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Abstract: The study proposes a BVU-Net architecture that combines the advantages of VGG and U-Net. The VGG 

architecture has a smaller kernel size which speeds up the training process. VGG bears some resemblance to the 

Encoder portion of U-Net. In this study, the BVU-Net encoder uses the VGG architecture with the addition of batch 

normalization. The addition of batch normalization aims to help simplify weight initialization so that the training 

process is faster and reduces the risk of overfitting, while the decoder section still uses the U-Net architecture. BVU-

Net is expected to be able to overcome the weakness of U-Net architecture in retinal image blood vessel segmentation. 

The performance results produced by BVU-Net on the DRIVE dataset are 96.36% accuracy, 78.71 sensitivity, 98.1% 

specificity, F1-score 78.9, and IOU 0.65. The results of BVU-Net performance on the STARE dataset are accuracy of 

96.39%, sensitivity of 79.35%, specificity of 98.52%, F1-score of 77.16%, and IoU of 0.63. Based on these results 

indicate that BVU-Net has a better performance on the DRIVE dataset in detecting retinal blood vessels than STARE. 

This can be seen from the sensitivity value of DRIVE which is higher than STARE. The BVU-Net IoU results on 

DRIVE and STARE are greater than 0.5 and the F1-score above 70%, indicating that BVU-Net is capable and balanced 

in detecting the intersection area between blood vessels and the background on retinal images. 

Keywords: CNN method, Retinal blood vessels, Segmentation, U-Net architecture, VGG architecture. 

 

 

1. Introduction 

The retina is consisted of millions of nerve cells or 

photoreceptors that react to light [1]. The structure of 

the retinal blood vessels can help detect Diabetic 

Retinopathy (DR) [2]. So far, the detection of retinal 

blood vessels has been done manually by 

ophthalmologists through retinal images taken from 

the fundus camera. The image results obtained usually 

have reasonably low image quality, and there is still 

noise, making it difficult for ophthalmologists to 

detect diseases of the retina [3]. In this case, an 

automatic retinal diagnosis system with the help of a 

computer is needed, which can be developed to assist 

ophthalmologists in conducting a more efficient and 

accurate retinal diagnosis, namely retinal blood vessel 

segmentation [4]. 

Convolutional neural network (CNN) is one of the 

segmentation methods with strong capabilities when 

trained with large datasets [5]. The primary ability of 

CNN lies in its architecture, where the architecture 

that is often used in biomedical segmentation is U-Net 

[6]. U-Net is a U-shaped architecture consisting of 

two paths, namely encoder (contract layer) and 

decoder (extension layer). The encoder path process 

is used to reduce the size of the input matrix by 

increasing the number of feature maps. In contrast, the 

decoder path returns the matrix to its original size by 

minimizing the number of feature maps so that the 

image can be segmented [7]. The study in [8] used U-

Net in retinal blood vessel segmentation with the 

DRIVE dataset. It yielded 94% accuracy, 72% 

sensitivity, and 97% specificity. Other research by Fu 

et al in [9] with the DRIVE dataset delivered a 
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sensitivity value of 72% and an accuracy of 94%, 

while with the STARE dataset, it was 71% and 95%. 

Other research [10] with the DRIVE dataset yielded 

95% accuracy, 73% sensitivity, and 94% specificity. 

The three studies did not calculate other performance 

such as the Intersection over Union (IoU) and F-1 

score. In addition, the sensitivities were also relatively 

low. The U-Net architecture has a shallow learning 

layer which sometimes causes learning on features to 

be suboptimal. This causes the sensitivity generated 

by U-Net in some studies to be low. The addition of 

layers to the U-Net architecture can add to the 

complexity of the U-Net network so that the execution 

time required is long and the inability to run on some 

computers with limited specifications [7]. 

One way to address the problem of U-Net is by 

combining different architectures. The visual 

geometry group (VGG) encoder path has a similar 

structure to U-Net but with a deeper layer. Despite 

having a deeper layer, VGG uses a smaller kernel to 

help speed up training times [7]. Several studies that 

modified the U-Net and VGG architectures: the study 

in [11] proposed the VGG-16 and U-Net 

architectures in the brain segmentation process 

resulting in F1-score values above 90%. Another 

study by [12] proposed the VGG and U-Net 

architecture for ultrasonic image detection but it 

produced PSNR and SSIM values of 39 dB and 0.99, 

respectively. Another study in [13] proposed a U-Net 

architecture with a VGG encoder in the multi-class 

segmentation of heart images resulting in an F1-score 

of 94.3%.  

The VGG architecture layer belongs to a very 

deep layer so it can produce a large number of 

parameters [14]. The deeper the layer, the more 

parameters are used and the more difficult it is to 

initialize the learning weights. Batch normalization is 

a regularization technique used to assist the learning 

process. although it does not significantly help 

overcome overfitting such as dropout, batch 

normalization can reduce internal covariance changes 

and avoid instability of activation distribution in deep 

network layers[15]. on deeper networks with many 

parameters, weights are difficult to initialize. Batch 

normalization makes weights easier to initialize. It 

allows for a much higher learning rate thereby 

increasing the speed of the training network and 

reducing the risk of overfitting[15]. Batch 

normalization performs a normal distribution by 

adjusting the distribution average and the input layer 

variance [14]. Research in [16] proposed a U-Net 

architecture by adding a batch normalization layer to 

brain tumor segmentation resulting in an average F1-

score of 86%. The study in [17] proposed the DCNN 

U-Net architecture by adding batch normalization to 

the segmentation of skin lesions resulting in 93% 

accuracy, 82.9% sensitivity, 98.9% specificity, 

75.2% IoU, and 84% F1-score. Several studies have 

shown that adding batch normalization to CNN 

architectures such as U-Net and other architectures 

can improve model performance and speed up the 

training process. 

This study introduces a new architecture, namely 

BVU-Net to overcome weaknesses in U-Net and 

improve U-Net performance results. BVU-Net 

architecture is a combination of U-Net and VGG with 

the addition of batch normalization. VGG on BVU-

Net is implemented in the encoder part of U-Net to 

handle the activation distribution instability due to 

multiple layers and parameters. Batch normalization 

is added to each convolution layer on the encoder 

with the aim of making it easier to initiate learning 

weights and speed up the training process even 

though the learning layer is deeper. The proposed 

architecture is expected to be a robust architecture in 

blood vessel segmentation on retinal image. DRIVE 

and STARE datasets are used in this study to see the 

superior performance of BVU-Net based on the 

results of the accuracy, sensitivity, specificity, F1-

score obtained. 
The structure of the paper is organized as follows: 

section 2 presents the proposed method, which 

includes collecting data, image enhancement, the 

patching technique, BVU-Net architecture, training 

model, testing data, and evaluation. Section 3 

describes the results and discussion. Section 4 

concludes the paper. 

2. Methods 

The study has several steps, namely pre-

processing, architectural modification, training, 

testing, and evaluation (Fig. 1). 

2.1 Data collection 

The data used in this study is the digital retinal 

images for vessel extraction (DRIVE) and structured 

analysis of the retina (STARE) datasets. The DRIVE 

is freely available at https:// 

www.isi.uu.nl/Research/Databases/DRIVE/ with 40 

retinal image samples taken at random from 400 

people with diabetes aged between 25 and 90 years in 

the Netherlands. This dataset is divided into 20 

training images and 20 test images. In comparison, 

the STARE dataset obtained from the page 

https://cecas.clemson.edu/~ahoover/stare was a 

research project in 1975 at the university of 

California. This dataset consists of 400 retinal images,  

 

https://cecas.clemson.edu/%20~ahoover/stare
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Figure. 1 Workflow diagram of the proposed retinal blood vessel segmentation 

 

 
Figure. 2 Illustration of patching technique in the training 

process for retinal Image on STARE dataset 

 

of which 20 images have retinal blood vessel ground 

truth. 

2.2 Image enhancement 

Retinal imagery is an image enhancement process 

by first taking one of the channels in RGB. The green 

channel is one of the RGB channels chosen because 

it has high intensity and contrast in retinal blood 

vessels [1]. The mathematical equation used to obtain 

the green channel is Eq. (1) [18]. 

 

𝑔 =  
𝐺

(𝑅+𝐺+𝐵)
                               (1) 

 

where 𝑔 is the green channel, R is the red component, 

G is the green component, and B is the blue 

component. 

The results of the green channel are improved 

image quality using contrast limited adaptive 

histogram equalization (CLAHE). CLAHE is applied 

to images that have low contrast by dividing them 

into two parameters, namely block size (BS) and clip 

limit (CL). These two parameters control the image 

quality to be improved [18]. The histogram equation 

for each block can be defined as in Eq. (2) [18]. 

 

𝑁𝑎𝑣𝑔 =
𝑁𝑟𝑋 × 𝑁𝑟𝑌

𝑁𝑔𝑟𝑎𝑦
                          (2) 

 

where 𝑁𝑎𝑣𝑔 is the average number of pixels, 𝑁𝑔𝑟𝑎𝑦 is 

the number of grey levels, 𝑁𝑟𝑋 and 𝑁𝑟𝑌 is the number 

of pixels in the 𝑋  and 𝑌  dimensions, respectively. 

Perform CL calculations using Eq. (3) [18]. 

 
𝑁𝐶𝐿 =  𝑁𝑐𝑙𝑖𝑝 × 𝑁𝑎𝑣𝑔                           (3) 

 

where 𝑁𝐶𝐿  is the actual CL value, 𝑁𝑐𝑙𝑖𝑝  is the CL 

input value in the range [0, 1]. If the number of pixels 

is greater than 𝑁𝐶𝐿, the pixels will be truncated. 

The results of CLAHE are contour smoothing and 

the removal of thin objects in the image using 

morphology opening. The morphological opening 

equation is obtained from the erosion operation first 

and then the dilation operation. The morphological 

opening equation can be defined as Eqs. (4), (5), and 

(6) [18]. 

 
𝐴 ∘ 𝐵 =  (𝐴 ⊝ 𝐵) ⊕ 𝐵                          (4) 

 
𝐴 ⊕ 𝐵 = {𝑥|(𝐵)𝑥  ∩ 𝐴 ≠ 𝜙}                (5) 
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Figure. 3 VGG architecture for classification problem 

 
𝐴 ⊝ 𝐵 = {𝑥|(𝐵)𝑥  ∩ 𝐴𝐶  ≠ 𝜙}               (6) 

 

where 𝐴  is the original image, 𝐵  is an element 

structure or operator matrix ⊝  is an erosion 

operation, and ⊕ a dilation operation. 

2.3 Image patching 

The DRIVE and STARE datasets consist of 20 

and 40 training images, respectively. Generally, the 

performance of the CNN architecture is strongly 

influenced by a large amount of training data. 

Patching is a technique used to reproduce data. In 

training data patching works by dividing the image 

into small pieces randomly of the same size. While in 

the testing process, the patching technique is done by 

dividing the image into small pieces sequentially 

starting from the pixels at the starting point of the 

image with the same size as the patches on the 

training image. Fig. 2 illustrates the patching method 

utilized during the training procedure.  

As illustrated in Fig. 2, the patching approach 

used throughout the training phase involves plucking 

small, circular-shaped chunks from the retinal picture. 

As shown, there are three samples of patches that 

were chosen at random along the retinal image's 

diameter (𝑑) and were the same size. 

2.4 BVU-Net architecture 

BVU-Net architecture is modified using the VGG 

and the U-Net architecture. U-Net architecture is used 

for segmentation dan consists of two parts, namely 

the encoder and the decoder [6]. The VGG is a CNN 

architecture commonly used for classification 

consisting of 5 convolution blocks and 3 fully 

connected layers. Each block in VGG includes a 3×3 

convolution layer and max pooling. In the fifth block, 

the output matrix (flatten) is evenly distributed which 

produces two layers for classification.The VGG 

architecture, can be seen in Fig. 3. The VGG 

architecture is similar to the encoder on the U-Net 

architecture, where the difference is only in the 

number of convolutions in the 3rd to 5th block. The 

addition of a batch normalization process to each 

convolution block in the encoder path is to facilitate 

the initiation of weights in learning. The proposed 

BVU-Net architecture can be seen in Fig. 4. 

2.5 Training model 

The initial process carried out on the training data 

is to initialize the parameters used, such as the 

number of epochs and batch size. The next step is that 

the image input is divided into 60% training data and 

40% validation data before entering the training data 

process using architectural modifications. In this 

architecture, in the encoder path, a convolutional 

layer process will be carried out using Eq. (7) [12]. 

 

𝐴𝑞
𝑝

= (𝐶𝑝 ∗ 𝐾𝑞) + 𝑏𝑞                     (7) 

 

where * represents the convolution operation, where 

if the convolution operation is performed on each 

matrix entry, it will obtain Eqs. (8) and (9). 

 

𝑐𝑖,𝑗 ∗ 𝑘𝑖,𝑗 = (∑ ∑ (𝑐𝑢+𝑖,𝑣+𝑗 × 𝑘𝑢+1,𝑣+1)𝑛−1
𝑣=0

𝑛−1
𝑢=0 )     (8) 
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Figure. 4 The BVU-Net architecture; modification of U-Net and VGG architecture with addition of batch normalization 

on each convolution layer 

 

𝑎𝑖,𝑗 = (∑ ∑ (𝑐𝑢+𝑖,𝑣+𝑗 × 𝑘𝑢+1,𝑣+1)𝑛−1
𝑣=0

𝑛−1
𝑢=0 ) + 𝑏𝑞     (9) 

 
where 𝑖 is the row, 𝑗 is the column, 𝑛 is the kernel height 

measurement, 𝑝 is the number of input, 𝑞 is the number of 

filters, 𝐴𝑞
𝑝

 is the matrix of a result of 𝑞 -th convolution 

(feature maps) on 𝑝-th input, 𝑎𝑖,𝑗is the 𝑖-th row entry of the 

𝑗-th column in the matrix 𝐴𝑞
𝑝
, 𝐶𝑝is the input matrix, 𝑐𝑖,𝑗 is 

the 𝑗-th column of the 𝑖-th row entry of the 𝐶𝑝matrix, 𝐾𝑞is 

the 𝑞-th kernel matrix, 𝑘𝑖,𝑗is the 𝑖-th row entry of the 𝑗-th 

column in the 𝐾𝑞  matrix, and 𝑏𝑞 is the 𝑞-th bias. 

The results of the convolutional layer process are 

calculated using the ReLU activation function using 

Eq. (10) [19]. 

 

𝑟(𝑧) = 𝑚𝑎𝑥(𝑧, 0) = {
𝑧    𝑖𝑓 𝑧 ≥ 0
0    𝑖𝑓 𝑧 < 0

          (10) 

 
where 𝑟(𝑧) is the ReLU output, and 𝑧 is the activation 

function input. 

Each matrix entry obtained from the calculation of 

the ReLU activation function will be normalized with 

batch normalization using Eqs. (11), (12), and (13) [5]. 

 

𝜇𝑗 =
1

𝑚
∑ 𝑥𝑖𝑗

𝑚
𝑖=1                    (11) 

 

𝜎𝑗
2 =

1

𝑚
∑ (𝑥𝑖𝑗 − 𝜇𝑗)

2𝑚
𝑖=1           (12) 

 
𝑥𝑖𝑗 =  

𝑥𝑖𝑗−𝜇𝑗

√𝜎𝑗
2+𝜀

                       (13) 

 
where 𝜇𝑗is the average for each mini-batch (column), 

𝜎𝑗
2is the variance for each mini-batch, 𝑗 is the number 

of mini-batches, 𝑚 is the amount of data in one mini-

batch, 𝑥𝑖𝑗  is the normalized matrix entry, 𝑥𝑖𝑗  is the 

matrix entry input in the 𝑖-th row and 𝑗-th column, and 

𝜀 is the smallest positive constant value. 

The result of the batch normalization process is 

that the dimensions of feature maps are reduced by 

max-pooling 2 × 2  and the dimensions of feature 

maps are increased by upsampling of 2 × 2 . The 

matrix results from the convolution process on the 

encoder path with the decoder path are combined  
using concatenate. Do the convolutional process again, 

only the size used is 1 × 1  by applying a sigmoid 

activation layer using Eq. (14) [19]. 

 

𝜎(𝑧) =  
1

1 + 𝑒−𝑧                              (14) 
 

where 𝑧 ∈ (−∞, ∞), 𝜎(𝑧) ∈ (0, 1). 

The final step is to calculate the loss function: 

binary cross entropy using Eq. (15) [5]. 

 

𝐿 = 

−
1

𝑚×𝑛
[∑ ∑ (

(𝑦𝑖,𝑗 𝑙𝑜𝑔(𝑝𝑖,𝑗)) +

((1 − 𝑦𝑖,𝑗 ) 𝑙𝑜𝑔(1 − 𝑝𝑖,𝑗 ))
)𝑛

𝑗=1
𝑚
𝑖=1 ]  

(15) 
where 𝑚  is the number of rows of pixels, 𝑛  is the 

number of columns of pixels, 𝑝  is the predicted 

probability value and𝑦 is the ground truth value (0 for 

background pixels and 1 for blood vessel pixels). The 

results of the best result of training are stored as 

weights in the model.  

2.6 Testing data 

The segmentation prediction results will be 

contained in the confusion matrix thanks to testing 

done using 20 test data from DRIVE and STARE to 

test the model that has been trained on those data. To 
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Figure. 5 Example of pre-processing results in the 

“25_training.tif” file in DRIVE dataset 

 

 

segment retinal blood vessels, the confusion matrix is 

separated into two labels: label 1 for pixels that are 

retinal blood vessels (foreground) and label 0 for 

pixels that are not retinal vessels (background). 

2.7 Evaluation 

At this stage, the accuracy, sensitivity, specificity, 

F1-score, intersection over union (IoU), and receiver 

operating characteristics (ROC) curve values will be 

used to calculate the performance evaluation of the 

model. Results of the model's performance were 

compared with those from other studies. 

3. Result and discussion 

3.1 Image enhancement and patching 

At this stage of image enhancement quality, it aims 

to improve data quality for the better. The initial 

image used for this stage is obtained from the DRIVE 

and STARE datasets. The results of the image 

enhancement can be seen in Fig. 5 for DRIVE dataset.  

In Fig. 5, it can be seen that the image input in each 

dataset of type BGR is converted to RGB and 

followed by taking one of the color channels, namely 

the green channel. The results of the green channel are 

improved image quality with CLAHE and continued 

with contour smoothing and removal of thin objects 

using morphology opening. The next process is to 

improve the image contrast with CLAHE so that the 

blood vessel features in the retinal image are seen 

more clearly. The image resulting from CLAHE is 

subjected to an image patching process by dividing 

the image into small pieces of 5.000  patches per 

image. In the image patching process, because the 

training data used are 20 images, the resulting patch is 

100.000 patches with a size of 64 × 64 pixel. 

3.2 BVU-Net application 

At this stage, architectural changes will be made, 

with the U-Net architecture serving as the foundation. 

The VGG architecture is combined on the encoder 

part, and batch normalization is added throughout 

each convolution operation to modify the architecture. 

Batch normalization is used to equalize activation in 

each layer to accelerate training. Fig. 4 shows the 

altered architecture. The modified architecture BVU-

Net is consisted of two parts, namely the left side 

(encoder) and the right side (decoder). The encoder 

path uses 5 convolutional blocks consisting of 

convolutional layer, ReLU, batch normalization, and 

max pooling. The initial step taken in the first block 

in the encoder path is that the pre-processed image is 

used as an input image with a size of 64 × 64 pixels. 

This is the first block on the encoder path. The image 

then enters the green boxed convolutional layer 

process. A 3×3 convolution process and a ReLU 

activation function process. Additionally, a blue box 

signifies the addition of batch normalization. The next 

step is to reduce the size of the feature map using a 

max-pooling size of 2×2. Repeat the convolutional 

layer process and max pooling with 128 kernels in the 

second block. The third to fifth blocks repeat the 

previous block's process, with the exception that the 

convolutional layer process is repeated twice. The 

third block has 256 kernels, the fourth block has 512, 

and the fifth block has 512. A convolutional layer 

process with 512 kernels is carried out in the 

connecting section between the two architectures. 

Convolutional layer, ReLU, and up-sampling are 

three of the five convolutional blocks in VGG that are 

used in the decoder path. Convolution results on the 

connecting path are obtained by increasing the 

dimensions of the feature map size using up-sampling 

measuring 2×2 and the number of kernels up to 512. 

Furthermore, the convolution results of the fifth 

encoder path block are combined with the convolution 

results of the first decoder path block, yielding a total 

of 768 kernels. The merging results continue with 2×2 

up-sampling after entering the convolutional layer 

process as in the encoder path. The same procedure is 

performed in blocks two through five, where there are 

as many as 768 kernels in block two, 384 in block 

three, 192 in block four, and 96 in block five. The last 

step is to carry out the convolution process with 1 

kernel to reshape the segmented image and do along 

with the Sigmoid activation function. 

In the modified architecture, the convolution 

process is carried out with Eqs. (7), (8), and (9). For 

example, to get the convolution value on the 1st 

feature maps, the 1st input (𝐴1
1)  is to perform a 
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Figure. 6 Batch normalization illustration 

 

convolution operation between the 1st image input 

(𝐶1) resulting from the addition of the same padding 

(adjusting the image size with the kernel) and the 1st 

kernel(𝐾1). Convolution operation results are added 

to bias 1 (𝑏1). The obtained values are substituted into 

the ReLU activation function using Eq. (10), and each 

activation layer is normalized using batch 

normalization. Fig. 6 shows an illustration of the batch 

normalization process. Fig. 6 shows several feature 

maps, including height (ℎ)  and width (𝑤)  feature 

maps. Each feature map has a pixel value (𝑥𝑖𝑗), which 

is the input matrix entry in the i-th row and j-th 

column. Determine the number of mini-batches (𝑚) 

for each feature map. Then, using Eqs. (11) and (12), 

calculate the mean (𝜇𝑗) and variance (𝜎𝑗
2) for each 

mini-batch. Each subsequent matrix entry is 

normalized using Eq. (13) to generate a new matrix 

entry value (𝑥𝑖𝑗) . The resulting value will be in a 

value range that is not too far between the highest and 

lowest values. 

3.3 Training data 

The data training process is carried out using a 

modified BVU-Net architecture, resulting in a BVU-

Net model. The model is trained with 100,000 training 

data which is divided into two parts so that 60,000 

data is obtained for the trained data and 40,000 for the 

data tested in the training process. At this stage, the 

number of epochs is 30, and the number of samples in 

one iteration (batch size) is 128. In Fig. 7 and 8, it can 

be seen that the accuracy of the training data (blue 

line) and the accuracy of the validation data or 

validation accuracy (orange line) in the DRIVE and 

STARE datasets always increases at each epoch. In 

the first epoch of the DRIVE dataset, the accuracy 

obtained is 58% and the validation accuracy is 41%. 

The accuracy curve gradually rises to 0.98 in the 

following epoch, while the validation accuracy rises 

to 0.94. Meanwhile, in the first epoch of the STARE 

dataset, the accuracy obtained 21% and the validation 

accuracy is 19%. The accuracy increases steadily 

towards 99% in the following epoch, while the 

validation accuracy also increases to 96%. The graph 

shows that the accuracy of the training and validation 

data in both datasets is not overfitting. 

The loss graph obtained during the training process is 

provided, as shown in Figs. 9 and 10.  In Figs. 9 and 

10, it can be seen that the loss function on the training 

data (blue line) and the loss function value in the 

validation data (orange line obtained during the 

training process in the DRIVE and STARE datasets 

always decreases. The loss graphs in Figs. 9 and 10 

show no overfitting because the loss curves in the 

training data and testing data have the same pattern. 

In addition, the gap between training loss and 

validation loss is not far. The graphs of accuracy and 

loss in both the DRIVE and STARE datasets have 

good patterns and there is no overfitting. This means 

that the model can work very well not only on 

training data but also on data that has never been 

trained before. From the gaps, it can be concluded 

that the architecture works excellent because the 

accuracy obtained is more than 98% and the loss 

obtained is close to 0. The last step of the training is 

to store the best weights for testing data. 

 

 
Figure. 7 The accuracy result on training data and 

validation data in training process on DRIVE dataset 

 

 
Figure. 8 The accuracy result on training data and 

validation data in training process on STARE dataset 
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Figure. 9 The loss result on training data and validation 

data in training process on DRIVE dataset 

 

 
Figure. 10 The loss result on training data and validation 

data in training process on STARE dataset 

3.4 Testing 

In the testing process, the testing image is also 

patched in small patches sequentially. After the 

patching process, the weights obtained from the 

training process are applied to the patched image to 

segment the retinal blood vessels in the image. The 

results of the patched images that have been 

segmented are merged into a segmented image that 

has the same size as the original size. The Testing 

process is carried out to validate the training model. 

Table 1 shows the comparison of the blood vessel of 

retinal image segmentation results from the proposed 

method with the ground truth available in the dataset. 

In some images, the results of retinal blood vessel 

segmentation are slightly different from the ground 

truth, especially for thin blood vessels. Some thin 

blood vessels are not detected in the segmented image. 

It can be shown in Fig. 11. In Fig. 11, the yellow box 

is an example of a subset of the image in the DRIVE 

dataset which shows detectable blood vessels and 

undetectable blood vessels by segmented images 

using BVU-Net. In Fig. 11. The blue box is also an 

example of the image section in the STARE dataset 

which shows the blood vessels that have been 

successfully and unsuccessfully detected by BVU-

Net. In Fig. 11, it can be seen that the blood vessels 

of the segmented image on the STARE dataset are 

more clearly visible than the segmented image on the 

DRIVE. However, the results of segmentation on 

both datasets also show that some thin blood vessels 

can be detected. 

The ROC shows the relationship between false 

positive rate (FPR) and true positive rate (TPR by 

calculating the area under curve (AUC) on the ROC 

curve. The larger the UAC area, the better the model 

or architecture in recognizing the label of each data 

In the DRIVE dataset, the AUC area of 0.975 is 

obtained, while the STARE dataset is 0.8849. Based 

on the AUC value, it shows that the results of the 

model performance for retinal blood vessel 

segmentation in both datasets have good quality. In 

Figs. 12 and 13, it can be seen that the ROC curve 

graph illustrates the relationship between false 

positive rate (FPR) and true positive rate (TPR), 

where the ROC curve is carried out by calculating the 

 

 

Table 1. The results of retinal blood vessel segmentation in the drive and stare; original, ground truth and segmented 

image results of BVU-Net 

N

o 

DRIVE STARE 

Original Image Ground Truth Result 
Original 

Image 
Ground Truth Result 

1 

      

2 

      

3 
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Figure. 11 The Comparison of Retinal Blood Vessel Segmentation Results on Proposed Method and Ground Truth 

 

 
Figure. 12 Graph of ROC curve obtained during the 

testing process on the DRIVE dataset 

 

 
Figure. 13 Graph of  ROC curve obtained during the 

testing process on the STARE dataset 

 

 

area under curve (AUC) on the ROC curve. In the 

DRIVE dataset, the AUC area of 0.975 is obtained, 

while the STARE dataset is 0.8849. Based on the 

AUC value, it shows that the results of the model 

performance for retinal blood vessel segmentation in 

both datasets have good quality. 

 

Table 2. The comparison of performance results in 

DRIVE daraset of proposed method with other studies 

Method 
Acc 

(%) 

Sen 

(%) 

Spe 

(%) 

F1 

(%) 
IoU 

Convolutional 

Autoencoder 

[22] 

96 73 92 - - 

Convolutional 

Neural 

Network[21] 

94.9 78.2 97.6 80.3 0.67 

MSFFU-Net 
[23] 

96.9 77.62 98.3 - - 

UNet with 

Genethic 

Algorithm[20] 

95 75.06 98.5 80.8 - 

Stride 

UNet[10] 
94.8 73.9 95.6 - - 

Proposed 

method 
96.39 78.71 98.1 78.9 0.65 

 
Table 3. The comparison of performance results in 

STARE daraset of proposed method with other studies 

Method 
Acc 

(%) 

Sen 

(%) 

Spe 

(%) 

F1 

(%) 
IoU 

Stride UNet 

[10] 
94.7 74.8 96.2 - - 

DenseUNet 

[24] 
96.51 68.07 99.16 - 0.77 

Residual 

Block 

Incorporated 

[25] 

95.37 55.82 98.62 64.68 0.48 

EffUnet [26] 95.69 75.54 99.7 - - 

Improved 

UNet [27] 
96.83 63.29 99.67 80.49 0.67 

Proposed 

method 
96.83 79.35 98.49 81.29 0.69 
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3.5 Analysis and interpretation of results 

This study has offered a new BVU-Net 

architecture for blood vessel segmentation on retinal 

images. To declare the success of the BVU-Net 

architecture so the results of the BVU-Net 

performance were compared with the results of the 

CNN architecture performances in other similar 

studies. A comparison of the performance results of 

BVU-Net with other architectures CNN can be seen 

in Table 2 and Table 3. Table 2 shows the results of 

the comparison of the performance of each 

architecture on DRIVE dataset, while Table 3 is on 

STARE dataset. The performance results that are 

used as comparisons in Table 2 and Table 3 are 

accuracy, sensitivity, specificity, F1-score and IoU. 

The performance results of the BVU-Net architecture 

on the DRIVE dataset (Table 2) shows the results of 

accuracy, sensitivity and specificity are better than 

other studies results. Unfortunately, The highest F1-

score was obtained by [20] using U-Net that has been 

modified with Genetic algorithm. The highest IoU is 

obtained by [21] using conventional U-Net. The F1-

score and IoU results of BVU-Net are not the best, 

but the F1-score is close to 1 and IoU is above 0.5. 

This means that BVU-Net has good precision 

and recall in recognizing each class and is good 

in overcoming overlapping in each class 

(foreground and background)  in the DRIVE 

dataset. 
Table 3 shows the performance results studies on 

the STARE dataset. The accuracy, sensitivity and F1-

score of this study in STARE dataset obtained the 

highest results compared to other studies. For 

specificity and IoU, the best specificity and IoU 

results were obtained by [24]. The specifications in 

this study are lower than some other studies, but the 

sensitivity value obtained in this study is the highest 

compared to other studies. Sensitivity and specificity 

provide opposite measures, where the higher the 

sensitivity, the lower the specificity or vice versa. The 

higher sensitivity indicates the proposed method is 

able to recognize the positive class better than other 

studies. However, the IoU obtained in this study was 

above 0.5, indicating that the BVU-Net architecture 

is good in overcoming the overlap area between 

classes.  

From the performance comparison in Table 2 and 

Table 3, it can be seen that BVU-Net has highest 

sensitivity that other studies both on DRIVE and 

STARE. Other studies did not measure F1-scores and 

IoU. It cannot be concluded whether the architecture 

used has a balanced precision and recall and is able 

to overcome overlapping. It can be concluded that 

BVU-Net is robust to detect blood vessels in retinal 

images well, but it is still necessary to develop the 

BVU-Net architecture to be able to improve the 

ability to overcome overlapping areas between blood 

vessels (foreground) and back ground. 

4. Conclusions 

Based on the results of the research and 

discussion, it can be concluded that the results of the 

model performance on the BVU-Net architecture in 

the retinal blood vessel segmentation is robust in both 

datasets, where the average accuracy is above 96%, 

specificity is above 98%. Sensitivity and F1-score are 

above 78%, but IoU is still below 70%. These results 

indicate that the ability of model to overcome 

overlapping between background and foreground on 

retinal blood vessel segmentation so it is sometimes 

thin blood vessel cannot be detected. The architecture 

should be improved to increase the F1-score and IoU 

to get more significant and accurate results for blood 

vessels segmentation on retinal images.  
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