queue, and the CPU is

allotted for a time quantum interval. The allocated

processes are moved to the back of the ready queue

after the time period during which they were

performed.

Once the processes have completed execution,

they are removed from the ready queue and the

AWT, ATT and response time are then computed. In

[16], a multi-programmed operating system’s RR

algorithm is suggested. By dividing the ready queue

into three smaller queues with the highest, medium,

and lowest priorities, the authors improved the value

of time quantum. A threshold value determines how

much TQ is assigned to each of these sub-queues.

For every sub-queue, this approach uses a distinct

time quantum. Every process in every sub-queue

Received: September 12, 2022. Revised: September 28, 2022. 602

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.53

should have completed its execution. The results of

this approach in terms of AWT and ATT have been

decreased.

In [9], an amended dynamic Round Robin

Scheduling algorithm (ADRR) is proposed. The

authors used dynamic TQ. The lowest CPU burst

time value is used to set the TQ. The authors

determine a TQ threshold of 20 and then check a

condition; set TQ to 20 if TQ is below the threshold

(20). To prevent the value of TQ from getting too

low and leading to a rise in the number of context

switches, this condition is checked. TQ is adjusted

after each cycle. Based on the CPU burst time, all

tasks are ordered in the ready queue in ascending

order. They are assigned to the CPU for a TQ. If a

process's remaining CPU burst time less than half of

the TQ, it will be pre-empted. Processes that were

pre-empted are reinserted into the ready queue in

ascending order. The same principle applies until all

of the processes are finished. In [10], an Efficient

Dynamic Round Robin algorithm (EDRR) is

proposed by choosing a dynamic time quantum that

would let a process to complete if the remaining

execution time was less than or equal to 20% of the

total execution time. The maximum burst time is

founded from the available processes in the ready

queue. The TQ is then calculated as a percentage of

this time which is a 80 % of the maximal burst time.

This algorithm improves the system's performance

by reducing AWT and ATT. In [11], the authors

implemented a novel scheduling technique to reduce

the AWT, ATT, response time and number of

context switches. It is called a hybrid Round Robin

scheduling mechanism (HYRR). Dynamically

calculating the time quantum using the mean and

minimum of the burst time. The mean and lowest

burst times are used in phase 1 to determine the

enhanced time quantum (ETQ). Following the

calculation, a high priority is granted to the process

with the shortest burst time that is not already

running in the CPU and is allocated 1 Enhanced

quantum time in the CPU. Phase 1 is carried out up

till a single CPU allocation is given to each process.

In Phase 2 the processes are sorted in the ready

queue in increasing order based on their remaining

burst time. Following the arrangement, the first

process in the ready queue is given 1 quantum time

in the CPU. The current process is reallocated in the

CPU if the burst time of the currently running

process in the CPU is less than or equal to

1ETQ. The second phase is run until the ready

queue is empty. In [12], The authors used a dynamic

TQ to create a new RR algorithm. They used the

median and average burst times for each process

(MARR). The AWT and ATT are improved by this

algorithm.

In [13], the author proposed a Median Mean

Round Robin (MMRR) approach that improves the

functionality of the RR algorithm. The proposed

approach determines an ideal dynamic time quantum

for each round based on the remaining burst time of

the processes, which is generated as (median+

mean)/2. The experimental data show that the

performance has improved in terms of waiting time,

turnaround time and context switching.

All of the enhancements of the RR CPU

scheduling algorithms that are discussed above, they

have certain drawbacks. The processes that enter the

system may have varied burst times, which mean

that their CPU execution times may also vary. Time

quantum can either be high or low according to the

RR algorithm. So this paper proposes a novel

algorithm which has a dynamic optimal TQ and

taking the remaining burst time of the processes into

account to solve this problem by enhancing the

performance of the system by: maximizing CPU

utilization, minimizing waiting time and turnaround

time and reducing number of context switches[25].

4. Proposed algorithm (Modified Median

Mean Round Robin Algorithm

(MMMRR))

Because of the drawbacks of the RR approach,

many improvements have developed but still have

some issues. Therefore, in order to maximize the act

of a scheduling algorithm, the proposed approach

has focused mostly on determining an effective time

quantum. The proposed method first sets the ready

queue in an increasing order based on the burst time

of the processes, and then establishes the time

quantum based on the mean and the median of

execution times. If every process enters the ready

queue simultaneously, they are ordered according to

their burst time in increasing order. Then the TQ is

calculated dynamically by using the median and the

mean as in Eq. (5).

𝑇𝑄 = └(
(𝑚𝑒𝑑𝑖𝑎𝑛+𝑚𝑒𝑎𝑛)

2
)┘ (5)

Where TQ is the time quantum of processes,

median is median of all processes’ burst time as in

Eqs. (6) and (7) and mean is the summation of all

processes divided by the number of all processes as

in Eq. (8).

𝑀𝑒𝑑(𝐵𝑇𝑖)= 𝐵𝑇𝑖 [
𝑛+1

2
] if n is odd (6)

Received: September 12, 2022. Revised: September 28, 2022. 603

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.53

𝑀𝑒𝑑(𝐵𝑇𝑖) = [𝐵𝑇𝑖(
𝑛

2
)] + [𝐵𝑇𝑖 (

𝑛

2
) + 1] /2

if n is even (7)

𝑚𝑒𝑎𝑛 =
∑ 𝐵𝑇𝑖𝑛

𝑖=1

𝑛
 (8)

Where 𝐵𝑇𝑖 is the process’ burst time, n is the

processes’ number. At beginning, the CPU is

assigned to the first process in the ready queue. The

burst time of the currently active process is then

checked for the remaining CPU. If the CPU burst

time is less than the TQ, the CPU is once more

reallocated to the active process for the remaining

time. Otherwise, the process will be terminated to

the tail of the ready queue. After each process is

allocated, if the ready queue is empty and all

processes are completed its execution, then the

average of waiting time and turnaround time is

calculated. Hence, the proposed algorithm enhances

the performance of the system. The flowchart of the

proposed algorithm is described as follow in Fig. 1.

5. Experimental results

In order to demonstrate the efficiency of our

technique and to ensure a fair comparison between

the proposed algorithm and the RR, ADRR[9],

EDRR[10], HYRR[11], MARR[12] and MMRR[13]

algorithms, we select cases that are used in the

majority of these algorithms and have the same

number of processes, burst time, and arrival time.

There are the datasets which consist of 15 processes

that have been considered.

Modified Median Mean Round Robin algorithm:

1. Assign processes into the ready queue.

2. all the processes are sorted in an increasing order

 depending on their burst time

3. TQ ←└ (median + mean) / 2┘

4. While (ready queue! =NULL)

5. If (remaining burst time < TQ)

6. The CPU is allocated again to the current

 running process for the remaining burst

 time.

 Else

7. Add the remaining of current process to

 the end of the ready queue.

8. Go to step 4

9. End while

10. Calculate AWT and ATT.

Figure. 1 Flowchart of the MMMRR algorithm

5.1 Case 1: Processes are in random

The processes are arriving at zero time with

random burst time as shown in Table 1. Table 2

presents a comparative study among the RR,
ADRR[9], EDRR[10], HYRR[11], MARR[12] and

MMRR[13] with respect to TQ, AWT and ATT for

case 1.

The comparison of AWT and ATT for the

current algorithms is shown in Fig. 2 below.

Received: September 12, 2022. Revised: September 28, 2022. 604

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.53

Table 1. Processes are coming in random, increasing and

decreasing order

Case 1:

random order

Case 2:

increasing

order

Case 3:

decreasing

order

Process Burst

time

Process Burst

time

Process Burst

time

P1 42 P1 35 P1 250

P2 68 P2 40 P2 186

P3 135 P3 55 P3 174

P4 101 P4 60 P4 163

P5 170 P5 75 P5 146

P6 125 P6 80 P6 140

P7 79 P7 94 P7 132

P8 159 P8 101 P8 114

P9 163 P9 112 P9 100

P10 65 P10 121 P10 97

P11 106 P11 125 P11 88

P12 146 P12 134 P12 37

P13 82 P13 140 P13 20

P14 28 P14 180 P14 18

P15 162 P15 197 P15 12

Table 2. Comparative study of RR, ADRR, HYRR,

EDRR, MARR, MMRR and proposed algorithm (case 1)

Algorithm TQ
AWT

(ms)
ATT (ms)

RR 35 1091 1199.73

ADRR 28,20,20,

20,20,20,

20,20

1012.33 1121.06

HYRR 69 820.8 929.53

EDRR 136,170 645.8 754.53

MARR 108,48,7,

7

738.2 846.93

MMRR 107,57 589.2 697.93

proposed 107 567.8 676.53

Figure. 2 Comparative graph for the AWT and ATT (case

1)

5.2 Case 2: Process are coming in increasing

order

The processes are arriving at zero time with

increasing burst time as shown in Table 1. A

comparison of the RR, ADRR[9], EDRR[10],

HYRR[11], MARR[12] and MMRR[13] algorithms

with respect to TQ, AWT and ATT for case 2 is

shown in Table 3 below.

The comparison of AWT and ATT for the

current algorithms is shown in Fig. 3 below.

It is noticed that from the results, EDRR

algorithm gave the same results of the AWT and

ATT as the proposed algorithm in the case of the

processes coming in increasing order because they

are already arranged.

5.3 Case 3: Process are coming in decreasing

order

The processes are arriving at zero time with

decreasing burst time as shown in Table 1.

A comparison of the RR, ADRR[9], EDRR[10],

HYRR[11], MARR[12] and MMRR[13] algorithms

with respect to TQ, AWT and ATT for case 3 is

shown in Table 4 below.

Table 3. Comparative study of RR, ADRR, HYRR,

EDRR, MARR, MMRR and proposed algorithm (case 2)

Algorithm

TQ

AWT

(ms)

ATT

 (ms)

RR 35 920.86 1024.13

ADRR 35,20,20,

20,20,20,

45

872.53 975.8

HYRR 70 783.2 886.46

EDRR 157,197 526.53 629.8

MARR 103,37,49

,8

673.2 776.4

MMRR 102,86 533.33 636.6

proposed 102 526.53 629.8

Figure. 3 Comparative graph for the AWT and ATT (case

2)

0

200

400

600

800

1000

1200

1400

Ti
m

e
 (

m
s)

Algorithms

AWT

ATT

0

200

400

600

800

1000

1200

Ti
m

e
(m

s)

Algorithms

AWT

ATT

Received: September 12, 2022. Revised: September 28, 2022. 605

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.53

Table 4. Comparative study of RR, ADRR, HYRR,

EDRR, MARR, MMRR and proposed algorithm (case 3)

Algorithm TQ
AWT

(ms)

ATT

(ms)

RR 35 1100.13 1211.93

ADRR 20,20,48,26

,20,20,20,2

0,56

805.93 917.73

HYRR 62 727.26 839.06

EDRR 200,250 927.06 1038.86

MARR 113,46,28,6

3

729.26 841.06

MMRR 112,82,56 522.33 634.13

proposed 112,138 499.93 611.73

Figure.4 Comparative graph for the AWT and ATT (case

3)

The comparison of AWT and ATT for the

current algorithms is shown in Fig. 4.

5 Result analysis

Proposed algorithm (MMMRR) is compared

with Amended Dynamic Round Robin (ADRR) [9],

Hybrid Round Robin (HYRR) [11], An efficient

Dynamic Round Robin (EDRR) [10], Median

average Round Robin (MARR) [12] and Median

Mean Round Robin (MMRR) [13]. These

algorithms are all compared with the RR algorithm

in order to evaluate their performance. Proposed

algorithm (MMMRR), RR, and other algorithms are

implemented in C ++ and compared using the same

random data set. The comparison of these

algorithms is based on AWT and ATT. Because of

the number of processes in the ready queue

determines AWT and ATT, an increase in time

results to a rise in cost. The experimental data used

two different data sets from (10-100) and from (500-

5000) processes. Comparing algorithms based on

their average waiting times is shown in Fig. 5 and

Fig 7. For (10 to 100) and (500 to 5000) processes,

in the ready queue, the stacked line graph is plotted.

The number of processes in the ready queue is

plotted against the x-axis, and the average waiting

time for the processes is provided in milliseconds

and plotted by the y-axis. The proposed algorithm

Figure. 5 Comparative graph for the average waiting time

Figure. 6 Comparative graph for the average turnaround

time

Figure. 7 Comparative graph for the average waiting time

0
200
400
600
800

1000
1200
1400

Ti
m

e
(m

s)

Algorithms

AWT

ATT

0

1000

2000

3000

4000

5000

6000

7000

8000

10 20 30 40 50 60 70 80 90 100

Ti
m

e
(m

s)

Number of tasks

RR ADRR HYRR

EDRR MARR MMRR

0

1000

2000

3000

4000

5000

6000

7000

8000

10 20 30 40 50 60 70 80 90 100

Ti
m

e
(m

s)

Number of tasks

RR ADRR HYRR

EDRR MARR MMRR

MMMRR

0

50000

100000

150000

200000

250000

300000

350000

5
0

0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

3
5

0
0

4
0

0
0

4
5

0
0

5
0

0
0

Ti
m

e
(m

s)

Number of tasks

RR ADRR HYRR

EDRR MARR MMRR

MMMRR

Received: September 12, 2022. Revised: September 28, 2022. 606

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.53

Figure. 8 Comparative graph for the average turnaround

time

(MMMRR) gives better results, followed by MMRR

[13], EDRR [10], MARR [12], HYRR [11] and

ADRR [9]. A substantial improvement is given by

these algorithms when compared to RR algorithm.

With an increase in processes, the performance of

the algorithms is enhanced. The MMRR, EDRR,

MARR, HYRR gives significant results compared to

RR while ADRR gives reasonable improvement

results compared to RR. Whereas the proposed

algorithm shows more significant improvement

results than other algorithms. In terms of a lower

number of processes, the proposed algorithm act

similarly, however with an increase in processes, the

performance of MMMRR showed an upward trend

in average waiting time compared to other

algorithms. In comparison to suggested algorithms,

the AWT for RR is consistently increasing, as seen

in the line chart.

The behaviour of algorithms in terms of average

turnaround time exhibits a similar pattern as shown

in Fig 6 and Fig 8. For (10 to 100) and (500 to 5000)

processes, in the ready queue, the stacked line graph

is plotted. The number of processes in the ready

queue is plotted by the x-axis, and the average

turnaround time for the processes is provided in

milliseconds and plotted by the y-axis. The proposed

algorithm (MMMRR) gives better results, followed

by MMRR[13], EDRR [10], MARR [12], HYRR

[11] and ADRR [9]. A substantial improvement is

given by these algorithms when compared to RR

algorithm. As the number of processes in the ready

queue rises the performance of the algorithms is

enhanced. The MMRR, EDRR, MARR, HYRR

gives significant results compared to RR while

ADRR gives reasonable improvement results

compared to RR. In terms of a lower number of

processes, the proposed algorithm act similarly,

however with an increase in processes, the

performance of MMMRR showed an upward trend

in average turnaround time compared to other

algorithms. In comparison to suggested algorithms,

the average turnaround time for RR is consistently

increasing, as seen in the line chart. It is obvious

that the proposed algorithm is efficient and effective

for CPU process scheduling.

6 Conclusion and future work

Many researchers have been developed the RR

algorithm for task scheduling to appropriate to any

system. The TQ is the most crucial problem with the

RR method. As opposed to the static TQ that is used

in the case of the traditional RR method, the

MMMRR operates on the concept of dynamic TQ.

Each process in a static TQ system is given a certain

time slice during which the CPU will carry out the

assigned task. Due to its dynamic design, the time-

quantum for each cycle of CPU allocation for each

task in the ready queue is varying. The main

contribution of this research is the suggestion of a

Modified Median Mean Round Robin algorithm

(MMMRR), which improves the performance of the

RR method. It established a dynamic time quantum

that is computed as (median + mean)/2 while also

taking into account the remaining burst time of the

active process.

If the current process's remaining burst time is

less than the time quantum, it will allocate again. If

not, it gets moved to the end of the ready queue.

Based on the burst time for these processes, each

cycle's TQ will be determined. Utilizing a variable

TQ based on burst time allowed for the reduction of

AWT, ATT and number of context switches. The

experimental results showed that the proposed

algorithm improves system performance by

lowering the AWT, ATT and number of context

switches. The proposed MMMRR algorithm

successfully optimised the AWT, ATT and number

of context switches when compared to the RR,

ADRR, HYRR, EDRR, MARR and MMRR

algorithms. In the future work, we will improve the

RR algorithm by developing an algorithm of divided

sub queues with different calculations values of time

quantum.

Conflicts of Interest

The authors declare no conflict of interest.

Author Contributions

Conceptualization of this paper, Kamal, Mervat,

Afaf and Nermeen; methodology, Kamal, Afaf, and

0

100000

200000

300000

400000
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

3
5

0
0

4
0

0
0

4
5

0
0

5
0

0
0

Ti
m

e
(m

s)

Number of tasks

RR ADRR HYRR

EDRR MARR MMRR

MMMRR

Received: September 12, 2022. Revised: September 28, 2022. 607

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.53

Nermeen; the software, Afaf and Nermeen; writing

(original draft), Nermeen; review and editing,

Kamal, Afaf and Nermeen.

Acknowledgments

The authors thank the editors and the

anonymous reviewers for their valuable suggestions.

References

[1] K. Eldahshan, A. Abdelkader, and N. Ghazy,

“Round Robin based Scheduling Algorithms, A

Comparative Study”, Automatic Control and

System Engineering Journal, Vol. 17, No. 2, pp.

29-42, 2017.

[2] S. Mostafa and H. Amano, “Dynamic round

robin CPU scheduling algorithm based on K-

means clustering technique”, Applied Sciences

(Switzerland), Vol. 10, No. 15, 5134, 2020.

[3] B. Richardson and W. Istiono, “Comparison

Analysis of Round Robin Algorithm with

Highest Response Ratio Next Algorithm for

Job Scheduling Problems”, International

Journal of Open Information Technologies, Vol.

10, No. 2, pp. 21-26, 2022.

[4] P. Banerjee, B. Kumar, and P. Banerjee,

“Mixed Round Robin Scheduling for Real

Time Systems”, International Journal of

Computer Trends and Technology, Vol. 49, No.

3, pp. 189-195, 2017.

[5] Hayatunnufus, M. Riasetiawan, and A. Ashari,

“Performance Analysis of FIFO and Round

Robin Scheduling Process Algorithm in IoT

Operating System for Collecting Landslide

Data”, In: Proc. of International Conference on

Data Science, Artificial Intelligence, and

Business Analytics (DATABIA), pp. 63-68,

2020.

[6] T. Balharith and F. Alhaidari, “Round Robin

Scheduling Algorithm in CPU and Cloud

Computing: A review”, In: Proc. of 2nd

International Conference on Computer

Applications & Information Security

(ICCAIS).IEEE, pp. 1-7, 2019.

[7] S. Mostafa and H. Amano, “An adjustable

variant of round robin algorithm based on

clustering technique”, Computers, Materials

and Continua, Vol. 66, No. 3, pp. 3253-3270,

2020.

[8] A. Fiad, Z. Maaza, and H. Bendoukha,

“Improved version of round robin scheduling

algorithm based on analytic model”,

International Journal of Networked and

Distributed Computing, Vol. 8, No. 4, pp. 195-

202, 2020.

[9] U. Shafi, M. Shah, A. Wahid, K. Abbasi, Q.

Javaid, M. Asghar, and M. Haider, “A novel

amended dynamic round robin scheduling

algorithm for timeshared systems”, The

International Arab Journal of Information

Technology, Vol. 17, No. 1, pp. 90-98, 2020.

[10] P. Sharma and Y. Sharma, “An Efficient

Customized Round Robin Algorithm for CPU

Scheduling”, In: Proc. of the Second

International Conference on Information

Management and Machine Intelligence.

Springer, pp. 623-629, 2021.

[11] K. Faizan, A. Marikal, and K. Anil, “A Hybrid

Round Robin Scheduling Mechanism for

Process Management”, International Journal of

Computer Applications, Vol. 177, No. 36, pp.

14-19, 2020.

[12] Sakshi, C. Sharma, S. Sharma, S. Kautish, S.

Alsallami, E. Khalil, A. Mohamed, “A new

median-average round Robin scheduling

algorithm: An optimal approach for reducing

turnaround and waiting time”, Alexandria

Engineering Journal, Vol. 61, No. 12, pp.

10527-10538, 2022.

[13] N. Ghazy, A. Abdelkader, M. Zaki, and K.

ElDahshan, “A New Round Robin Algorithm

for Task Scheduling in Real-time System”,

International Journal of Intelligent Engineering

and Systems, Vol. 15, No. 5, pp. 691-704, 2022,

doi: 10.22266/ijies2022.1031.59.

[14] P. Sharma, S. Kumar, M. Gaur, and V. Jain, “A

novel intelligent round robin CPU scheduling

algorithm”, International Journal of

Information Technology (Singapore), Vol. 14,

No. 3, pp. 1475-1482, 2021.

[15] K. ElDahshan, A. Abdelkader, and N. Ghazy,

“Achieving Stability in the Round Robin

Algorithm”, International Journal of Computer

Applications, Vol. 172, No. 6, pp. 15-20, 2017.

[16] K. Arif, M. Morad, M. Mohammed, and M.

Subhi, “An Efficient Threshold Round-Robin

Scheme for CPU Scheduling (ETRR)”, Journal

of Engineering Science and Technology, Vol.

15, No. 6, pp. 4048-4060, 2020.

[17] N. Harki, A. Ahmed, and L. Haji, “CPU

Scheduling Techniques: A Review on Novel

Approaches Strategy and Performance

Assessment”, Journal of Applied Science and

Technology Trends, Vol. 1, No. 2, pp. 48-55,

2020.

[18] A. Gupta, P. Mathur, C. T. Gonzalez, M. Garg,

and D. Goyal, “ORR: Optimized Round Robin

CPU Scheduling Algorithm”, In: Proc. of the

International Conference on Data Science,

Machine Learning and Artificial Intelligence,

Received: September 12, 2022. Revised: September 28, 2022. 608

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.53

pp. 296-304, 2021.

[19] T. Paul, R. Hossain, and M. Samsuddoha,

“Improved Round Robin Scheduling Algorithm

with Progressive Time Quantum”, International

Journal of Computer Applications, Vol. 178,

No. 49, pp. 30-36, 2019.

[20] A. Abdelhafiz, “VORR: A NEW ROUND

ROBIN SCHEDULING ALGORITHM”, Al-

Azhar Bulletin of Science : Section B, Vol. 32,

No. 1-B, pp. 27-44, 2021.

[21] P. Banerjee, P. Banerjee, and S. Dhal,

“Comparative Performance Analysis of

Average Max Round Robin Scheduling

Algorithm (AMRR) using Dynamic Time

Quantum with Round Robin Scheduling

Algorithm using static Time Quantum”,

International Journal of Innovative Technology

and Exploring Engineering (IJITEE), No. 1, pp.

2278-3075, 2012.

[22] H. Mora, S. Abdullahi, and S. Junaidu,

“Modified Median Round Robin Algorithm

(MMRRA)”, In: Proc. of 13th International

Conference on Electronics, Computer and

Computation (ICECCO). IEEE, pp. 1-7, 2017.

[23] R. Kumar, “Modified Round Robin Algorithm

based on Priority and Shortness components”,

Vol. 9, No. 5, pp. 72-76, 2021.

[24] S. Zouaoui, L. Boussaid, and A. Mtibaa,

“Priority based round robin (PBRR) CPU

scheduling algorithm”, International Journal of

Electrical & Computer Engineering, Vol. 9, No.

1, pp. 2088-8708, 2019.

[25] S. Ali, R. Alshahrani, A. Hadadi, T. Alghamdi,

F. Almuhsin, and E. E. Sharawy, “A Review on

the CPU Scheduling Algorithms : Comparative

Study”, International Journal of Computer

Science & Network Security, Vol. 21, No. 1, pp.

19-26, 2021.

