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Abstract: The Girvan-Newman (GN) method is one of the most popular methods for detecting communities. 

However, the method is applied to graphs with only positive weights, while graphs with positive and negative 

weights are in the real world. This paper proposes improving the GN method to work on graphs with positive and 

negative weights. The method is called Girvan-Newman Parallel Positive Negative (GN-PPN). Other than the 

benefit related to the use of negative weights, GN-PPN has a parallelization process that accelerates processing time. 

This method also uses edge betweenness and pair dependencies as calculations. The GN-PPN method is evaluated 

using modularity score, Normalized Mutual Information (NMI), and processing time. Our experiments show that the 

modularity score of the GN-PPN is similar to GN, modified GN (mGN), and Parallel GN (PGN). The accuracy of 

the GN-PPN method in detecting communities evaluated by NMI shows that the GN-PPN is better than similar 

methods such as Infomap, which ranges from 0.651 to 0.937. The processing time of the GN-PPN method shows a 

significant acceleration, which is a decrease of around 45% to 95% compared to other methods such as GN, mGN, 

and PGN. 

Keywords: Community detection, Edge betweenness, Girvan-newman, Pair dependency, Parallel processing, 

Weighted graphs. 

 

 

1. Introduction 

Girvan-Newman (GN) is one of the benchmark 

methods for community detection. The GN method 

uses the concept of edge betweenness and Dijkstra 

for marking each connected node in the graph. After 

the highest edge betweenness value is found, the 

nodes with the highest value will be deleted. The 

edge betweenness calculation again will be carried 

out on the graph with the node pairs that have been 

removed. Furthermore, the GN method also 

introduces modularity, which measures the quality 

of the formed community. Many researchers have 

proved the GN method to produce a high-accuracy 

community [1, 2]. 

Despite the advantages of the GN method, it still 

has problems. One of the problems is that the 

modularity optimization is NP-hard, and this method 

is unsuitable for large graphs because of the long 

processing time [3]. The weaknesses make research 

related to this method continue to be carried out. 

The goal of ongoing research [4] is to reduce this 

method's processing time and accuracy [5], 

especially in the era of big data. The graphs 

representing future data are likely to grow larger. 

Furthermore, problems related to community 

detection have not been solved. One of them is the 

application of community detection to graphs with 

negative weights. Most existing methods related to 

community detection only consider graphs with 

positive weights, while there are also graphs with 

negative weights. An example of such graphs is in 

the research conducted by [5, 6]. The weight values 

of the edges in the graphs range from -10 (strongly 

distrust) to 10 (strongly trusts), representing the 

Bitcoin users' confidence in each other. Studies on 

community detection using graphs with positive and 

negative weights are still rare. The lack is because 
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the algorithms used to detect the community only 

work on graphs with positive weights. We must 

transform the negative weights into positive values 

when applied to graphs with positive and negative 

weights. This graph weight problem, combined with 

the long processing time, raises how to make the 

algorithm more flexible to the graph used but can 

still be processed quickly and maintain the accuracy 

of the resulting community results. 

Based on the problems mentioned earlier, this 

paper proposes a new method of community 

detection based on the GN algorithm. The method is 

called GN's Parallel Positive Negative (GN-PPN). 

The main contributions of this proposed method are 

as follows: 

• GN-PPN can process graphs with positive and 

negative weights. The method proposed in this 

study uses the Johnson algorithm to find the 

shortest path in graphs and re-weighting 

negative weight into positive weight. 

Furthermore, after all the weights on the graph 

become positive, several steps are carried out 

for community detection of the graph used 

• GN-PPN uses the multiprocessing concept by 

dividing the existing graph into several 

subgraphs based on the number of threads 

entered at the beginning of the process. This 

concept is used to speed up the processing time 

of the proposed method. 

• GN-PPN utilizes a parallelization process to 

calculate the edge betweenness and pair 

dependencies' value simultaneously. The value 

of edge betweenness and pair dependencies are 

calculated simultaneously for all pairs of 

vertices in the graph in each thread. Then the 

pair of nodes with the highest value 

betweenness edge and pair dependency from 

each thread is sent to the main host to select the 

pair of nodes with the highest value 

betweenness edge and pair dependency among 

all threads used. The following process will be 

done on the main host. 

The rest of the paper is detailed as follows. 

Section 2 discusses some of the critical related 

works in community detection. Section 3 describes 

the GN method. The proposed GN-PPN algorithm is 

discussed in Section 4. Section 5 explains the 

scenario and result of the experiments, followed by 

the discussion in Section 6. Section 7 contains the 

conclusions and future works. 

2. Related work 

The GN method was first introduced by Girvan 

and Newman [7] and is still one of the most popular 

methods for community detection. The GN method 

uses the edge betweenness to find the betweenness 

value for nodes in the graph and removes the nodes 

with the highest value. Furthermore, the concept of 

modularity is used to measure the quality of the 

community generated from this algorithm. The 

modularity score value is between 0 to 1. The closer 

the modularity value is to 1, the better the resulting 

community results [8, 9]. 

Research has been carried out and developed in 

various fields over the last decade. Studies such as 

the ones conducted by Budic et al. [2] use GN to 

detect complex radio access network (RAN) 

communities, Yadav et al. [10] for social network 

analysis, and Saputri et al. [11] for student behavior 

based on students' browsing habits who use wi-fi at 

the university under study. Furthermore, studies 

employing GN are conducted, such as [12, 13]. 

These studies prove that the accuracy of the GN 

method is better than other methods [12, 13]. 

However, the process of calculating the edge 

betweenness in GN has the complexity of Ο(𝑒𝑛), so 

that the overall complexity of the GN method is 

Ο(𝑒2𝑛) . Furthermore, the GN method is also 

inefficient for extensive data [14].  

Based on these problems, several studies were 

conducted to reduce the processing time of the GN 

method. Research [13] removed the multi-edge with 

the highest edge betweenness value in his research. 

This study shows that the processing time of the 

enhanced GN method is faster than the GN method. 

Research [15] modifies the GN method by 

combining edge betweenness and pair dependencies 

calculations. Furthermore, other studies such as that 

conducted by [8, 16, 17] modify GN using the 

concept of parallelization, either by adding the 

concept of MapReduce [16], based on GPU [17] and 

dividing the graph into several components [8]. 

These studies can speed up processing time when 

compared to the GN method. 

However, the previous studies used graph 

datasets with positive weight edges. Whereas, in the 

real world, there are also graphs with positive and 

negative weights. The current research focuses on 

speeding up computational time and on datasets 

processed by proposed methods. The study by 

developing GN with the proposed method aims to 

process datasets with positive weights and those that 

weigh positive and negative. State-of-art techniques 

and current research can be seen in Table 1.  

3. The GN method 

A graph 𝐺 = (𝑉, 𝐸) is a set of vertices 𝑉 =
{𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑛} and edges 𝐸 = {𝑒1,𝑒2, 𝑒3, … , 𝑒𝑛} . 
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Table 1. State-of-art techniques and current research 

No. Research Betweenness Used Concept of Time Acceleration Used 

Shortest 

Path 

Method 

1. Girvan and Newman [7]  Edge Betweenness No Dijkstra 

2. Jisha et al. [13] Edge Betweenness Multiple erase edge betweenness Dijkstra 

3. Bocu and Tabirca [15] 
Edge betweenness and 

Pair dependencies 
No Dijkstra 

4. Moon et al. [16] Edge Betweenness MapReduce Dijkstra 

5. Fan et al. [17] Edge Betweenness GPU Based Dijkstra 

6. Jamour et al. [8] Edge Betweenness Divided graph into several components Dijkstra 

7. Current research 
Edge betweenness and 

Pair dependencies 
Divided graph into several components Johnson 

 

Edge consists of pairs of nodes that are connected. 

Each of these edges can have weight (𝑤) . The 

weights on these edges represent the intensity of the 

interaction between pairs of nodes.  

The definition of a community is a subgraph of 

graph 𝐺  in which the interactions between nodes 

with other nodes (intra-connected) inside the 

community are solid. In contrast, the interactions 

with nodes in other communities (inter-connected) 

are weak [18]. An example of a community 

detection application can be seen in the study by 

Ljucovi & Tomovic [19]. In [19], a study on the 

collaboration of authors at the University of 

Montenegro is conducted. Nodes represent authors, 

and edges represent a collaboration between 

researchers. Edges will form if two or more authors 

publish a paper together. A community creates 

based on a network where authors write on the same 

topic. The stronger the intra-connected relationship 

and the weaker the inter-connected relationship, the 

better the resulting community will be. 

The GN method used in conducting community 

detection consists of three steps as follows: 

1. Calculate the edge betweenness for each 

edge in the graph 

2. Remove the edge with the highest edge 

betweenness value 

3. Recalculate the edge betweenness for the 

remaining edges 

4. Repeat steps 1-3 until all edges are removed. 

The GN method uses several different short path 

search methods based on the type of graph used to 

visit each node in the graph and then calculate edge 

betweenness. The GN method will use Breadth-First 

Search (BFS) if the graph is unweighted. The 

Dijkstra algorithm is used to find the shortest paths 

if the graph is a weighted graph. Because of this, 

The GN method can only process graphs with 

positive weights since the Dijkstra algorithm only 

works in graphs with positive weights. 

The quality of the community is measured using 

modularity. Modularity has a range score between -1 

to 1 [20]. Modularity measures the density of links 

within a community compared to links between 

communities. The modularity value can be negative 

if there are fewer links in the community than the 

existing probability base and the number of links 

among the communities formed is greater than the 

expected base. The modularity value will increase 

with the more robust the formed structural 

community. However, in its implementation, the 

communities formed have average modularity 

ranging from 0.30 to 0.70 [20, 21]. Modularity 

higher than this value is rarely found in GN 

community detection tests. Modularity's formula 

specifies in Eq. (1) [20, 21]. 

 

𝑄 =
1

2𝑚
× ∑ 𝑖𝑗 [𝑎𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
] 𝛿(𝑐𝑖, 𝑐𝑗)          (1) 

 

Here, 𝑎𝑖𝑗 is the adjacency matrix from vertex 𝑖 to 

𝑗, 𝑚 is the number of edges in the graph, 𝑘𝑖  is the 

degree of vertex 𝑖, and 𝑘𝑗 is the degree of vertex 𝑗. 

Meanwhile, 𝛿(𝑐𝑖, 𝑐𝑗) can be determined as follows: 

 

𝛿(𝑐𝑖 , 𝑐𝑗) = {
1   𝑖 = 𝑗
0    𝑖 ≠ 𝑗

                     (2) 

 

The value of 𝛿(𝑐𝑖 , 𝑐𝑗) is 1 if nodes 𝑖 and 𝑗 are in 

the same community, otherwise, 0 when nodes 𝑖 and 

𝑗 are different.  

4. The proposed GN-PPN method 

This section explains the proposed algorithm, 

the GN-PPN method. The proposed algorithm can 

detect graphs with positive and negative weights. A 

multiprocessing concept is used in the proposed 

GN-PPN method to speed up the processing. 

Besides that, the parallelization process is also used 

to enhance the accuracy of the GN method.  
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In the proposed GN-PPN method, the graph that 

is processed is not only a graph with a positive 

weight but also a graph with a negative weight. 

Johnson’s algorithm finds the shortest path in all 

pairs of nodes in the graph and re-weight every 

weight in the graph with negative and positive 

weights. Johnson's algorithm consists of several 

stages as follows. 

1. Add a new vertex s to the graph connected 

to all existing vertices and weights 0. 

2. Use Bellman Ford's algorithm to find the 

shortest path in the graph starting from the 

new vertex s to all vertices v with a 

minimum weight ℎ(𝑣) of a path from 𝑠 to 𝑣. 

The Bellman-Ford algorithm chooses 

because this method can work on graphs 

with negative values. In addition, the 

Bellman-Ford algorithm can detect cycles, 

and if the graph contains cycles, the search 

for the shortest path will be stopped. 

3. Reweight the edges of the initial graph 

using the values obtained from Bellman 

Ford's algorithm. The new weight value is 

calculated using Eq. (3). 

 

𝑤′(𝑢, 𝑣) = 𝑤(𝑢, 𝑣) + ℎ(𝑢) − ℎ(𝑣)  (3) 

 

𝑤′(𝑢, 𝑣) is the re-weighted value from node 

𝑢  to node 𝑣 , 𝑤(𝑢, 𝑣)  is the initial weight 

value from node 𝑢 to 𝑣 , ℎ(𝑢) is the length 

of the shortest path from 𝑠 to 𝑢, and ℎ(𝑣) is 

the length of the shortest path from 𝑠 to 𝑣. 

4. Remove 𝑠,  and use Dijkstra's algorithm to 

find the shortest path in the re-weighted 

graph. 

 

After all the weights become positive, the next 

steps of the GN-PPN method can be carried out. The 

GN-PPN consists of three main steps. These steps 

are as follows. 

1. Divide the graph into subgraphs based on 

the number of threads entered using the 

multiprocessing concept 

2. Calculate edge betweenness and pair 

dependency for every pair of nodes 

simultaneously 

3. Erase the node pair with the highest edge 

betweenness if one node contains the 

highest pair dependency value.  

4. Repeat Steps 1 to 3 until all edges are 

removed. 

 

4.1 Step I: Divide the graph into subgraphs based 

on the number of threads entered using the 

multiprocessing concept 

The next stage of the GN-PPN method is to 

divide the graph into subgraphs based on the number 

of threads entered. The concept used in dividing the 

graph into subgraphs is multiprocessing. The 

multiprocessing concept in the GN-PPN method 

uses CPU cores simultaneously and does not share 

resources. The graph is divided into several 

subgraphs based on the number of threads, and then 

each subgraph is assigned to each thread. Then in 

each thread, the edge betweenness and pair 

dependencies are calculated. The multiprocessing 

concept is implemented using a process-based 

parallelism library from Python, namely 

multiprocessing. The multiprocessing concept of the 

proposed method shows in Fig. 1. 

4.2 Step II: Calculate edge betweenness and pair 

dependency simultaneously 

At this stage, the parallelization process is used 

in the proposed GN-PPN method, namely 

calculating the edge betweenness and pair 

dependency in parallel. If the GN method only 

calculates edge betweenness, then in GN-PPN, pair 

dependencies will also be calculated. The process of 

calculating edge betweenness and pair dependencies 

is carried out on each subgraph that is in each thread 

used. Each thread will produce two results based on 

these two calculations: the node pair with the 

highest edge betweenness value and the node with 

the highest pair dependencies value. The two results 

will then be sent to the main host CPU and used for 

the next stage of the GN-PPN method. 

Edge betweenness is the number of shortest 

paths between all nodes in the network that pass 

through the edges [21]. The more often the shortest 

path between nodes on the network passes through 

the edge, the greater the edge betweenness of that 

edge will be.  

The pair dependency is calculated using the 

formula below [15]. 

 

𝛿𝑠𝑡(𝑣) =
𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡  
                          (4) 

 

𝜎𝑠𝑡 denotes the number of shortest paths from 𝑠 to 𝑡 

and 𝛿𝑠𝑡(𝑣) is the number of shortest paths from 𝑠 to 

𝑡 which go through 𝑣 [15].  
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Figure. 1 Multiprocessing concept of the proposed GN-PPN method 

 

4.3 Step III: Erase node pair with the highest 

values of edge betweenness and pair 

dependency 

The last step in GN-PPN is performed on the 

main host CPU. From the two values sent by each 

thread, the node pair with the highest edge 

betweenness value and the node with the highest 

pair dependencies will be selected. Next, if a node 

(𝑎) with the highest pair dependency value is the 

same as the node in the edge (𝑎, 𝑏) with the highest 

edge betweenness value, the nodes are deleted. If 

several pairs of nodes meet this condition, those 

pairs of nodes will be deleted simultaneously. In the 

case there is no pair of nodes with the highest value 

betweenness and pair dependencies, matching is 

used for the pair of nodes with the seconds, the 

third-highest value of edge betweenness and pair 

dependencies until the node pair is deleted. Like the 

original GN method, the modularity calculation is 

then carried out to measure the quality of the 

resulting communities. 

5. Experiments and results 

This section describes the dataset, experimental 

scenarios, and results of the experiments. 

5.1 Dataset 

The dataset used two types of datasets for 

evaluating the GN-PPN method. The first type is 

five graph datasets with only positive weights, i.e., 

Celegens [22], Jazz [23], Coauthorship [24], and 

Usairports by Pajek Dataset. The second type is two 

graph datasets with positive and negative weights, 

i.e., BitcoinAlpha and BitcoinOTC [5, 6]. Not all 

BitcoinAlpha and BitcoinOTC datasets are used in 

the evaluation; only part is used due to the 

computation limitation. We experimented with 

different edges for these two dataset types to see 

how the computation time progresses as the graph 

size increases. For example, with the BitcoinOTC 

dataset, we took different edges, starting from 113; 

the data is labeled oct100. 

5.2 Experiment scenario 

To evaluate our proposed method, we performed 

two sets of experiments. The first set of experiments 

is to compare the performance of GN-PPN with GN 

in creating the community on data containing 

positive weights.  

The second set of experiments is to compare the 

performance of the proposed method (GN-PPN) 

with GN [7], modified GN (mGN) [15], and parallel 

GN (PGN). The mGN method is a modified version 

of the GN method. Modifications are made by 

calculating edge betweenness in the GN method and 

pair dependencies as research conducted by Bocu 

and Tabirca [15]. The PGN method is a parallel 

version of the original GN method [8]. In PGN, the 

graph is divided into several subgraphs based on 

threads. The number of threads used in this 

evaluation is 2, 4, 8, and 16. Implementation of this 

concept was using a multiprocessing module from 

Python Standard Library. Furthermore, The number 

of threads is attached to the method name for easy 

identification. For example, PGN_2 means we used 

PGN with two threads, while GN-PPN_4 means we 

used GN-PPN with four threads.  

In this second set of experiments, we measure 

the modularity, Normalized Mutual Information 

(NMI), and processing time required to perform 

community detection on the input data. For 

modularity, the formula used is as defined in Eq. (1).  

NMI is used to measure the accuracy of the 

proposed method using mutual information of 

similarity (or dissimilarity) compared to the ground-

truth method  [25]. The NMI is defined in Eq. (5). 
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𝑁𝑀𝐼(𝑋|𝑌) =
−2 ∑ ∑ 𝑁𝑖𝑗 log

𝑁𝑖𝑗𝑁

𝑁𝑖.𝑁.𝑗

𝐶𝑌
𝑗=1

𝐶𝑋
𝑖=1

∑ 𝑁𝑖. log
𝑁𝑖.
𝑁

𝐶𝑋
𝑖=1 +∑ 𝑁.𝑗

𝐶𝑌
𝑗=1 log

𝑁.𝑗

𝑁

        (5) 

 

where 𝐶𝑋 and 𝐶𝑌 denote the number of communities 

in partition 𝑋  and 𝑌 . The matrix 𝑁  has rows and 

columns corresponding to communities in 𝑋 and 𝑌, 

respectively. The element of 𝑁, 𝑁𝑖𝑗 is the number of 

mutual nodes between communities 𝑖  and 𝑗 . The 

terms 𝑁𝑖 .  and 𝑁.𝑗  are the sum over rows and 

columns. The value of NMI ranges from 0 to 1, 

where NMI = 1 when partition 𝑋  is identical to 

partition 𝑌. If partition 𝑋 is independent of partition 

𝑌, then NMI = 0.  

The processing time is calculated from running 

the program until its results are displayed in seconds. 

For implementation of the methods, we use Python 

language. 

5.3 Results 

In this section, we discuss the result of our 

experiments. We performed experiments for each 

dataset and method five times and took the average 

modularity, NMI and execution time.  

The comparison of community generated from 

GN-PPN and GN method can be seen in Fig. 1. The 

community formed from the GN and the GN-PPN 

methods has several differences. For example, in the 

Celegens data, the GN method generated 11 

communities and nine communities for the GN-PPN 

method, in Jazz data generated seven communities 

for the GN method and four communities for the 

GN-PPN method, the Co-authorship data generated 

273 communities for the GN method and 281 

communities for the GN method. Usair97 data 

generated 22 communities for the GN method and 

63 for the GN-PPN method. The Celegens data 

produced 29 and 116 isolated nodes, the Jazz data 

contained 30 and 27 isolated nodes, the 

Coauthorship data did not produce isolated graphs 

and 15 isolated graphs, and the usair97 data 

generated 81 and 47 isolated nodes for the GN and 

GN-PPN methods, respectively.  

Although there are differences in the number of 

communities and isolated nodes formed, the GN and 

GN-NPP methods can detect the same large 

community in the data, such as the Celegens and 

Jazz data.  

The comparison of the modularity using Dijkstra 

dan Johnson methods can be seen in Table 2 and 3, 

respectively. GN-PPN with the Dijkstra algorithm 

uses only positive weights (Table 2), while GN-PPN 

with the Johnson algorithm uses graph datasets with 

positive and negative weights (Table 3). 

Modularity analysis of the GN-PPN and PGN 

methods shows that the GN-PPN method has better 

modularity than the PGN method on all threads. In 

addition, compared with the mGN and GN methods, 

the GN-PPN method shows stable results and is not 

much different from the two methods. The result 

shows that the quality of the community as 

measured by using modularity and resulting from 

the GN-PPN method is not much different from the 

GN and mGN methods. 

We only use the data containing positive and 

negative weights combined with the Johnson 

method to evaluate the NMI and processing time. A 

comparison of NMI can be seen in Fig. 3. The 

evaluation results show that the NMI value of the 

GN-PPN is better than the NMI value of GN, mGN, 

and all PGNs. For example, in the otc1000 data, the 

NMI of GN-PPN from threads 2 to 16 increases 

from 0.704 to 0.806. Similar results are also found 

in the other data. In addition, the result also shows 

that the NMI value of GN-PPN increases with the 

increasing number of threads. However, we found 

that the NMI value in all methods is equal to 1 for 

alpha100 and alpha500 data. The condition means 

that no community was formed.  

The processing time comparison is shown in Fig. 

4. The results show that the processing time of the 

GN-PPN method is faster than other methods. 

However, the processing time of the GN-PPN is 

slower than the GN and mGN methods on otc100 

and alpha100 data. For otc100 data, the GN and 

mGN methods require a time of 1.424 seconds and 

1.711 seconds, respectively. In comparison, the GN-

PPN method takes 3.572 seconds to 5.137 seconds. 

Furthermore, for alpha100 data, the GN and mGN 

methods take 1.209 seconds and 1.056 seconds, 

respectively. At the same time, the GN-PPN method 

takes 3.357 seconds to 10.552 seconds.  

6. Discussion  

The experiments show that the proposed method, 

i.e. GN-PPN, gives the best performance in terms of 

the processing time. The weight values of the graphs, 

whether positive or negative, do not influence the 

performance. The percentage of decreased 

processing time for the GN-PPN method compared 

to the GN method ranges from 47.443% to 90.180%, 

for the mGN method is between 76.093% to 

89.881%, while for the PGN method, it is 

between38.541% to 95.427%. This decrease in time 

is significant for increasing the amount of data used 

in processing the GN-PPN method.  

 



Received:  June 17, 2022.     Revised: August 27, 2022.                                                                                                   279 

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022           DOI: 10.22266/ijies2022.1231.26 

 

    

(a) (b) (c) (d) 

    

(e) (f) (g) (h) 

Figure. 2 The community results of GN method on data: (a) Celegens, (b) Jazz, (c) Coauthorship, and (d) Usair97 and 

GN-PPN method on data: (e) Celegens, (f) Jazz, (g) Coauthorship, and (h) Usair97 

 

Table 2. The modularity results of GN, mGN, PGN, and GN-PPN using Dijkstra’s algorithm 

No. Data GN mGN 
PGN_

2 

PGN_

4 

PGN_

8 

PGN 

_16 

GN-

PPN_2 

GN-

PPN_4 

GN-

PPN_8 

GN-

PPN_16 

1 Celegens 0.477 0.434 1.000 1.000 0.901 0.883 0.545 0.588 0.501 0.501 

2 Jazz 0.580 0.394 0.692 0.416 0.426 0.401 0.420 0.400 0.388 0.413 

3 Coauthorship 0.801 0.826 0.815 0.830 0.822 0.835 0.809 0.804 0.802 0.808 

4 Usair97 0.811 0.870 0.024 0.217 0.174 0.408 0.907 0.907 0.907 0.925 
 

 

Table 3. The modularity results of GN, mGN, PGN, and GN-PPN using Johnson’s algorithm 

No Data 

Method 

GN mGN 
PGN_

2 

PGN_

4 

PGN_

8 

PGN_

16 

GN-

PPN_2 

GN-

PPN_4 

GN-

PPN_8 

GN-

PPN_16 

1 otc100 0.582 0.588 0.394 0.484 0.559 0.592 0.563 0.555 0.575 0.574 

2 otc500 0.354 0.320 0.000 0.018 0.041 0.124 0.262 0.262 0.250 0.236 

3 otc1000 0.361 0.332 0.006 0.021 0.022 0.016 0.242 0.213 0.208 0.203 

4 otc2000 0.405 0.400 0.003 0.008 0.014 0.013 0.247 0.250 0.216 0.214 

5 alpha100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

6 alpha500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

7 alpha1000 0.461 0.461 0.000 0.000 0.000 0.008 0.332 0.339 0.277 0.086 

8 alpha2000 0.566 0.511 0.000 0.000 0.000 0.000 0.484 0.440 0.338 0.182 
 

 

 

Furthermore, the evaluation results of the 

proposed method also show significant results. 

Evaluation using NMI shows the results of the GN-

PPN method are better when compared to other 

methods. Evaluation using modularity also shows 

modularity's value, which is not much different from 

other methods. Furthermore, the GN-PPN method 

can also detect communities similar to other 

methods such as GN. 

However, the evaluation results of the GN-PPN 

method related to processing time also show a slow 

processing time when the GN-PPN method 

processes data with a small amount of 100 data lists. 

However, this delay in processing time does not 

occur if the processed data is more significant than 

500. The result proves that the GN-PPN method is 

suitable for extensive data. 
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Figure. 3 The NMI of GN-PPN compared to GN, mGN, and PGN 

 

Figure. 4 The processing time of  GN-PPN  compared to GN, mGN, and PGN 

 

7. Conclusion 

This paper proposes the GN-PPN method for 

detecting community in graphs based on the GN 

method. The GN-PPN can process graphs with 

positive and negative weights and utilizes 

parallelization processes to speed up the processing 

time. This method uses edge betweenness as the GN 

method and combines it with pair dependencies. The 

experiment results on graphs with only positive or 

positive and negative weights show that GN-PPN 

outperforms other methods in terms of processing 

time, the accuracy of detection community and 

modularity. This result shows promising results of 

GN-PPN. 

For future work, several developments can be 

done, primarily related to the modularity of the GN-

PPN method. The evaluation results of the GN-PPN 

method show that this method has a modularity that 

is not much different from other methods such as 

GN, mGN and PGN. However, this method's 

processing time and accuracy are better than other 

methods. Further research needs to be done 

significantly to increase the modularity of the GN-

PPN method. Furthermore, the density of the dataset 

used can be investigated to analyze further the 

impact of a graph's density on this GN-PPN method.  
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