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Abstract: Great deluge algorithm is one common metaheuristic solution methodologies to high school timetabling 

problem. Previous studies focused on great deluge algorithm with linear or non-linear decay rate and selection hyper-

heuristics with other local search metaheuristics for solving high school timetabling problem. The decay rate in great 

deluge algorithm is apparently based on cost and number of iterations i.e., the amount of cost reduction per iteration. 

However, feasibility of solution and its objective function is still separated from the decay rate especially for difficult 

and complex high school timetabling problem, which limit the search to converge to a better solution. A modified 

great deluge algorithm for solving high school timetabling problem with various neighbourhood structures is 

presented in this paper. Two decay rates are proposed in the original great deluge algorithm to minimize the hard and 

soft constraints separately. It allows for escaping from local optima based on certain threshold of the two decay rates 

and thus allowing to explore more of its surroundings in the search space using various neighbourhood structures. 

The proposed method was examined in terms of the effectiveness of both decay rates in finding different path of 

solution to avoid local optima. Computational studies on well-known benchmark instances of high school 

timetabling show that the suggested verification method is successful. The experimental results show that our 

suggested algorithm outperforms other high school timetabling algorithms in the literature remarkably. It is ranked 

as the second best among meta-heuristic approaches and the fourth best among mathematic-based approaches of high 

school timetabling. The performance improvement brought about by the two decay rates is effective with respect to 

the objective function. High-quality solutions were produced without having the drawback of requiring the solution 

feasibility and objective function to be separated from the decay rate. 

Keywords: Dual decay rate, Great deluge algorithm, School timetabling problem, XHSTT. 

 

 

1. Introduction 

The high school timetabling problem (HSTP) 

was first addressed in 1975 and is still an ongoing 

research topic. The HSTP is an NP-complete 

(nondeterministic polynomial-time complete) 

problem [1] where it is unknown whether the 

problem can be solved exactly in a reasonable 

amount of time especially when the problem size 

grows. High schools use a weekly timetable for the 

class session to avoid overlapping time slot and 

teacher [2, 3]. Exact, heuristic, hyper-heuristic, 

metaheuristics, and math heuristics are examples of 

HSTP solving methodologies [4]. Based on research 

by [5, 6] that focused on the usage of comparable 

HSTP data sets, an extensible markup language for 

high school timetabling (XHSTT) were mostly used. 

Exact method is a mathematic-based approach 

which able to yield optimal solution but limited to 

solving small instances. Various modifications to 

exact method have been proposed to enhance the 

search especially in HSTP to cater its problem 

complexity and size. Some of the mathematic-based 

approaches proposed for HSTP are Mixed-Integer 

linear Programming [7, 8], Matheuristic [8, 9], 

MaxSAT-based large neighborhood search [6, 10] 

and hyper-heuristic with hidden Markov model [6, 

11]. Mixed-Integer linear Programming [6, 7] 

offered the first precise technique for dealing with 
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any instance of the XHSTT format. Matheuristic [6, 

9] provided a matheuristic technique that mixes 

VNS with neighbourhoods based on mathematical 

programming. MaxSAT-based large neighborhood 

search [6, 10] combined local search with a unique 

wide neighborhood search based on maxSAT. A 

novel sequence-based selection hyper-heuristic was 

developed to solve HSTP using a fixed parametrized 

technique and a hidden Markov model [6, 11]. 

Metaheuristic is a method which capable to 

produce a near-optimal solution within reasonable 

times for larger problem size. Population and local 

search algorithms are two types of metaheuristic 

algorithms. A local search-based algorithm explores 

a single solution over iterations by applying local 

changes, while a population-based algorithm is a 

collection of solutions that are updated repeatedly 

until the termination condition is met [12]. 

Examples of metaheuristic approaches for solving 

HSTP are variable neighbourhood search algorithm 

(VNS), simulated annealing algorithm and harmony 

search algorithm. The VNS was used to optimize 

HTSP with six different  neighbourhood structures 

in [6, 9]. Simulated annealing with iterated local 

search (SA + ILS), skewed general VNS (SGVNS), 

and general VNS (GVNS) variants for solving the 

HSTP were proposed in [6, 13], with six different 

neighbourhood structures. A hybrid harmony search 

with simulated annealing (HSA-SA) for HSTP with 

fixed parameters was introduced in [8, 14]. Seven 

neighborhood structures were utilized using a hybrid 

metaheuristic based on SA and iterated local search 

(GOAL) in [4, 15]. 

Local search-based algorithms have a role in 

escaping local optima over iterations through a 

process known as exploitation [4]. One of the 

algorithms that expands the search space's 

possibilities is named as great deluge algorithm 

(GDA) proposed by Dueck [16]. It is a continuous 

global optimization solution-based metaheuristic 

that use the solution search technique to accept 

inferior solutions based on an acceptance rule. This 

assists in escaping local optima [17]. In an analogue 

to GDA, a climber on a hill attempts to avoid getting 

his or her feet wet (local optima) while the water 

level rises in the hopes of discovering a new path 

[18]. 

There are several studies which employed GDA 

for solving HSTP. Studies [6, 11, 19] employed 

GDA as a move acceptance mechanism in a hyper-

heuristics algorithm by mixing several reusable 

components for solving XHSTT data sets. The 

maximum change in the objective function's 

expected range is set fixed. In [20, 21], a non-linear 

reduction rate of GDA was applied to solve three 

datasets from Tanzanian high schools. Prior work 

optimised both the hard and soft constraints in 

HSTP simultaneously using a single water level rate 

and linear and non-linear GDA. However, those 

studies employed a single decay rate which may 

result in optimization being limited and restrict the 

search to converge to a better solution. 

The decay rate in GDA is apparently based on 

cost and number of iterations i.e., the amount of cost 

reduction per iteration. However, the feasibility of 

solution and its objective function is still separated 

from the decay rate especially for difficult and 

complex high school timetabling problem, which 

limit the search to converge to a better solution. This 

is shown by the previous studies in HSTP which 

applied linear and non-linear GDA with only one 

water level rate that used for minimizing both the 

hard and soft constraints at the same time. This 

perhaps contributes to limited optimization and good 

result for one of the constraints may not be achieved. 

Therefore, in this study, two decay rate is proposed 

to minimize the hard and soft constraints, so that 

both constraints minimization process will be 

optimized separately. 

This article is structured as follows: In the 

second section, the HSTP is discussed. The 

fundamental of GDA is described in the third 

section, along with the recommended approach. The 

tests, results and the discussions are highlighted in 

Section 4. Finally, the paper's conclusion is included 

in the last section. 

2. High school timetabling problem 

The HSTP is concerned with creating a teaching 

and learning calendar for a specific high school. The 

HSTP may be described in formal terms as follows. 

The collection of events E represents the lectures 

that will be held. Each resource is of a certain type, 

such as a room, a student, or a teacher, and the 

collection of resources is marked as R. Each e within 

E (e ∈ E) event necessitates a subset of resources. A 

timeslot must be provided to an event. T stands for 

the set of timeslots, which is created by splitting 

each day into multiple non-overlapping timeslots. 

Some HSTP datasets have been established in 

different parts of the world such as Australia, Brazil, 

England, Finland, Greece, and the Netherlands [4]. 

These datasets were formatted to benchmark 

datasets by representing it with an XML schema and 

named as XHSTT. The following are the four 

aspects of the XHSTT instance: 

Times: A set of time periods that occur 

throughout the day, such as Tuesday 8:00- 9:00 and 

Monday 9:00-10:00. Resources: Classes, teachers, 
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rooms, and students are all examples of resources. 

This also offers a resource collection for a set of 

teachers (such as physics or mathematics). Events 

are lessons that need to be scheduled. It comes 

together at the right time and with the right 

resources to offer information (duration, workload, 

time, and resources). The number of timeslots in 

which the event has time intervals is defined by its 

duration, and certain events have pre-allocated time 

intervals [22]. The workload is a collection of events 

with a specified time and resources. Events are 

given one or more solution events or subevents. For 

example, physics lectures lasting nine hours a week 

 
Table 1. The XHSTT format constraints 

Name Description 

Assign 

Resource 

Specifies how resource allocation for 

solution events must be done 

Assign Time 
Sets of times that the solution events 

must assign 

Avoid 

Clashes 

Some resources should have no 

conflicts, according to the Avoid 

Clashes list 

Avoid Split 

Assignments 

Split assignments aren't suitable for a 

variety of event resources, according 

to the list 

Avoid 

Unavailable 

Times 

Argues that certain resources cannot 

engage in many tasks at the same time 

Cluster 

Busy Times 

Specify how many time groups a 

resource can be utilized in 

Distribute 

Split Events 

Determines the value limitation for 

solution events of a given length in the 

instance event's periods. 

Limit Busy 

Times 

Assign the minimum and maximum 

values on the value of time by 

considering numerous different 

scenarios in which a resource might be 

occupied 

Limit Idle 

Times 

Anytime idle resources are available, 

indicates the time limits 

Link Events 

Provides the pattern for a large number 

of events to take place at the same 

time 

Order 

Events 

Determines the sequence in which 

double-event timings should appear 

Prefer 

Resources 

Several "resources" are preferred for 

allocating to several solution 

resources, according to the resources’ 

list 

Prefer 

Times 

Several "times" are more suitable for 

several solution event assignments, 

according to the times’ list  

Split Events 
List into a set of sub-events with a 

constrained number of options 

Spread 

Events 

Specifies that the solution events of a 

series of events should be spaced out 

across time 

may be split into 3 subevents, or they could be 

arranged as a single nine-hour subevent. 

Constraints: It describes the restrictions on real-

world data instances as shown in Table 1.  
 

𝐶𝑜𝑠𝑡 = 𝑊𝑒𝑖𝑔ℎ𝑡 × 𝐶𝑜𝑠𝑡𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛)  (1) 
 

It has a relationship between the cost being 

estimated (as shown in Eq. (1)), and the constraint 

being unsuccessful to fulfill its requirement. The 

weight is specified in the range between 0 to 1000 

by constraints, and CostFunction determines the 

deviation. Quadratic, Step, and Linear cost functions 

are the three types of cost functions. Each constraint 

might be either soft or hard. Hard constraints are the 

requirements that need to be adhered with which 

reflect the solution feasibility. Soft constraints, on 

the other hand, determine the quality of a solution, 

with smaller numbers of soft constraint violations 

signifying better solutions. The constraints are 

divided into three main parts which are 1) 

fundamental (Assign Resource, Assign Time, Prefer 

Times, and Prefer Resource), 2) events (Split Events, 

Distribute Split Events, Avoid Split Assignments, 

Spread Events, Link Events, and Order Events), and 

3) resources (Clashes Avoidance, Unavailable 

Times Avoidance, Reduce Idle Times, Group Busy 

Times, Reduce Busy Times, and Reduce Workload). 

3. A modified great deluge algorithm 

GDA was proposed by Dueck [16]. It is a 

solution-based metaheuristic for continuous global 

optimization that allows inferior solutions using the 

solution search approach based on an acceptance 

rule. This assists in the escape from local optima 

[17]. 

The GDA metaheuristic's fundamental concept 

is to use a threshold value (water level) to direct the 

diversification of search by accepting inferior 

neighbouring candidates [16, 23]. 

As shown in Fig. 1, the analogy is usually state 

as a human (current solution) hiking a hill (depict as 

a maximization problem) that try to move in any 

direction which does not make his/her feet wet. A 

path is discovered based on the rises of water level 

(𝑆1, 𝑆2, or 𝑆3) in order to escape from local optima. 

As shown in Algorithm 1, throughout the search, 

the level's value is linearly dropped (defined as 

decay rate). The present solution’s objective 

function is dropped/raised as the level value is 

reduced/raised till convergence. Each iteration will 

create a new adjacent solution of neighbourhood 

structure NS from the present solution (𝑠𝑜𝑙𝑛𝑐𝑢𝑟 ). 

The waterLevel, which is often selected in line 1  
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Figure. 1 GDA search as a graphical representation 

 

Algorithm 1: Basic great deluge algorithm 

Input: 𝑠𝑜𝑙𝑛𝑐𝑢𝑟, 𝑁𝑆, 𝑟𝑎𝑖𝑛𝑑𝑆𝑝𝑒𝑒𝑑, 𝑡𝑜𝑡𝑎𝑙𝐼𝑡𝑒𝑟  

Output: 𝑠𝑜𝑙𝑛𝑛𝑒𝑤 

1 𝑤𝑎𝑡𝑒𝑟𝐿𝑒𝑣𝑒𝑙 ← 𝑓(𝑠𝑜𝑙𝑛𝑐𝑢𝑟) 

2 𝑑𝑒𝑐𝑎𝑦𝑅𝑎𝑡𝑒 ← 𝑬𝒒. (𝟐) 

3 𝒇𝒐𝒓 𝑖 ← 0 𝒕𝒐 𝑡𝑜𝑡𝑎𝑙𝐼𝑡𝑒𝑟 𝒅𝒐 

4  𝑠𝑜𝑙𝑛𝑛𝑒𝑤 ←
𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟(𝑠𝑜𝑙𝑛𝑐𝑢𝑟, 𝑁𝑆)  

5  𝒊𝒇 𝑓(𝑠𝑜𝑙𝑛𝑛𝑒𝑤) ≤  𝑓(𝑠𝑜𝑙𝑛𝑐𝑢𝑟) 𝒕𝒉𝒆𝒏  

6   𝑠𝑜𝑙𝑛𝑐𝑢𝑟 ←  𝑠𝑜𝑙𝑛𝑛𝑒𝑤 

7  𝒆𝒍𝒔𝒆 𝒊𝒇 𝑓(𝑠𝑜𝑙𝑛𝑛𝑒𝑤) ≤  𝑤𝑎𝑡𝑒𝑟𝐿𝑒𝑣𝑒𝑙 𝒕𝒉𝒆𝒏 

8   𝑠𝑜𝑙𝑛𝑐𝑢𝑟 ←  𝑠𝑜𝑙𝑛𝑛𝑒𝑤 

9  𝒆𝒍𝒔𝒆 

10   𝑠𝑜𝑙𝑛𝑛𝑒𝑤 ←  𝑠𝑜𝑙𝑛𝑐𝑢𝑟 

11  end if 

12  𝑤𝑎𝑡𝑒𝑟𝐿𝑒𝑣𝑒𝑙 ← 𝑬𝒒. (𝟑)  

13 end for 

14 𝐫𝐞𝐭𝐮𝐫𝐧 𝑠𝑜𝑙𝑛𝑛𝑒𝑤 

 

𝑠𝑜𝑙𝑛𝑐𝑢𝑟 Present solution 

𝑠𝑜𝑙𝑛𝑛𝑒𝑤 New solution 

𝑁𝑆 Neighbourhood structure 

𝑟𝑎𝑖𝑛𝑑𝑆𝑝𝑒𝑒𝑑 Rain speed 

𝑡𝑜𝑡𝑎𝑙𝐼𝑡𝑒𝑟 Total number of iterations 

𝑤𝑎𝑡𝑒𝑟𝐿𝑒𝑣𝑒𝑙 Threshold value 

𝑑𝑒𝑐𝑎𝑦𝑅𝑎𝑡𝑒 Specified decay rate 

𝑖 Iteration 

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 New neighbouring solution  

 

with the quality of the original solution, serves as 

the starting point for the algorithm and is 

lowered/raised by a specific rate throughout each 

iteration by using Eq. (3). The initial formula Eq. (2) 

for calculating the rate (decayRate) is in line 2. 
 

𝑑𝑒𝑐𝑎𝑦𝑅𝑎𝑡𝑒 = 𝑓(𝑠𝑜𝑙𝑛𝑐𝑢𝑟) ×  
𝑟𝑎𝑖𝑛𝑑𝑆𝑝𝑒𝑒𝑑

𝑡𝑜𝑡𝑎𝑙𝐼𝑡𝑒𝑟
         (2) 

 

𝑤𝑎𝑡𝑒𝑟𝐿𝑒𝑣𝑒𝑙 = 𝑤𝑎𝑡𝑒𝑟𝐿𝑒𝑣𝑒𝑙 − 𝑑𝑒𝑐𝑎𝑦𝑅𝑎𝑡𝑒        (3) 

This study proposes a modified version of GDA 

(MGDA) where two decay rate is embedded into the 

original GDA to assist in minimizing the hard and 

soft constraints of a complex HSTP. Algorithm 2 

demonstrates the pseudo code of the MGDA. The 

waterLevelSoft and waterLevelHard are representing 

the current number of soft and hard constraints 

violation respectively (lines 1 and 2). The decay 

rates for soft and hard water levels are determined in 

the initial stages of the algorithm based on current 

violation of soft or hard constraints multiplied with 

total iterations (totalIter) and then divided by rain 

speed (rainSpeed) by using Eq. (4) and Eq. (5) (as 

shown in lines 3 and 4).  
 

𝑑𝑒𝑐𝑎𝑦𝑅𝑎𝑡𝑒𝑆𝑜𝑓𝑡 = 𝑓(𝑠𝑜𝑙𝑛𝑐𝑢𝑟)𝑠𝑜𝑓𝑡 ×
𝑟𝑎𝑖𝑛𝑑𝑆𝑝𝑒𝑒𝑑

𝑡𝑜𝑡𝑎𝑙𝐼𝑡𝑒𝑟
  

(4) 

 

𝑑𝑒𝑐𝑎𝑦𝑅𝑎𝑡𝑒𝐻𝑎𝑟𝑑 = 𝑓(𝑠𝑜𝑙𝑛𝑐𝑢𝑟)ℎ𝑎𝑟𝑑 ×
𝑟𝑎𝑖𝑛𝑑𝑆𝑝𝑒𝑒𝑑

𝑡𝑜𝑡𝑎𝑙𝐼𝑡𝑒𝑟
 

(5) 

 

Next, based on the totalIter the new solution will 

be produced with ten neighbourhood-moves that 

selected randomly. The following are the 

neighbourhood-moves: Swap Day and Timeslot: 

the day and timeslot of two meets are swapped. 

Move Day and Timeslot: this move shifts the day 

and timeslot of meet to other days and timeslots that 

are available. Swap Resources: this task refers to 

the type of resources such as teacher, class, and 

room. This swap works with two resources. Two 

conditions are required, which are the two resources, 

such as teacher with only teachers. Move 

Resources: this task moves the available resources 

that are not assigned into the solutions, which are 

located in the instance, and unassigns the resources 

that are already inside the solution.  Block Meet 

Swap: Block swapping is the same as ordinary 

swapping, except that it treats adjacent two or more 

same meets as one block. For example, when 

swapping a meet of duration 1 assigned to the first 

time on Wednesday with a meet of duration 2 

assigned to the second time on Wednesday, Block 

Meet Swap swaps the adjacent of Arab2 meet with 

the Hist1 meet. 

A group of moves is also applied namely as 

Kempe and Ejecting Moves. Ejecting indicates 

unassigning, whereas Kempe indicates moving. The 

unique objective of all moves is to remove the 

overlap/clashes. In this study, five types of moves 

are used, which are as follows: Kempe Meet Move: 

it works with two meets in the solution space. The 

Kempe meet relocates a meet from its current 

location to a target meet at an offset and adds extra 
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demand to the overall demand of the relocated meets. 

For example, if the operation does not attempt to 

shift any meetings back the other way. A movement 

or exchange is generally the consequence, although 

it might be complicated. Kempe Meet Move Time: 

this move is similar to Kempe Meet Move but 

operates with one meet from the solution space and 

time from the instance. Task Ejecting Move 

Resource: this transfers the task (teacher, subject, 

room, student) in the solution back to the instance, 

unassigning it from all clashing tasks. The resources 

(teacher, subject, room, student) from the instance 

are transferred to the solution. This move ignores  

 

Algorithm 2: Modified great deluge algorithm 

Input: 𝑠𝑜𝑙𝑛𝑐𝑢𝑟, 𝑁𝑆, 𝑟𝑎𝑖𝑛𝑑𝑆𝑝𝑒𝑒𝑑, 𝑡𝑜𝑡𝑎𝑙𝐼𝑡𝑒𝑟  

Output: 𝑠𝑜𝑙𝑛𝑛𝑒𝑤 

1 𝑤𝑎𝑡𝑒𝑟𝐿𝑒𝑣𝑒𝑙𝑆𝑜𝑓𝑡 ← 𝑓(𝑠𝑜𝑙𝑛𝑐𝑢𝑟)𝑠𝑜𝑓𝑡 

2 𝑤𝑎𝑡𝑒𝑟𝐿𝑒𝑣𝑒𝑙𝐻𝑎𝑟𝑑 ← 𝑓(𝑠𝑜𝑙𝑛𝑐𝑢𝑟)ℎ𝑎𝑟𝑑 

3 𝑑𝑒𝑐𝑎𝑦𝑅𝑎𝑡𝑒𝑆𝑜𝑓𝑡 ← 𝑬𝒒. (𝟒) 

4 𝑑𝑒𝑐𝑎𝑦𝑅𝑎𝑡𝑒𝐻𝑎𝑟𝑑 ← 𝑬𝒒. (𝟓) 

5 𝒇𝒐𝒓 𝑖 ← 0 𝒕𝒐 𝑡𝑜𝑡𝑎𝑙𝐼𝑡𝑒𝑟 𝒅𝒐 

6  𝑠𝑜𝑙𝑛𝑛𝑒𝑤 ←
𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟(𝑠𝑜𝑙𝑛𝑐𝑢𝑟, 𝑁𝑆)  

7  𝒊𝒇 𝑓(𝑠𝑜𝑙𝑛𝑛𝑒𝑤) ≤  𝑓(𝑠𝑜𝑙𝑛𝑜𝑙𝑑) 𝒕𝒉𝒆𝒏  

8   𝑠𝑜𝑙𝑛𝑐𝑢𝑟 ←  𝑠𝑜𝑙𝑛𝑛𝑒𝑤 

9  𝒆𝒍𝒔𝒆 𝒊𝒇 (𝑓(𝑠𝑜𝑙𝑛𝑛𝑒𝑤)𝑠𝑜𝑓𝑡

≤  𝑤𝑎𝑡𝑒𝑟𝐿𝑒𝑣𝑒𝑙𝑆𝑜𝑓𝑡 𝑜𝑟 𝑓(𝑠𝑜𝑙𝑛𝑛𝑒𝑤)𝑠𝑜𝑓𝑡

=  𝑓(𝑠𝑜𝑙𝑛𝑐𝑢𝑟)𝑠𝑜𝑓𝑡) 𝒂𝒏𝒅 (𝑓(𝑠𝑜𝑙𝑛𝑛𝑒𝑤)ℎ𝑎𝑟𝑑

≤  𝑤𝑎𝑡𝑒𝑟𝐿𝑒𝑣𝑒𝑙𝐻𝑎𝑟𝑑 𝑜𝑟 𝑓(𝑠𝑜𝑙𝑛𝑛𝑒𝑤)ℎ𝑎𝑟𝑑

=  𝑓(𝑠𝑜𝑙𝑛𝑐𝑢𝑟)ℎ𝑎𝑟𝑑) 𝒕𝒉𝒆𝒏 

10   𝑠𝑜𝑙𝑛𝑐𝑢𝑟 ←  𝑠𝑜𝑙𝑛𝑛𝑒𝑤 

11  𝒆𝒍𝒔𝒆 

12   𝑠𝑜𝑙𝑛𝑛𝑒𝑤 ←  𝑠𝑜𝑙𝑛𝑐𝑢𝑟 

13  end if 

14  𝑤𝑎𝑡𝑒𝑟𝐿𝑒𝑣𝑒𝑙𝑆𝑜𝑓𝑡 ← 𝑬𝒒. (𝟔)  

15  𝑤𝑎𝑡𝑒𝑟𝐿𝑒𝑣𝑒𝑙𝐻𝑎𝑟𝑑 ← 𝑬𝒒. (𝟕) 

16 end for 

17 𝐫𝐞𝐭𝐮𝐫𝐧 𝑠𝑜𝑙𝑛𝑛𝑒𝑤 

 

𝑠𝑜𝑙𝑛𝑐𝑢𝑟 Present solution 

𝑠𝑜𝑙𝑛𝑛𝑒𝑤 New solution 

𝑁𝑆 Neighbourhood structure 

𝑟𝑎𝑖𝑛𝑑𝑆𝑝𝑒𝑒𝑑 Rain speed 

𝑡𝑜𝑡𝑎𝑙𝐼𝑡𝑒𝑟 Total number of iterations 

𝑤𝑎𝑡𝑒𝑟𝐿𝑒𝑣𝑒𝑙𝑆𝑜𝑓𝑡 Threshold value for soft  

𝑤𝑎𝑡𝑒𝑟𝐿𝑒𝑣𝑒𝑙𝐻𝑎𝑟𝑑 Threshold value for hard 

𝑑𝑒𝑐𝑎𝑦𝑅𝑎𝑡𝑒𝑆𝑜𝑓𝑡 Specified decay rate for 

soft 

𝑑𝑒𝑐𝑎𝑦𝑅𝑎𝑡𝑒𝐻𝑎𝑟𝑑 Specified decay rate for 

hard 

𝑖 Iteration 

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 New neighbouring solution  

the matching, merely fails on preassigned times, and 

unassigns the clashing tasks. Ejecting Meet Move: 

the ejecting meet move is a version of the Kempe 

meet move. This starts by moving the meet to the 

targeted meet at offset, then detects the meets that 

need to be moved back the other direction, just like 

Kempe meet moves, but instead of moving them, it 

unassigns and stops them. Ejecting Meet Move 

Time: this move is Ejecting Meet Move but operates 

with one meet from the solution space and time 

from the instance. 

Next after new solution is produced, if the new 

neighboring solution's quality assessment value is 

better than or equal to the current best solution, it 

will always be selected (lines 7 and 8). A solution 

that is inferior to the current best solution will be 

approved only if its quality assessment value is less 

than or equal to the threshold (waterLevelSoft and 

waterLevelHard) as shown in lines 9 and 10. 

To avoid local optima, the MGDA always 

accepts a modification that improves solution 

quality, and a worse solution if the solution quality 

falls below or equals a threshold (waterLevelSoft 

and waterLevelHard). Each iteration, new values for 

waterLevelSoft and waterLevelHard are generated 

by using decayRateSoft Eq. (6) and decayRateHard 

Eq. (7), respectively (lines 14 and 15). 

 

𝑤𝑎𝑡𝑒𝑟𝐿𝑒𝑣𝑒𝑙𝑆𝑜𝑓𝑡 = 𝑤𝑎𝑡𝑒𝑟𝐿𝑒𝑣𝑒𝑙𝑆𝑜𝑓𝑡 − 

𝑑𝑒𝑐𝑎𝑦𝑅𝑎𝑡𝑒𝑆𝑜𝑓𝑡             (6) 
 

𝑤𝑎𝑡𝑒𝑟𝐿𝑒𝑣𝑒𝑙𝐻𝑎𝑟𝑑 = 𝑤𝑎𝑡𝑒𝑟𝐿𝑒𝑣𝑒𝑙𝐻𝑎𝑟𝑑 − 

𝑑𝑒𝑐𝑎𝑦𝑅𝑎𝑡𝑒𝐻𝑎𝑟𝑑            (7) 
 

Throughout the search, the value of level is 

slightly reduced in a linear way (given decay rate for 

soft and hard). As the level values of soft and hard 

are reduced, the current solution iterative approach 

is reduced as well, until convergence. 

4. Experiment, results and discussion 

This section explains the experimental setup as 

well as the results, and discussion about 

comparisons with meta-heuristic, and state-of-the-

arts approaches. The proposed MGDA's 

experimental environment was implemented in C 

programming language on AMD Ryzen 7 3700X 8-

Core with 3.89 GHz processor and 16 GB RAM. To 

evaluate the proposed approach, XHSTT datasets1 

(real high school timetabling problem) from small to 

large instances were used. The initial solution of this 

                                                           
1 High School Timetabling Project 

(https://www.utwente.nl/en/eemcs/dmmp/hstt/). 
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study is utilized from [24], which is a constructive 

solution technique. 

The number of iterations (totalIter) used in this 

study is 200 multiply the size of data instance. The 

iteration number is a setting that applied for both the 

GDA and MGDA. The value was determined 

through a series of extensive trials with various 

parameter combinations. The initial soft and hard 

water levels for MGDA and the water level for 

GDA were set using objective function values, and 

rainSpeed was set at 0.2 and 0.4, respectively to 

progressively raise the water level. After a series of 

extensive experiments employing various parameter 

value combinations, the values are determined. The 

overview of parameter settings is shown in Tables 2 

and 3. 

The MGDA results are shown in Table 4 and 

compared with the initial solution and GDA results. 

The results indicate the objective function value of 

the solution which is represented by the total 

number of hard and soft constraint violations that 

aim to be minimized. Overall, the MGDA 

performed respectable results in almost all datasets 

when compared with the initial solution [24]. The 

MGDA performed better in all large datasets such as 

Netherlands datasets (NL-KP-03, NL-KP-05, NL-

KP-09, Kottenpark2008 and GEPRO), Denmark 

datasets (DK-FG-12, DK-HG-12, and DK-VG-09), 

KS-PR-11, and UK-SP-06. For some medium 

datasets, MGDA performed rather well results when 

compared with the initial solution [24] such as 

Australia data instances (AU-BG-98, and AU-TE-99), 

ES-SS-08, FI-WP-06, GR-PA-08, Aigio2010, IT-I4-

96, US-WS-09, and ZA-WD-09. 

The MGDA also obtained better results for 

small datasets such as ZL-LW-09, BrazilInstance5 

and BR-SM-00. Overall, the MGDA is able to 

optimize 21 out of 39 datasets (in bold font) when 

compared with the initial solution [24]. The MGDA 

was also tested on three Malaysian school 

timetabling problem datasets [25] which are 

MalaysiaSFBT01, MalaysiaSFBT02 and 

 
Table 2. The MGDA parameter settings 

Parameters Values 

rainSpeed 0.2 

totalIter 200 × size of data instance 

waterLevelSoft Soft objective function value 

waterLevelHard Hard objective function value 

 

Table 3. The GDA parameter settings 

Parameters Values 

rainSpeed 0.4 

totalIter 200 × size of data instance 

waterLevel Total objective function value 

Table 4. Results of the MGDA, GDA, and the initial 

solution [24] 

Instance 

Initial 

solution 

[24] 

MGDA GDA 

Aigio2010 0.00008 0.00006 0.00006 

ArtificialSchool 3.00006 3.00006 3.00006 

AU-BG-98 1.00557 1.00469 1.00469 

AU-SA-96 0.00005 0.00005 0.00005 

AU-TE-99 0.00087 0.00085 0.00085 

BrazilInstance1 0.00048 0.00048 0.00048 

BrazilInstance3 0.00065 0.00065 0.00065 

BrazilInstance5 0.00083 0.00068 0.00068 

BrazilInstance7 0.00130 0.00130 0.00130 

BR-SA-00 0.00011 0.00011 0.00011 

BR-SM-00 2.00125 2.00119 2.00119 

BR-SN-00 0.00096 0.00096 0.00096 

DK-FG-12 0.01926 0.01907 0.02096 

DK-HG-12 12.04790 12.03664 12.03521 

DK-VG-09 2.04382 2.03584 2.03434 

ElementarySchool 0.00003 0.00003 0.00003 

ES-SS-08 0.00565 0.00555 0.00555 

FI-MP-06 0.00091 0.00091 0.00091 

FI-PB-98 0.00005 0.00005 0.00007 

FI-WP-06 0.00014 0.00013 0.00013 

GEPRO 1.01735 1.00613 1.00705 

GR-H1-97 0.00000 0.00000 0.00000 

GR-P3-10 0.00000 0.00000 0.00000 

GR-PA-08 0.00006 0.00005 0.00005 

IT-I4-96 0.00042 0.00040 0.00040 

Kottenpark2008 19.35165 14.34855 14.42141 

KS-PR-11 0.00009 0.00004 0.00006 

MalaysiaSFBT01 0.00000 0.00000 0.00000 

MalaysiaSFBT02 0.00010 0.00000 0.00000 

MalaysiaSFBT03 0.00006 0.00000 0.00000 

NL-KP-03 0.00929 0.00921 0.01252 

NL-KP-05 1.02226 1.01850 3.01682 

NL-KP-09 7.04190 5.04180 8.06275 

Preveza2008 0.00002 0.00002 0.00002 

SecondarySchool2 0.00002 0.00002 0.00002 

UK-SP-06 13.00636 13.00636 13.00880 

UniversityInstance3 0.00006 0.00006 0.00006 

UniversityInstance5 0.00000 0.00000 0.00000 

US-WS-09 0.00518 0.00145 0.00184 

VillageSchool 0.00013 0.00013 0.00013 

ZA-WD-09 2.00000 2.00000 2.00000 

ZL-LW-09 2.00034 1.00034 1.00034 

Wins - 10 1 

Losses - 1 10 

Ties - 31 31 

 

MalaysiaSFBT03 and produced optimal solution for 

all the three datasets. 

GDA was difficult to enter the acceptance 

threshold when comparing to MGDA based on win-

loss records. This is due to the GDA separate the  
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Figure. 2 The soft water level for US-WS-09 using 

MGDA 

 

 
Figure. 3 The soft water level for NL-KP-03 using 

MGDA 

 

information on hard and soft constraints’ violation 

which unable to assist decay rate of GDA to 

converge to a better solution. 

However, distinct situation occurred to DK-HG-

12 which produced better result using GDA 

compared to MGDA. This is maybe due to the used 

of various good neighbourhood structures that have 

been tailored made for solving this HSSTP. From 

the results presented in Table 4, out of 42 instances, 

MGDA outperformed GDA in 10 instances, with the 

remaining 31 datasets were tied. Further 

investigation and analysis on GDA and MGDA  

 

 
Figure. 4 The soft water level for AU-BG-98 using 

MGDA 

 

 
Figure. 5 The water level for AU-BG-98 using GDA 

 

performance is also presented below. Table 5 

compares the results of the MGDA with the results 

of several meta-heuristics approaches which are 

VNS [9], SA+ILS [13], SGVNS [13], GVNS [13], 

HSA-SA [14] and GOAL [15]. In comparison to the 

meta-heuristics, the MGDA offers the best solutions 

on 13 datasets and ties on 4 datasets out of 39 

datasets. To compare the performance of the meta-

heuristics techniques with MGDA, the ranking 

system used in ITC2011 based on average rank is 

employed. The constraint violations of the best run 

on each instance are used to evaluate each method. 

The algorithm with the lowest average rank is 

claimed to be the best. When compared to other 

approaches based on average rank, the MGDA 

comes in the second place, after the VNS and 

followed by SGVNS, GVNS, GOAL, HSA-SA and 

finally SA+ILS. 

Table 6 shows the best HSTP results produced 

utilizing several mathematical-based approaches,  
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Figure. 6 The (a) soft and (b) Hard water level for Kottenpark2008 using MGDA 

 

 
Figure. 7 The water level for Kottenpark2008 using GDA 

 

including A) Mixed-Integer Linear Programming [7], 

B) Matheuristics [9], C) MaxSAT-based large 

neighborhood search [10], and D) Hidden Markov 

Model Approach to Heuristic Selection [11]. In 

general, MGDA is successful in minimizing soft 

constraint violation and reasonable at minimizing 

hard constraint violations. In comparison to the 

mathematic-based methods, the MGDA obtains the 

best results for seven datasets (Aigio2010, 

BrazilInstance1, Kottenpark2008, Preveza2008, 

SecondarySchool2, UK-SP-06 and VillageSchool) 

and four ties (ElementarySchool, GR-H1-97, GR-

P3-10, UniversityInstance5). Of the ties, three of 

them has reached optimality. The average rank is 

also used to compare the performance of the four 

algorithms (A, B, C, and D) with MGDA. The best 

approach was discovered to be B, followed by A, D, 

MGDA, and C, in that order. MGDA, on the other 

hand, has been proven to be quite competitive with 

other mathematic-based methods and capable of 

achieving some of the best results. 

The soft and hard water levels influence the 

MGDA solution search. Figs. 2, 3, 4, 5, 6, and 7 

show the soft and hard water levels based on soft 

and hard decay rates, respectively. These figures are 

for the data instances US-WS-09, NL-KP-03, AU-

BG-98, and Kottenpark2008 respectively. The soft 

water level parameter for the US-WS-09 and NL-KP-

03 data instances are shown in Figs. 2 and 3, 

respectively. In the US-WS-09 dataset at iterations 

10, 13, and 17, and in the NL-KP-03 dataset at 

iterations 6, 9, 10, and 12, a new solution was 

selected that was lower than the soft water level 

(acceptance threshold). We can plainly see that the 

MGDA attempted to choose a different path in order 

to avoid local optima.  
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Table 5. Results obtained using MGDA compared to meta-heuristics-based approaches 

Instance MGDA VNS [9] 
SA + ILS 

[13] 

SGVNS 

[13] 

GVNS 

[13] 

HAS-SA 

[14] 
GOAL [15] 

Aigio2010 0.00006 - - - - - 0.00000 

ArtificialSchool 3.00006 - - - - - - 

AU-BG-98 1.00469 2.00398 6.00450 1.00401 4.00370 - - 

AU-SA-96 0.00005 4.00021 14.00050 13.00046 12.00051 - - 

AU-TE-99 0.00085 1.00036 7.00161 7.00163 7.00151 - - 

BrazilInstance1 0.00048 - 0.00012 0.00011 0.00011 0.00020 - 

BrazilInstance3 0.00065 - - - - 0.00154 0.00101 

BrazilInstance5 0.00068 - 0.00164 0.00149 0.00158 0.00148 - 

BrazilInstance7 0.00130 - 0.00264 0.00248 0.00249 0.00234 - 

BR-SA-00 0.00011 0.00022 - - - 0.00048 0.00032 

BR-SM-00 2.00119 3.00099 0.00091 0.00090 0.00094 0.00162 1.00136 

BR-SN-00 0.00096 0.00104 0.00149 0.00131 0.00148 0.00186 0.00160 

DK-FG-12 0.01907 0.01669 - - - - - 

DK-HG-12 12.03664 12.03371 - - - - - 

DK-VG-09 2.03584 2.02765 - - - - - 

ElementarySchool 0.00003 - - - - 0.00003 0.00003 

ES-SS-08 0.00555 0.00415 - - - - 0.00012 

FI-MP-06 0.00091 0.00084 0.00086 0.00088 0.00087 0.00090 - 

FI-PB-98 0.00005 0.00000 - - - - - 

FI-WP-06 0.00013 0.00011 0.00001 0.00001 0.00001 - - 

GEPRO 1.00613 - 1.00566 1.00441 1.00434 - - 

GR-H1-97 0.00000 0.00000 - - - - - 

GR-P3-10 0.00000 0.00000 - - - - - 

GR-PA-08 0.00005 0.00003 - - - - 0.00008 

IT-I4-96 0.00040 0.00042 - - - 0.00082 0.00061 

Kottenpark2008 14.34855 - - - - - - 

KS-PR-11 0.00004 0.00004 - - - - - 

NL-KP-03 0.01376 0.01151 0.01409 0.01281 0.01216 - 0.05355 

NL-KP-05 1.01850 8.04460 0.01078 0.00877 0.00881 - 24.13930 

NL-KP-09 5.04180 8.08370 - - - - 19.05565 

Preveza2008 0.00002 - - - - - - 

SecondarySchool2 0.00002 - - - - 0.00000 0.00000 

UK-SP-06 13.00636 53.01524 0.18092 0.12466 0.12542 - - 

UniversityInstance3 0.00006 - - - - - 0.00005 

UniversityInstance5 0.00000 - - - - - 0.00000 

US-WS-09 0.00145 0.00124 - - - - - 

VillageSchool 0.00013 - - - - - - 

ZA-WD-09 2.00000 3.00000 - - - - 0 .00441 

ZL-LW-09 1.00034 0.00016 0.00022 0.00024 0.00024 - - 

Rank Average 2.08 2.04 3.40 2.40 2.67 3.27 2.75 

Rank 2 1 7 3 4 6 5 
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Table 6. Results obtained using MGDA compared to the-state-of-the-art methods 

Instance MGDA A [7] B [9] C [10] D [11] 

Aigio2010 0.00006 - - 0.04582 - 

ArtificialSchool 3.00006 - - 0.00012 - 

AU-BG-98 1.00469 3.00494 2.00398 - 0.00520 

AU-SA-96 0.00005 8.00052 3.00021 - 0.00002 

AU-TE-99 0.00085 1.00140 1.00036 - 0.00061 

BrazilInstance1 0.00048 - - - - 

BrazilInstance3 0.00065 0.00026 - 0.00075 - 

BrazilInstance5 0.00068 0.00030 - 0.00224 - 

BrazilInstance7 0.00130 0.00122 - 0.00603 - 

BR-SA-00 0.00011 0.00005 0.00005 0.00057 0.00010 

BR-SM-00 2.00119 0.00061 0.00052 0.00214 2.00117 

BR-SN-00 0.00096 0.00060 0.00035 0.00352 0.00101 

DK-FG-12 0.01907 2.23705 0.01668 - 0.01522 

DK-HG-12 12.03664 293.3211 12.03371 - 12.0263 

DK-VG-09 2.03584 20.18966 2.02765 - 2.02731 

ElementarySchool 0.00003 - - 0.00003 - 

ES-SS-08 0.00555 0.00357 0.00351 - 0.00517 

FI-MP-06 0.00091 0.00088 0.00077 0.00504 0.00089 

FI-PB-98 0.00005 - 0.00000 0.01309 0.00008 

FI-WP-06 0.00013 0.00001 0.00002 0.00812 0.00007 

GEPRO 1.00613 1.00566 - - - 

GR-H1-97 0.00000 - 0.00000 0.00000 0.00000 

GR-P3-10 0.00000 - 0.00000 0.02329 0.00000 

GR-PA-08 0.00005 0.00008 0.00003 0.00141 0.00004 

IT-I4-96 0.00040 0.00027 0.00027 0.16979 0.00038 

Kottenpark2008 14.34855 - - - - 

KS-PR-11 0.00004 0.00003 0.00000 0.29946 0.00003 

NL-KP-03 0.01376 0.01410 0.01103 - 0.00466 

NL-KP-05 1.01850 0.01078 8.04460 - 0.00811 

NL-KP-09 5.04180 0.09035 7.64470 - 2.07495 

Preveza2008 0.00002 - - 0.05617 - 

SecondarySchool2 0.00002 - - 0.03523 - 

UK-SP-06 13.00636 - 53.01524 - 19.01294 

UniversityInstance3 0.00006 0.00005 - 0.00007 - 

UniversityInstance5 0.00000 - - 0.00000 - 

US-WS-09 0.00145 - 0.00124 - 0.00512 

VillageSchool 0.00013 - - - - 

ZA-WD-09 2.00000 0.00000 0.00000 0.00000 9.00000 

ZL-LW-09 1.00034 - 0.00000 0.01039 0.00052 

Rank Average 2.31 2.25 1.86 2.95 2.04 

Rank 4 2 1 5 3 
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The differences between the two techniques in 

avoiding local optima can be seen in Figs. 4 and 5. 

In Fig. 4, it is obviously can be seen that the MGDA 

soft water level was perfectly dropped with both the 

old and new soft solution. However, in Fig. 5 the 

GDA is attempting to reach the acceptance threshold, 

yet it is a challenging task. 

Fig. 6 shows the MGDA with soft and hard 

water levels which is the trend is different from the 

other datasets. The hard constraints of 

Kottenpark2008 data instance decreased by one hard 

constraint at iteration 2 in which the hard water level 

is hard to reach by new solution. By comparison 

with GDA water level, the search is difficult to enter 

the acceptance threshold expat early iterations and it 

is shown in Fig. 7. 

5. Conclusions 

The GDA is one of powerful metaheuristic 

approaches and has potential for more search 

improvement. It is known from the literature that 

finding a good timetable in HSTP utilising modern 

metaheuristic algorithms is still difficult. Overall, 

the literature shows that GDA continues to be 

remarkably active in solving challenging 

optimization problems such as efficient task 

scheduling in grid computing [26], feature selection 

problems [27] and feature selection from 

academician data [28]. Thus, this research presents a 

modified great deluge metaheuristic for solving 

HSTP. 

Computational tested on well-known benchmark 

datasets verified its effectiveness. The suggested 

technique was examined in terms of the 

effectiveness of both decay rates and comparisons 

with the standard GDA and other metaheuristic and 

mathematic-based methodologies when tested on 

HSTTP benchmark datasets were also presented. 

When compared to previous heuristic algorithms of 

HSTP, MGDA is not only effective at producing 

good quality timetables, but also very efficient in 

solution searching through two decay rates for 

MGDA. It is regarded as an improved variation of 

GDA. It effectively navigates and directs the search 

in each neighbourhood structure while avoiding 

from being caught in the local optimum of each 

neighbourhood structure. This is due to the 

advantage of the excellent diversification capability 

of two decay rates. On average, the proposed 

strategy was ranked as the second best among meta-

heuristics methods and the fourth best among 

mathematic-based methods. The modification 

strategy used by great deluge was effective and 

simple to execute. Overall, the MGDA was able to 

provide satisfactory results especially on large 

datasets. Future study should be focused on 

hybridizing population and local search algorithms 

with MGDA to improve the intensity of MGDA. 
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