
Received: July 25, 2022. Revised: September 4, 2022. 350

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.33

Conflict Detection and Resolution Model for Multi-users IoT Automation

Systems

Hamada Ibrhim1 Hisham Hassan2 Ahmad B. Alkhodre3 Emad Nabil3*

1Faculty of Computers and Information, Minia University, Minia, Egypt

2Faculty of Computers and Artificial Intelligence, Cairo University, Giza, Egypt
3Faculty of Computer and Information Systems, Islamic University of Madinah, Madinah, Saudi Arabia

* Corresponding author’s Email: emadnabil@iu.edu.sa

Abstract: Building automation (BA) strives to control interconnected physical devices by using software management

systems on which end-users can personalize their environmental preferences. In large buildings, among the leading

causes of IoT apps conflict are the shareable locations/devices amongst residents and the diversity of their preferences.

Addressing such conflicts and ensuring the safety of residents are vital requirements in building automation systems.

Consequently, the potential of IoT safety and correctness frameworks relies on supporting conflict detection. This

paper provides a model for detecting and resolving IoT automation conflicts. These conflicts can result from shareable

locations or devices. The proposed model is evaluated using a benchmark dataset and refined scenarios collected from

competitor-related works (80+ IoT apps with 117+ rules). The proposed model surpasses state-of-the-art models by

covering more conflicts (joint behavior conflict); moreover, it does not require events’ chain between IoT apps

like other models, one more advantage is that the proposed model uses a filtering process in conflict detection

which leads to small detection run-time. Thereby, our proposed model can maximize the correctness and safety of

building automation systems.

Keywords: End-user programming, Event-condition-action programming, IoT apps, Conflict resolution, Correctness

and safety, Energy saving.

1. Introduction

Building automation system (BAS) plays an

important role and gains more attention in industrial

and personal uses [1-3]. Optimal and safe benefits of

these systems require a high level of awareness of its

integrated resources (i.e., sensors, actuators, or any

computing resource) that gain an artificial sensory

perception of these buildings and their occupants’

behavior s that convert the building into an intelligent

ecosystem [4].

BAS provides several features: controlling lights,

climate, HVAC, safety and security, comfort, energy-

saving, and entertainment. Mainly, BAS is capable of

orchestrating the use of these features through the use

of customizable logic [5, 6]. This customizable logic

is typically represented as if-this-then-that (IFTTT),

or event-condition-action (ECA) rules [7-9], and it

corresponds to users’ behavior s (users’ contexts).

These rules are responsible for the influx of events

and the contextual information of devices and

environment collaborations [10, 11].

The existence of multiple contexts of different

users in BAS has a high probability of occurrence [12,

13]. Multiple contexts happen due to the overlapping

in time-horizon, shared location between users, and

differences in their preferences [14]. When these

users’ IoT automation apps are activated at the same

time, their effects on the indoor environment create a

joint behavior situation. Occurring such situations

may violate the environment requirements (a.k.a.,

invariants, policies, or constraints) [15, 16]. With the

increasing number of users and their intentions’

complexity, it is essential to ensure concurrency

between different users do not result in conflicts.

These users’ services concurrency exacerbates

dangerous behavior s or privacy risks [14, 17-20]

Received: July 25, 2022. Revised: September 4, 2022. 351

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.33

Figure. 1 A joint-behavior situation conflict for smart office

Figure. 2 A joint-behavior situation conflict for smart lecture hall

such as closing the main door while a fire ignited and

frequently turning on and off AC. Ideally, these amiss

interactions and users’ services concurrency

considered a challenge for the user [21] should be

detected and resolved.

This paper proposes a prototype implementation

for detecting joint behavior conflicts against the

environmental requirements. Our proposed prototype

uses satisfiability modulo theories (SMT) model

checking [22] to analyze the joint behavior situations

regardless of the number of IoT automation apps and

policies involved. The proposed algorithm grants less

detection time due to the filtering process used in

conflict detection.

The remainder of the paper is organized as

follows. In section 2 some motivation scenarios have

been described that show the main focuses of this

paper. After that, section 3 presents some related

work on IoT inter apps conflict detection frameworks.

The proposed conflict detection and resolution are

explained in section4. To demonstrate the

applicability of the proposed prototype, experimental

results are presented in section 5. Finally, section 6

concludes the paper and describes future work.

2. Motivation scenarios

In this section, we discuss two canonical

scenarios that highlight the focus of this paper. These

scenarios may occur in different buildings that utilize

system policies to control and define the sets of

admissible and inadmissible situations in their

automation.

In scenario 1 as shown in Fig. 1, suppose there are

two users in a shareable workplace (e.g., smart office).

The first user, A, has a personalized IoT automation

app to open his light and allow fresh air by opening

the window when A detected in this workplace. The

second user, B, has a different behavior to opening

his light and improving the indoor environment

quality by opening AC when B is detected in this

workplace. But there is a coexist situation that could

occur simultaneously or at the overlapping time (i.e.,

A’s IoT app begins at 10:00 AM for 2 hours, and B’s

IoT app is activated at 11:00 for 1 hour). In this

situation, the overall system context can be described

Received: July 25, 2022. Revised: September 4, 2022. 352

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.33

as a joint of multiple effects of different IoT apps, as

lights, AC, and windows opened simultaneously

according to this scenario. If we supposed that there

is an enforced safety environment policy that ensures

the performance of AC in the workplace stated that

"AC and window must not be opened at the same

time." So, this coexists situation will cause a policy

violation conflict.

In scenario 2 as shown in Fig. 2, suppose a lecture

hall is customized by two users. The first user is the

lecture hall preservative, who needs to manage the

lecture hall temperature quality when the students’

count is greater than 150 by opening the windows and

curtains. The other user is the lecturer, who creates an

IoT app to automatically open the data shown when

his laptop is plugged in. The co-existence situation

for both users may be happened due to overlapping

time. If we supposed that there is an environment

setting policy controls devices in the lecture hall

when a lecture is beginning stating that "Windows

and curtains must be closed when data-show is

running." So, this coexists situation between lecturer

and lecture hall preservative will cause policy

violation conflict.

Although these scenarios are simple, it effectively

illustrates the conflicts that could result when the IoT

automation system has a multiple-users joint

situation. Accordingly, scenarios with similar

environmental influences could happen in smart

buildings in which devices, locations, and time points

are shared between different users. This conflict is

mentioned by previous work [23, 24, 25] as implicit

interference, the opposite- environment conflict and

safety property, respectively. An environment

property (e.g., temperature) is affected in opposite

directions, for instance, when both AC and heater are

open simultaneously. Unfortunately, these works

require acquiring knowledge of devices, the service

usage requirements history, or specifying rigidity

policies. These requirements may make the detection

of these conflicts more complex and consume time

overhead.

3. Related work

This section investigated a set of related work for

IoT apps automation conflicts detection and

resolution either in single-user IoT apps or multiple

users’ IoT apps interactions.

Palekar et al. [26] explained with an empirical

study some recommendations for trigger-action

programming interfaces to detect and resolve user

errors. They categorized users’ errors into nine

classes. Unfortunately, they did not consider the error

that results from violating system policy by

composite services of different users.

Shah et al. [27] provided a conflict detection

schema for detecting and resolving rule conflicts (e.g.,

execution, shadow, and independent conflicts) and

incompleteness. The work presented the concept of

“anti-rule” which describes the opposite of a rule.

However, the approach did not care about violating

system invariants that govern the environment.

IoT Composer tool proposed in [28], which

supported different IoT application development

steps such as design, composition, verification, and

deployment. The verification step checked the

compatibility and absence of deadlocks to ensure

bug-free compositions of objects. However, the tool

did not provide how to solve these problems, has a

degree of complexity for end-users to use, and did not

concern with system policies.

In [29], an iRULE tool is provided to detect the

inter-rule vulnerabilities that represent security risks

in IoT apps that build based on the trigger-action rule

style. Also, it provided a method based on natural

language processing (NLP) to infer information

flows. Although they provided a set of inter-rule

vulnerabilities, there is no solution for these

vulnerabilities. In addition, using NLP may imply

overhead in time for complex IoT apps.

OKAPI platform is proposed in [30] to avoid

conflicts that may be occurred when accessing or

modifying shared resources in intelligent homes.

These conflicts like consistency deficiencies, event

reordering, and race conditions. The main drawbacks

of OKAPI are that it did not have a representation of

system requirements and its violation checks. Lee and

Lin [31] discussed the multi-user activities conflict in

a smart home. The situation awareness of users’

activities is detected using wearable devices. The

work proposed a conflict resolution algorithm that is

based on some variables such as identity and time.

The work is missing a factor affecting the interaction

between multi-users, which is the environment

constraints. Also, the variables used to resolve

conflicts are the tool’s responsibilities, limiting the

user role.

In [23], investigated the difference between

explicit and implicit interference problems between

rules in a smart home. Explicit interference refers to

the contradiction of conflict between multiple rules

over a single actuator. On the other hand, implicit

interference refers to the contradictory environmental

effects caused by various rules over various actuators.

A3ID (automatic interpretable implicit interference

detection) method is proposed to detect these

problems based on knowledge graphs and NLP.

However, the A3ID did not provide resolution for the

interference problems detected.

Received: July 25, 2022. Revised: September 4, 2022. 353

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.33

Functional and non-functional conflicts are

investigated in [24] using a framework for detecting

them in IoT services in shared locations between

multiple users. The work provided conflict ontology

and ontology rules that describe how the conflict

occurs. However, the conflict detection based on user

history of service usage frequency makes the work

unsuitable for the real-time behavior of IoT

automation services, where users create or customize

services that need to check in real-time.

The “wireless context” concept is proposed in

[32] which corresponds to the packets’ workflow in

IoT apps. Based on a machine learning model, the

user IoT context and the wireless context are

compared to detect anomalies such as App

misbehavior, event spoofing, over-privilege, device

failure, and hidden vulnerabilities. No solutions are

provided for the vulnerabilities between IoT app

interactions, and no representation of system

environmental constraints.

In [33], a service composition model that is

restricted by policy ontology is presented. The

composite service is created for only one user and

contains multiple web services over physical devices.

Although the tool has the meaning of policy to adjust

the system behavior dynamically, there is no check

against policies for the generated composite service.

Han et al. [34] proposed a policy-based approach for

dynamically composing services based on context-

awareness. The hybrid service corresponds to a user

preference. No check if the generated composite

service causes any conflicts or not.

In [35], investigated the interactions between

policies (i.e., system axiom policy and dynamic

behavior policy) in smart homes through the use of

IRIS (identifying requirements interactions using

semi-formal methods) as a feature interaction model.

Conflict detection is based on converting system

requirements (policies) to graphical notations as a set

of tables and graphs and analyzing them according to

an interaction taxonomy of guidelines. However,

conflict detection (interaction detection) is performed

using human developers. This requires overhead in

time and effort to detect interactions in complex and

heterogeneous IoT systems with hundreds of

thousands of policies.

Nguyen et al. [36] proposed IoT sanitizer

(IoTSAN) framework for detecting unsafe interaction

events resulting from violating user-defined safety

properties using the SPIN model checker [37].

However, the framework requires IoT program

analysis and modifying overheads. Also, to build the

dependency graph using IoTSAN, the IoT apps must

have an event with contradicting values (i.e., On/Off

events), and it fails to detect conflict in IoT apps (e.g.,

scenarios in section’ motivation’) not satisfying this

condition.

Using an abstraction module, the RemedIoT

framework proposed in [38] to detect and resolve IoT

app conflicts concerning policies. Racing events and

cyclic events are the main conflicts detected and

resolved by RemedIoT. Although RemedIoT has the

capability for remedial actions, it fails to detect

conflicts in event services that depend on integer

devices (e.g., “IF home mode THEN acThermostat =

18” and “if home temperature > 30 then

acthermostate = 20”), since it supports only event

services with ON or OFF states. Also, RemedIoT did

not support combined event services conflict with

policies.

Soteria [39] and IoTGuard [16] are two

frameworks for IoT app verification. In Soteria, static

analysis is performed to detect violations against

identified properties. On the other hand, IoTGuard,

safety, and security proprieties are checked during

run-time IoT app interactions. Both frameworks are

based on model checking (e.g., NuSMV [40]). The

unified dynamic model defined in IoTGuard requires

the IoT apps to have a shared events chain between

them which consider a limitation in IoTGuard.

The security and safety of cross-app IoT

interaction policies are investigated in [41] using the

process calculus. The interaction policies defined in

their work allow the detection of syntactic and

semantic conditions for IoT apps, but they did not

consider environmental requirements when two

systems of apps interact.

3.1 Conventional conflict checking techniques

weaknesses

To the best of our knowledge, the main

weaknesses of the conventional conflict checking

techniques are:

1. Some works are suitable for a limited number

of IoT apps, which restricts their techniques'

scalability.

2. Detecting inter-IoT apps interference is

limited to specific device types, which limits

device heterogeneity and coverage of their

techniques.

3. Some works oblige the IoT apps to form an

event chain between them to detect the inter-

IoT apps conflict, which constraints their

frameworks to detect other conflicts under

different circumstances.

4. Ignoring the system policies for ensuring

system correctness, adds a limitation to their

frameworks, where these policies consider an

Received: July 25, 2022. Revised: September 4, 2022. 354

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.33

Figure. 3 User A IoT automation app as described in scenario 1

important effect in detecting conflicts.

5. Uncovering conflicts that can result from joint

behavior situations, minimize their conflict

coverage.

The proposed prototype helps to fill these gaps in

recent IoT app verification frameworks. Also, it can

be suitable for the intrinsically dynamic and

unpredictable nature of IoT systems, thereby

ensuring more system correctness and safety in

building automation.

4. Methodology

In this section, we explain in detail the joint-

behavior concept and the enhanced framework for

conflict detection and resolution.

4.1 IoT apps interactions levels

In BAS, there are two main types of IoT apps

which represent the automation behavior s [15, 35].

The first IoT app type is the user automation service

(a.k.a. user policy or dynamic behavior policy) which

represents user intentions to automate and control the

surrounded environment behavior. The second IoT

app type is the system policy (a.k.a. system axiom

policy) which means invariants that must be valid and

not allowed for any user’s service to disregard.

According to the interaction detection taxonomy

provided in [35], there are three types of interactions

between these IoT apps types in the smart home as an

example of smart buildings:

• Interactions between two system axiom

policies,

• Interactions between a dynamic behavior

policy and a system axiom policy, and

• Interactions between two dynamic behavior

policies.

Similarly, Ibrhim et al. [15] proposed an IoT apps

conflicts classification that defines the conflicts

related to these interactions and mentioned another

interaction between IoT apps that may take place in

BAS or smart homes that is:

• Interactions between a set of IoT apps and

system policies.

Following are definitions of some terms that

emphasize the primary conflict type under discussion

in this work.

Joint-behavior situation a system situation, Syssit,

where a set of IoT automation apps IoTapps = {app1,

app2, ..., appn} satisfy these conditions:

1. each appi ∈ IoTapps is satisfied or triggered by

Syssit,

2. IoTapps are belonging to different users,

3. IoTapps sharing spatial-temporal aspects, and

4. individually, each IoT app in IoTapps does not

cause any type of conflicts according to [42].

The IoT apps in Figs. 3 and 4 represent the users’

preferences as described in scenario 1. Based on the

above definition, these IoT apps satisfy their

conditions, as they have different owners (UserID =

Received: July 25, 2022. Revised: September 4, 2022. 355

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.33

Figure. 4 User B IoT automation app as described in scenario 1

Figure. 5 Conflict report generated by [42] when

individually checking IoT apps in Figs. 3 and 4

123 and UserID = 456), and they overlap in time and

location. Figure 5 represents the conflict report

generated by [42] when checking these IoT apps

individually either against shared services or against

shared policies.

IoT apps joint-behavior conflict based on [15], is

the conflict that occurs when a joint-behavior

situation takes place, and the effects of its IoT apps

violate a system policy or a set of policies.

Based on this definition, the joint-behavior

situation that occurs between IoT apps in Figs. 3 and

4 violates the system policy in Fig. 6 since there is no

satisfying assignment for,

(ALight = False ∩ Window = True) ∩ (BLight = True

∩ AC = True) ∩ ¬(Window = True ∩ AC = True)

4.2 Joint-behavior conflict detection and

resolution

One of the popular methods used to examine

every possible state of the system is model checking

[43]. Among the techniques that are still used to

Figure. 6 System policy as described in scenario 1

Received: July 25, 2022. Revised: September 4, 2022. 356

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.33

determine the satisfiability for multi-theory logic

formulas using a mathematical model is Satisfiability

Modulo Theories (SMT) using SMT-based model

checkers such as Z3 [44].

A step forward to make IoT apps and system

policy in Figs. 3, 4, and 6 convenient to SMT model

checkers, is to translate them to a standard logic

language. In our proposed model, the SMT-based Z3

solver [44] and the SMTLib-v2 [45] standard

language are used. In particular, joint-behavior IoT

apps are translated to conditional assertions using the

assert operator in prefix notation with => operator,

which means a conditional statement. Unlike IoT

apps, policies translated to fact assertions (i.e.,

without if clause) that are always true. For instance,

the translation of scenario 1 IoT apps and policy

mentioned previously are as follows:

User A IoT app:

(define-fun Aoccupany () Bool)
(define-fun Alight () Bool)
(define-fun window () Bool)
(assert (=> Aoccupany (and (not Alight)
 window)))

User B IoT app:

(define-fun Boccupany () Bool)
(define-fun Blight () Bool)
(define-fun AC () Bool)
(assert (=> Boccupany
 (and Blight AC)))
Location Policy:

(define-fun window () Bool)
(define-fun AC () Bool)
(assert (not (and window AC)))

4.2.1. Conflict detection

Pseudocode for the conflict detection process is

provided in Algorithm 1.

Pseudocode analysis:

1. Initialization (Line 1): declares one variable,

Jconflist, to store the set of rules and policies

IDs that cause a Joint-Behavior conflict.

2. Detection process (Lines 2-13): this part

describes the process used in identifying and

detecting the conflict under consideration as

follows:

• Rules preparation, (lines 3 & 4): the

overlapped rules are collected and stored in

the Overlaps variable using the

getOverlappedIoTapp() method by checking

the time and locations of the input IoT app

with the existing IoT apps. The method

getAllCombinations() is used to generate all

k-subsets of combinations between the rules

in Overlaps without ordering. These k-

subsets are stored in the Combs variable. The

formula below is used to obtain the number

of different possible combinations nCombsk.

nCombsk = n! / (k! (n-k)!) (1)

For instance, let Overlaps includes four

overlapped rules {RB, RC, RD, RE} with RA

of the new-added IoT app for a specific

location. The number of rules used to

generate combinations is 5. The 2-subset

combinations where the number of rules in

each subset is k = 2 is 5Combs2 = 10 and

includes these pairs of rules {RARB, RARC,

RARD, RARE, RBRC, RBRD, RBRE, RCRD,

RCRE, RDRE}.

• Rules minimization, (lines 6 and 7): to

minimize the number of combinations to be

checked, only the combinations that contain

rules of the new-added IoT are selected (line

6). According to the above example, only the

subsets that contain RA are selected for

checking, which are {RARB, RARC, RARD,

RARE}. Another minimization was

performed to reduce the overhead load in the

Z3 solver by ignoring any upcoming subset

where some of its components are causing a

joint-behavior conflict in a previous less

sized subset (line 7). For instance, if the

subset {RARB} causes a conflict, then all

subsets of other combination sized that

contain this pair of rules (e.g., {RARBRC}) are

ignored, as it will generate the same conflict

• Policies preparation & translation, (lines 8

and 9): the joint-behavior conflict is detected

when the joint-behavior situation (defined in

section 4) violates a system policy, for this,

the policies constraints located in the same

location are collected using getAllPolicies()

method and stored in Locpols variable for

further use. The translate() method is used to

convert the rules or policies to an

intermediate format (i.e., SMTLib syntax) as

explained in subsection 4.2.

• Z3 checking, (lines 12 and 13): to confirm

that the conflict has occurred, the two

translated rule subset and policy constraint,

trans subset and trans pol respectively, are

checked using the Z3 solver. If the

intersection between them is UNSAT then

Received: July 25, 2022. Revised: September 4, 2022. 357

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.33

Figure. 7 Conflict report generated by the conflict resolution for scenario 1 in Fig. 1

Figure. 8 The JSON schema used to generate IoT apps

the pair is added to the conflict list Jconflist.

3. Time complexity: Algorithm 1 iterates over

the generated combinations and policies for

each location in the submitted IoT app.

Although the number of combinations and

policies can be large for real-world smart

buildings like large campuses, the algorithm

only considers the rules and policies that occur

in the same fine-grained location and follows a

filtering process that considerably reduces the

overall number of iterations and checking

process. Under the assumption that the total

number of locations customized by an IoT app

is at most one location, algorithm 1 runs in

O(nm), where n is the number of combinations

and m is the number of policies.

4.2.2. Conflict resolution

The next step is to generate a solution for the

detected conflicts.

The joint-behavior conflict is solved using user

prioritization, which focuses on the highest authority

assigned to users [46]. Using prioritization, users are

assigned a priority (given to them by the system

Received: July 25, 2022. Revised: September 4, 2022. 358

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.33

admin when adding a new user to the system) that

represents the level of the user's capability to perform

his IoT automation app over other users. For instance,

in Figs. 3 and 4, the priorities of userA and userB are

1 and 3, respectively. According to this resolution

method, the IoT app that will take place and change

the environment states is the userB’ IoT app.

Another resolution for the joint-behavior conflict

is conducted by suggesting updating the new-added

IoT app rules. Using Algorithm 1, the policy violated

by the joint-behavior IoT apps can be determined.

Using this policy, the valid values for the new-added

IoT app devices that cause the joint-behavior conflict

are suggested as a solution. Fig. 7 shows a conflict

report generated from the conflict resolution when

checking the joint-behavior for scenario 1 in Fig. 1.

The conflict report shows the IoT apps (services with

IDs 1 and 2) and the policy (policy ID = 1) causing

the joint-behavior conflict. According to this

resolution method, with the assumption that the

service with ID = 2 is the new-add IoT app, the

suggested resolution for the detected conflict is

updating the value of the “AC” device to “False” in

the service with ID = 2.

5. Results and discussion

This section gives a detailed overview of the

conducted experiments as a proof-of-concept

evaluation using a refinement dataset for the

proposed IoT app joint-behavior conflicts checking.

5.1 Data refinement and setup

A proof-of-concept evaluation based on a dataset

of hand-refinement IoT automation apps and policies

collected from recent literature on IoT safety and

security [47, 36, 39, 16, 38, 32] is performed.

The dataset includes 80 different IoT apps for 15

different locations. The total number of rules in the

dataset is 117 rules. Also, the dataset consists of

system policies with 17 constraints. The dataset is

available online in a public Github repository1 for

further use. The dataset refinement process is as

follows:

1- Customizing the domain of scenarios to

cover diverse campus automation real-life

use cases.

2- Adding the missing attributes for the IoT

apps and policies such as location, time, and

priority.

3- Configuring the scenarios to cause some

1 https://github.com/HamadaIbrahim-

fci/automationservicesdataset, accessed on July 16, 2022.

joint-behavior violations as defined before.

The above synthetic refinement and the

randomly generated IoT apps are represented in the

JSON schema, Figs. 3 and 4 are examples of IoT apps

using this JSON schema. The code used for

generating the synthetic rules is uploaded to the same

public GitHub repository mentioned before. The

synthetic refinement code could be used to generate

different types of rules (e.g., simple condition-action

rules and complex rules) and policy assertions (e.g.,

device group conditions with the and/or operator). All

the IoT apps and policies generated have the required

environmental context attributes (time and location).

Fig. 8 shows an example of a schema that

defines a simple IoT app. The first line contains

information about the schema, $schema keyword,

that defines the version of the schema follows

(i.e., ’draft-04’). The keywords from lines 4 to 12

describe the IoT app metadata (i.e., IDs, time,

location, and rules). The values of these keywords

can be one of the supported JSON types or subtypes.

For instance, the Rules keyword is a JSON array

type that contains metadata about the IoT app

automation rules in the form of IFTTT-style rules.

Each item in the rules array is an object that includes

the required keywords to define the rule properties

(i.e., Ser_ID, R_ID, Priority, RLoc, conditionGroup,

and actionGroup). All the defined keywords in the

JSON schema are required keywords, which requires

each IoT app to have values for them.

The host machine was running Linux Mint 18.04

on hardware consisting of a Core i7 processor and

8GB of RAM. All evaluations are performed locally

in the host machine using Eclipse IDE for running the

code and curl commands2 for requests to check the

IoT automation apps.

Table 1 represents a subset of policies used to

evaluate the proposed checking model. These

policies correspond to real-world invariants used to

control a building. For instance, policy4 ensures

safety at the office entrance and says that the main

office door should be locked when no one is in the

office. Another policy, policy10, ensures occupants’

safety in emergencies. If a joint-behavior situation

violates any co-location policies, we conclude with a

joint-behavior conflict.

5.2 Experiments

A theoretical comparison against a set of related

work for supporting the joint-behavior conflict

2 Command line tool and library for transferring data with

URLs, https://curl.se/, August 5, 2022

Received: July 25, 2022. Revised: September 4, 2022. 359

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.33

Table 1. A subset of policies constraints used in the

evaluation
ID Location Constraints

policy1 Office5 AC and Window must not be

on at the same time

policy2 Hall1 Curtain and Window must be

off when Datashow is running

policy3 Lab1 Temperature should be within

a predefined range when

students exist

policy4 Office3 The main door should be

locked when no one is in office

policy5 Office2 Location mode should be

changed to Away when no one

is in office

policy6 Office1 An alarm should strobe/siren

when detecting smoke in office

policy7 Office5 Some devices should not be

turned on when no one is at

office

policy8 Office4 The light should be off when

no one is in hall

policy9 Hall3 The battery of devices must not

be below a specified threshold

policy10 Hall2 The emergency alarming

system must be on

Figure. 9 Average run-time for joint behavior conflict

checking automation services interaction checking is

shown in Table 2. Although all mentioned work in

the comparison supports different users in creating

IoT automation apps and supporting inter-IoT apps

interactions checking, the proposed conflict checking

has more features than previous work. The proposed

conflict checking supports policy involvement and

detects a joint-behavior conflict. The inter-IoT app

interferences mean conflicts resulting from multiple

IoT apps interplaying over shared devices under

specific circumstances. The proposed works in [36,

38, 16, 42] detected IoT apps conflicts based on event

chain between apps, specific device types (On/Off),

or contradicting events. Works in [29, 23, 24, 32]

detected IoT apps interferences based on device

influences over specific environment entities (e.g.,

temperature).

For example, the scenario in Table 3 includes IoT

Table 2. Comparing the proposed joint-behavior IoT apps

conflicts with other conflict detection frameworks

Reference

Features

M
u

ltip
le

U
sers

In
te

r
-Io

T

a
p

p
s

in
terfer

en
ce

s

P
o

licies

p
ro

p
erties

J
o

in
t-

b
eh

a
v

io
r

co
n

flict

d
etec

tio
n

Nguyen et

al. [36]
✔ ✔ ✔ ✗

Wang et

al. [29]
✔ ✔ ✗ ✗

Liu et al.

[38]
✔ ✔ ✔ ✗

Xiao et al.

[23]
✔ ✔ ✗ ✗

Celik et

al. [16]
✔ ✔ ✔ ✗

Chaki et

al. [24]
✔ ✔ ✗ ✗

Gu et al.

[32]
✔ ✔ ✗ ✗

Ibrhim et

al. [42]
✔ ✔ ✔ ✗

The

proposed

conflict

checking

✔ ✔ ✔ ✔

app23 as the new-added IoT app, it overlapped in

location and time with different IoT apps (e.g., IoT

app1, IoT app5, IoT app18, IoT app22, IoT app26,

and IoT app27). The total number of rules in these

IoT apps is eight rules. To determine the IoT app(s)

that cause a joint-behavior conflict with the IoT

app23, all the interactions between this new-added

IoT app and these IoT apps are checked by finding all

possible combinations between them.

In the case of finding the combinations containing

pairs of rules, k = 2, there are 36 combinations. This

number of combinations signifies the number of the

joint-behavior detection process. To optimize the

detection process, this number is minimized by

removing all combinations that do not include the IoT

app23’ rule. As a result of this minimization, there are

only eight combinations. Each subset in these eight

combinations is checked against all policy constraints

that have the exact location to determine if it causes

a joint-behavior conflict or not. Two joint-behavior

conflicts between two pairs of IoT apps (IoT app23,

IoT app22) and (IoT app23, IoT app27) are obtained.

With increasing the number of rules in the

combination to 3 rules, k = 3, the joint-behavior

detection process is performed for only nine subsets

instead of checking all the 84 combinations. All

Received: July 25, 2022. Revised: September 4, 2022. 360

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.33

Table 3. A joint-behavior conflict scenario
New-added

IoT app

Joint-behavior

situation

Violated policy

IoT app23:
BOccupancy

= T →

BLight = T
AC = T

IoT app1:

Userstay >= 30 →

WFO = T

WFO = T →

Textstate = F

IoT app5:

Intemperature

>=70 → AC = T

Intemperature

<=60 → Heater =

T

IoT app18:

Smoke = T → Fan

= T

IoT app22:

AOccupancy = T

→ ALight = F and

Window = T

IoT app26:

Inoffice = T →

AC = T

IoT app27:

CO2 > 1000 →

Window = T

Policy1:

AC and Window

must not be on at

the same time

combinations that include either (IoT app23, IoT

app22) or (IoT app23, IoT app27) rule pairs are

ignored as a second minimization to the number of

the detection process. This process of creating

combinations and minimizing the number of the

detection process is followed until only one

combination of size k = 9, which contains all IoT apps’

rules is reached.

Fig. 9 shows the average run-time for checking

joint-behavior conflict for some formulated scenarios.

Here, the run-time is the time to detect and resolve

the joint-behavior conflict. It includes collecting IoT

apps’ meta-data, files accessing and creating, and the

time of converting IoT apps to intermediate formats.

For each subset, the average run-time of ten conflict-

checking processes using the Z3 solver is measured.

Also, Fig. 9 provides a proof-of-concept

evaluation for the joint-behavior conflict detection.

The average run-time for a scenario includes four

overlapped rules, which is 0.04 sec is much less than

the average run-time taken by a different scenario

includes eight overlapped rules of 0.319 sec. Some

factors causing this significant difference in terms of

average run-time among them are the number of

overlapped rules in the joint-behavior scenario,

which determines the combinations produced, the

number of policy constraints involved in the checking

process, and the number of ignored ones services

during the checking process.

6. Conclusion and future work

This paper proposed a simple yet effective

conflict detection and resolution process for the

conflict resulting from violating system or

environment policies due to multi-user contexts

overlapping. The proposed checking process

considers an extension of the framework provided in

[42] and is also based on SMT model checker Z3 and

its related SMTLib-v2 formalization language. The

main advantage of the proposed checking process is

that it can be integrated and used in different BAS

verification systems to increase the system’s degree

of safety and correctness. We conducted a proof-of-

concept experiment based on a dataset collected and

refined from related work. Based on our sought, the

joint-behavior conflicts are correctly detected and

resolved against all policy constraints in the dataset.

Also, results are promising in detecting the conflict

between the different number of IoT apps in a

reasonable average run time. Among the future works

needed are added other uncovered conflicts such as

time-based conflicts that result in temporal behavior

of rules and enhancing the framework to support

large-scale industrial building in the IoT automation

domain.

Funding

This research is funded by the Deanship of

Scientific Research, Islamic University of Madinah,

Madinah, Saudi Arabia.

Conflicts of interest

The authors declare no conflict of interest.

Author contributions

“Conceptualization, Hamada, Hisham, and Emad;

methodology, Hamada, Ahmed and Emad;

Implementation, Hamada; Hisham, Ahmed, and

Emad; formal analysis, Hamada; Hisham, Ahmed,

and Emad; writing—original draft preparation,

Hamada; Hisham, Ahmed, and Emad; supervision,

Emad and Hisham”.

References

[1] P. Stluka, G. Parthasarathy, S. Gabel, and T.

Samad, “Architectures and Algorithms for

Received: July 25, 2022. Revised: September 4, 2022. 361

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.33

Building Automation--an Industry View”,

Intelligent Building Control Systems, Springer,

pp. 11-43, 2018.

[2] S. A. Karvigh, A. Ghahramani, B. B. Gerber,

and L. Soibelman, "One size does not fit all:

Understanding User Preferences for Building

Automation Systems", Energy and Buildings,

Vol. 145, pp. 163-173, 2017.

[3] D. H. Ford, "Humans as Self-constructing

Living Systems: A Developmental Perspective

on Behavior and Personality", Routledge, 2019.

[4] M. Mangla, R. Akhare, and S. Ambarkar,

"Context-aware Automation Based Energy

Conservation Techniques for IoT Ecosystem",

Energy Conservation for IoT Devices, pp. 129-

153, 2019.

[5] P. Domingues, P. Carreira, R. Vieira, and W.

Kastner, "Building Automation Systems:

Concepts and Technology Review", Computer

Standards & Interfaces, Vol. 45, pp. 1-12, 2016.

[6] J. D. L. Morenas, C. M. D. Silva, J. Barbosa, and

P. Leitao, "Low Cost Integration of IoT

Technologies for Building Automation", In:

Proc. of IECON 2019-45th Annual Conference

of the IEEE Industrial Electronics Society, Vol.

1, pp. 2548-2553, 2019.

[7] B. Ur, E. M. Manus, M. P. Y. Ho, and M. L.

Littman, "Practical Trigger-Action

Programming in the Smart Home", In: Proc. of

the SIGCHI Conf. on Human Factors in

Computing Systems, ACM, pp. 803-812, 2014.

[8] J. Huang and M. Cakmak, "Supporting Mental

Model Accuracy in Trigger-Action

Programming", In: Proc. of the 2015 ACM

International Joint Conference on Pervasive

and Ubiquitous Computing, pp. 215-225, 2015.

[9] M. Funk, L. Chen, S. Yang, and Y. Chen,

"Addressing the Need to Capture Scenarios,

Intentions and Preferences: Interactive

Intentional Programming in the Smart Home",

International Journal of Design, Vol. 12, No. 1,

pp. 53-66, 2018.

[10] Z. Pan, S. Hariri, and J. Pacheco, "Context

Aware Intrusion Detection for Building

Automation Systems", Computers & Security,

Vol. 85, pp. 181-201, 2019.

[11] M. Jain, A. Varma, N. Kaushik, and K. Jayavel,

"Building Automation and Context Aware

Energy Consumption using IoT—Smart

Campus", International Journal of Applied

Engineering Research, Vol. 12, No. 14, pp.

4213-4220, 2017.

[12] R. Mohamed, T. Perumal, M. Sulaiman, and N.

Mustapha, "Multi Resident Complex Activity

Recognition in Smart Home: a Literature

Review", International Journal of Smart Home,

Vol. 11, No. 6, pp. 21-32, 2017.

[13] R. Garg and C. Moreno, "Understanding

Motivators, Constraints, and Practices of

Sharing Internet of Things", In: Proc. of the

ACM on Interactive, Mobile, Wearable and

Ubiquitous Technologies, ACM, Vol. 3, No. 44,

pp. 1-21, 2019.

[14] C. Geeng and F. Roesner, "Who's in Control?

Interactions in Multi-user Smart Homes", In:

Proc. of the 2019 CHI Conf. on Human Factors

in Computing Systems, ACM, No. 268, pp. 1-13,

2019.

[15] H. Ibrhim, H. Hassan, and E. Nabil, "A Conflicts’

Classification for IoT-based Services: a

Comparative Survey", PeerJ Computer Science,

Vol. 7, p. e480, 2021.

[16] Z. Celik, G. Tan, and P. D. M. Daniel,

"IoTGuard: Dynamic Enforcement of Security

and Safety Policy in Commodity IoT", In: Proc.

of the Network and Distributed System Security

(NDSS) Symposium, 2019.

[17] C. Nandi and M. D. Ernst, "Automatic Trigger

Generation for Rule-based Smart Homes", In:

Proc. of the 2016 ACM Workshop on

Programming Languages and Analysis for

Security, pp. 97-102, 2016.

[18] S. Yarosh and P. Zave, "Locked or not? Mental

Models of IoT Feature Interaction", In: Proc. of

the 2017 CHI Conf. on Human Factors in

Computing Systems, pp. 2993-2997, 2017.

[19] E. Zeng, S. Mare, and F. Roesner, "End User

Security and Privacy Concerns with Smart

Homes", In: Proc. of the Thirteenth Symposium

on Usable Privacy and Security (SOUPS 2017),

pp. 65-80, 2017.

[20] R. Jayaprakash, S. Nagarathinam, S. Agrawal, R.

Suriyanarayanan, and A. Sivasubramaniam,

System and Method for Efficient Verification of

Building Automation Systems, U.S. Patent, 2021.

[21] E. Zeng and F. Roesner, "Understanding and

Improving Security and Privacy in Multi-User

Smart Homes: A Design Exploration and In-

Home User Study", In: Proc. of the 28th

USENIX Security Symposium (USENIX Security

19), pp. 159-176, 2019.

[22] C. Barrett and C. Tinelli, "Satisfiability Modulo

Theories", Handbook of Model Checking,

Springer, pp. 305-343, 2018.

[23] D. Xiao, Q. Wang, M. Cai, Z. Zhu, and W. Zhao,

"A3ID: an Automatic and Interpretable Implicit

Interference Detection Method for Smart Home

via Knowledge Graph", IEEE Internet of Things

Journal, Vol. 7, No. 3, pp. 2197-2211, 2019.

[24] D. Chaki, A. Bouguettaya, and S. Mistry, "A

Received: July 25, 2022. Revised: September 4, 2022. 362

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.33

Conflict Detection Framework for IoT Services

in Multi-resident Smart Homes", In: Proc. of

2020 IEEE International Conf. on Web Services

(ICWS), pp. 224-231, 2020.

[25] A. A. Farooq, E. A. Shaer, T. Moyer, and K.

Kant, "IoTC 2: A Formal Method Approach for

Detecting Conflicts in Large Scale IoT Systems",

In: Proc. of the 2019 IFIP/IEEE Symposium on

Integrated Network and Service Management

(IM), pp. 442-447, 2019.

[26] M. Palekar, E. Fernandes, and F. Roesner,

"Analysis of the Susceptibility of Smart Home

Programming Interfaces to End User Error", In:

Proc. of the 2019 IEEE Security and Privacy

Workshops (SPW), pp. 138-143, 2019.

[27] T. Shah, S. Trusit, T. Ngo, and K. Neelamegam,

"Conflict Detection in Rule Based IoT Systems",

In: Proc. of the 2019 IEEE 10th Annual

Information Technology, Electronics and

Mobile Communication Conf. (IEMCON), pp.

0276-0284, 2019.

[28] A. Krishna, M. L. Pallec, R. Mateescu, L. Noirie,

and G. Salaün, "IoT Composer: Composition

and Deployment of IoT Applications", In: Proc.

of the 2019 IEEE/ACM 41st International Conf.

on Software Engineering: Companion

Proceedings (ICSE-Companion), pp. 19-22,

2019.

[29] Q. Wang, P. Datta, W. Yang, S. Liu, A. Bates,

and C. A. Gunter, "Charting the Attack Surface

of Trigger-Action IoT Platforms", In: Proc. of

the 2019 ACM SIGSAC Conf. on Computer and

Communications Security, pp. 1439-1453, 2019.

[30] T. Melissaris, K. Shaw, and M. Martonosi,

"OKAPI: in Support of Application Correctness

in Smart Home Environments", In: Proc. of the

2019 Fourth International Conf. on Fog and

Mobile Edge Computing (FMEC), pp. 173-180,

2019.

[31] Y. Lee and F. J. Lin, "Situation Awareness and

Conflict Resolution in Smart Home with

Multiple Users", In: Proc. of the 2019 IEEE 5th

World Forum on Internet of Things (WF-IoT),

pp. 852-857, 2019.

[32] T. Gu, Z. Fang, A. Abhishek, H. Fu, P. Hu, and

P. Mohapatra, "Iotgaze: IoT Security

Enforcement via Wireless Context Analysis", In:

Proc. of the IEEE INFOCOM 2020-IEEE Conf.

on Computer Communications, pp. 884-893,

2020.

[33] S. Han, G. M. Lee, and N. Crespi, "Towards

Automated Service Composition using Policy

Ontology in Building Automation System", In:

Proc. of the 2012 IEEE Ninth International Conf.

on Services Computing, pp. 685-686, 2012.

[34] S. Han, G. M. Lee, and N. Crespi, "Context-

aware Service Composition Framework in Web-

enabled Building Automation System", In: Proc.

of the 2012 16th International Conf. on

Intelligence in Next Generation Networks, pp.

128-133, 2012.

[35] M. Shehata, A. Eberlein, and A. Fapojuwo,

"Using Semi-formal Methods for Detecting

Interactions among Smart Homes Policies",

Science of Computer Programming, Vol. 67, No.

2-3, pp. 125-161, 2007.

[36] D. Nguyen, C. Song, Z. Qian, S. V.

Krishnamurthy, E. J. M. Colbert, and P. M.

Daniel, "IotSan: Fortifying the Safety of IoT

Systems", In: Proc. of the 14th International

Conf. on emerging Networking Experiments and

Technologies, pp. 191-203, 2018.

[37] G. Holzmann, "The Model Checker SPIN",

IEEE Transactions on Software Engineering,

Vol. 23, No. 5, pp. 279-295, 1997.

[38] R. Liu, Z. Wang, L. Garcia, and M. Srivastava,

"RemedioT: Remedial Actions for Internet-of-

Things Conflicts", In: Proc. of the 6th ACM

International Conf. on Systems for Energy-

Efficient Buildings, Cities, and Transportation,

pp. 101-110, 2019.

[39] Z. Celik, P. M. Daniel, and G. Tan, "Soteria:

Automated IoT Safety and Security Analysis",

In: Proc. of the 2018 USENIX Annual Technical

Conf, (USENIX ATC 18), pp. 147-158, 2018.

[40] A. Cimatti, E. Clarke, E. Giunchiglia, F.

Giunchiglia, M. Pistore, M. Roveri, R.

Sebastiani, and A. Tacchella, "Nusmv 2: An

Opensource Tool for Symbolic Model

Checking", In: Proc. of International Conf. on

Computer Aided Verification, pp. 359-364, 2002.

[41] M. Balliu, M. Merro, M. Pasqua, and M.

Shcherbakov, "Friendly Fire: Cross-app

Interactions in IoT Platforms", ACM

Transactions on Privacy and Security (TOPS),

Vol. 24, No. 3, pp. 1-40, 2021.

[42] H. Ibrhim, S. Khattab, K. Elsayed, A. Badr, and

E. Nabil, "A Formal Methods-based Rule

Verification Framework for End-user

Programming in Campus Building Automation

Systems", Building and Environment, Vol. 181,

2020.

[43] R. Jhala and R. Majumdar, "Software Model

Checking", ACM Computing Surveys (CSUR),

Vol. 41, No. 4, pp. 1-54, 2009.

[44] L. Moura and N. Bjørner, "Z3: An Efficient

SMT Solver", In: Proc. of International Conf. on

Tools and Algorithms for the Construction and

Analysis of Systems, pp. 337-340, 2008.

[45] C. Barrett, A. Stump, and C. Tinelli, "The Smt-

Received: July 25, 2022. Revised: September 4, 2022. 363

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.33

lib Standard: Version 2.0", In: Proc. of the 8th

International Workshop on Satisfiability Modulo

Theories (Edinburgh, UK), Vol. 13, pp. 14, 2010.

[46] J. Durkin and J. Durkin, "Expert systems: design

and development", Prentice Hall PTR, 1998.

[47] W. Ding and H. Hu, "On the Safety of IoT

Device Physical Interaction Control", In: Proc.

of the 2018 ACM SIGSAC Conference on

Computer and Communications Security, pp.

832-846, 2018.

