
Received: June 17, 2022. Revised: August 27, 2022. 273

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.26

GN-PPN: Parallel Girvan-Newman-Based Algorithm to Detect Communities in

Graph with Positive and Negative Weights

Neny Sulistianingsih1,2* Edi Winarko2* Anny Kartika Sari2

1Departement of Engineering and Design, Universitas Bumigora, Indonesia

2Department of Computer Science and Electronics, Universitas Gadjah Mada, Indonesia

* Corresponding author’s Email: ewinarko@ugm.ac.id

Abstract: The Girvan-Newman (GN) method is one of the most popular methods for detecting communities.

However, the method is applied to graphs with only positive weights, while graphs with positive and negative

weights are in the real world. This paper proposes improving the GN method to work on graphs with positive and

negative weights. The method is called Girvan-Newman Parallel Positive Negative (GN-PPN). Other than the

benefit related to the use of negative weights, GN-PPN has a parallelization process that accelerates processing time.

This method also uses edge betweenness and pair dependencies as calculations. The GN-PPN method is evaluated

using modularity score, Normalized Mutual Information (NMI), and processing time. Our experiments show that the

modularity score of the GN-PPN is similar to GN, modified GN (mGN), and Parallel GN (PGN). The accuracy of

the GN-PPN method in detecting communities evaluated by NMI shows that the GN-PPN is better than similar

methods such as Infomap, which ranges from 0.651 to 0.937. The processing time of the GN-PPN method shows a

significant acceleration, which is a decrease of around 45% to 95% compared to other methods such as GN, mGN,

and PGN.

Keywords: Community detection, Edge betweenness, Girvan-newman, Pair dependency, Parallel processing,

Weighted graphs.

1. Introduction

Girvan-Newman (GN) is one of the benchmark

methods for community detection. The GN method

uses the concept of edge betweenness and Dijkstra

for marking each connected node in the graph. After

the highest edge betweenness value is found, the

nodes with the highest value will be deleted. The

edge betweenness calculation again will be carried

out on the graph with the node pairs that have been

removed. Furthermore, the GN method also

introduces modularity, which measures the quality

of the formed community. Many researchers have

proved the GN method to produce a high-accuracy

community [1, 2].

Despite the advantages of the GN method, it still

has problems. One of the problems is that the

modularity optimization is NP-hard, and this method

is unsuitable for large graphs because of the long

processing time [3]. The weaknesses make research

related to this method continue to be carried out.

The goal of ongoing research [4] is to reduce this

method's processing time and accuracy [5],

especially in the era of big data. The graphs

representing future data are likely to grow larger.

Furthermore, problems related to community

detection have not been solved. One of them is the

application of community detection to graphs with

negative weights. Most existing methods related to

community detection only consider graphs with

positive weights, while there are also graphs with

negative weights. An example of such graphs is in

the research conducted by [5, 6]. The weight values

of the edges in the graphs range from -10 (strongly

distrust) to 10 (strongly trusts), representing the

Bitcoin users' confidence in each other. Studies on

community detection using graphs with positive and

negative weights are still rare. The lack is because

Received: June 17, 2022. Revised: August 27, 2022. 274

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.26

the algorithms used to detect the community only

work on graphs with positive weights. We must

transform the negative weights into positive values

when applied to graphs with positive and negative

weights. This graph weight problem, combined with

the long processing time, raises how to make the

algorithm more flexible to the graph used but can

still be processed quickly and maintain the accuracy

of the resulting community results.

Based on the problems mentioned earlier, this

paper proposes a new method of community

detection based on the GN algorithm. The method is

called GN's Parallel Positive Negative (GN-PPN).

The main contributions of this proposed method are

as follows:

• GN-PPN can process graphs with positive and

negative weights. The method proposed in this

study uses the Johnson algorithm to find the

shortest path in graphs and re-weighting

negative weight into positive weight.

Furthermore, after all the weights on the graph

become positive, several steps are carried out

for community detection of the graph used

• GN-PPN uses the multiprocessing concept by

dividing the existing graph into several

subgraphs based on the number of threads

entered at the beginning of the process. This

concept is used to speed up the processing time

of the proposed method.

• GN-PPN utilizes a parallelization process to

calculate the edge betweenness and pair

dependencies' value simultaneously. The value

of edge betweenness and pair dependencies are

calculated simultaneously for all pairs of

vertices in the graph in each thread. Then the

pair of nodes with the highest value

betweenness edge and pair dependency from

each thread is sent to the main host to select the

pair of nodes with the highest value

betweenness edge and pair dependency among

all threads used. The following process will be

done on the main host.

The rest of the paper is detailed as follows.

Section 2 discusses some of the critical related

works in community detection. Section 3 describes

the GN method. The proposed GN-PPN algorithm is

discussed in Section 4. Section 5 explains the

scenario and result of the experiments, followed by

the discussion in Section 6. Section 7 contains the

conclusions and future works.

2. Related work

The GN method was first introduced by Girvan

and Newman [7] and is still one of the most popular

methods for community detection. The GN method

uses the edge betweenness to find the betweenness

value for nodes in the graph and removes the nodes

with the highest value. Furthermore, the concept of

modularity is used to measure the quality of the

community generated from this algorithm. The

modularity score value is between 0 to 1. The closer

the modularity value is to 1, the better the resulting

community results [8, 9].

Research has been carried out and developed in

various fields over the last decade. Studies such as

the ones conducted by Budic et al. [2] use GN to

detect complex radio access network (RAN)

communities, Yadav et al. [10] for social network

analysis, and Saputri et al. [11] for student behavior

based on students' browsing habits who use wi-fi at

the university under study. Furthermore, studies

employing GN are conducted, such as [12, 13].

These studies prove that the accuracy of the GN

method is better than other methods [12, 13].

However, the process of calculating the edge

betweenness in GN has the complexity of Ο(𝑒𝑛), so

that the overall complexity of the GN method is

Ο(𝑒2𝑛) . Furthermore, the GN method is also

inefficient for extensive data [14].

Based on these problems, several studies were

conducted to reduce the processing time of the GN

method. Research [13] removed the multi-edge with

the highest edge betweenness value in his research.

This study shows that the processing time of the

enhanced GN method is faster than the GN method.

Research [15] modifies the GN method by

combining edge betweenness and pair dependencies

calculations. Furthermore, other studies such as that

conducted by [8, 16, 17] modify GN using the

concept of parallelization, either by adding the

concept of MapReduce [16], based on GPU [17] and

dividing the graph into several components [8].

These studies can speed up processing time when

compared to the GN method.

However, the previous studies used graph

datasets with positive weight edges. Whereas, in the

real world, there are also graphs with positive and

negative weights. The current research focuses on

speeding up computational time and on datasets

processed by proposed methods. The study by

developing GN with the proposed method aims to

process datasets with positive weights and those that

weigh positive and negative. State-of-art techniques

and current research can be seen in Table 1.

3. The GN method

A graph 𝐺 = (𝑉, 𝐸) is a set of vertices 𝑉 =
{𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑛} and edges 𝐸 = {𝑒1,𝑒2, 𝑒3, … , 𝑒𝑛} .

Received: June 17, 2022. Revised: August 27, 2022. 275

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.26

Table 1. State-of-art techniques and current research

No. Research Betweenness Used Concept of Time Acceleration Used

Shortest

Path

Method

1. Girvan and Newman [7] Edge Betweenness No Dijkstra

2. Jisha et al. [13] Edge Betweenness Multiple erase edge betweenness Dijkstra

3. Bocu and Tabirca [15]
Edge betweenness and

Pair dependencies
No Dijkstra

4. Moon et al. [16] Edge Betweenness MapReduce Dijkstra

5. Fan et al. [17] Edge Betweenness GPU Based Dijkstra

6. Jamour et al. [8] Edge Betweenness Divided graph into several components Dijkstra

7. Current research
Edge betweenness and

Pair dependencies
Divided graph into several components Johnson

Edge consists of pairs of nodes that are connected.

Each of these edges can have weight (𝑤) . The

weights on these edges represent the intensity of the

interaction between pairs of nodes.

The definition of a community is a subgraph of

graph 𝐺 in which the interactions between nodes

with other nodes (intra-connected) inside the

community are solid. In contrast, the interactions

with nodes in other communities (inter-connected)

are weak [18]. An example of a community

detection application can be seen in the study by

Ljucovi & Tomovic [19]. In [19], a study on the

collaboration of authors at the University of

Montenegro is conducted. Nodes represent authors,

and edges represent a collaboration between

researchers. Edges will form if two or more authors

publish a paper together. A community creates

based on a network where authors write on the same

topic. The stronger the intra-connected relationship

and the weaker the inter-connected relationship, the

better the resulting community will be.

The GN method used in conducting community

detection consists of three steps as follows:

1. Calculate the edge betweenness for each

edge in the graph

2. Remove the edge with the highest edge

betweenness value

3. Recalculate the edge betweenness for the

remaining edges

4. Repeat steps 1-3 until all edges are removed.

The GN method uses several different short path

search methods based on the type of graph used to

visit each node in the graph and then calculate edge

betweenness. The GN method will use Breadth-First

Search (BFS) if the graph is unweighted. The

Dijkstra algorithm is used to find the shortest paths

if the graph is a weighted graph. Because of this,

The GN method can only process graphs with

positive weights since the Dijkstra algorithm only

works in graphs with positive weights.

The quality of the community is measured using

modularity. Modularity has a range score between -1

to 1 [20]. Modularity measures the density of links

within a community compared to links between

communities. The modularity value can be negative

if there are fewer links in the community than the

existing probability base and the number of links

among the communities formed is greater than the

expected base. The modularity value will increase

with the more robust the formed structural

community. However, in its implementation, the

communities formed have average modularity

ranging from 0.30 to 0.70 [20, 21]. Modularity

higher than this value is rarely found in GN

community detection tests. Modularity's formula

specifies in Eq. (1) [20, 21].

𝑄 =
1

2𝑚
× ∑ 𝑖𝑗 [𝑎𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
] 𝛿(𝑐𝑖, 𝑐𝑗) (1)

Here, 𝑎𝑖𝑗 is the adjacency matrix from vertex 𝑖 to

𝑗, 𝑚 is the number of edges in the graph, 𝑘𝑖 is the

degree of vertex 𝑖, and 𝑘𝑗 is the degree of vertex 𝑗.

Meanwhile, 𝛿(𝑐𝑖, 𝑐𝑗) can be determined as follows:

𝛿(𝑐𝑖 , 𝑐𝑗) = {
1 𝑖 = 𝑗
0 𝑖 ≠ 𝑗

 (2)

The value of 𝛿(𝑐𝑖 , 𝑐𝑗) is 1 if nodes 𝑖 and 𝑗 are in

the same community, otherwise, 0 when nodes 𝑖 and

𝑗 are different.

4. The proposed GN-PPN method

This section explains the proposed algorithm,

the GN-PPN method. The proposed algorithm can

detect graphs with positive and negative weights. A

multiprocessing concept is used in the proposed

GN-PPN method to speed up the processing.

Besides that, the parallelization process is also used

to enhance the accuracy of the GN method.

Received: June 17, 2022. Revised: August 27, 2022. 276

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.26

In the proposed GN-PPN method, the graph that

is processed is not only a graph with a positive

weight but also a graph with a negative weight.

Johnson’s algorithm finds the shortest path in all

pairs of nodes in the graph and re-weight every

weight in the graph with negative and positive

weights. Johnson's algorithm consists of several

stages as follows.

1. Add a new vertex s to the graph connected

to all existing vertices and weights 0.

2. Use Bellman Ford's algorithm to find the

shortest path in the graph starting from the

new vertex s to all vertices v with a

minimum weight ℎ(𝑣) of a path from 𝑠 to 𝑣.

The Bellman-Ford algorithm chooses

because this method can work on graphs

with negative values. In addition, the

Bellman-Ford algorithm can detect cycles,

and if the graph contains cycles, the search

for the shortest path will be stopped.

3. Reweight the edges of the initial graph

using the values obtained from Bellman

Ford's algorithm. The new weight value is

calculated using Eq. (3).

𝑤′(𝑢, 𝑣) = 𝑤(𝑢, 𝑣) + ℎ(𝑢) − ℎ(𝑣) (3)

𝑤′(𝑢, 𝑣) is the re-weighted value from node

𝑢 to node 𝑣 , 𝑤(𝑢, 𝑣) is the initial weight

value from node 𝑢 to 𝑣 , ℎ(𝑢) is the length

of the shortest path from 𝑠 to 𝑢, and ℎ(𝑣) is

the length of the shortest path from 𝑠 to 𝑣.

4. Remove 𝑠, and use Dijkstra's algorithm to

find the shortest path in the re-weighted

graph.

After all the weights become positive, the next

steps of the GN-PPN method can be carried out. The

GN-PPN consists of three main steps. These steps

are as follows.

1. Divide the graph into subgraphs based on

the number of threads entered using the

multiprocessing concept

2. Calculate edge betweenness and pair

dependency for every pair of nodes

simultaneously

3. Erase the node pair with the highest edge

betweenness if one node contains the

highest pair dependency value.

4. Repeat Steps 1 to 3 until all edges are

removed.

4.1 Step I: Divide the graph into subgraphs based

on the number of threads entered using the

multiprocessing concept

The next stage of the GN-PPN method is to

divide the graph into subgraphs based on the number

of threads entered. The concept used in dividing the

graph into subgraphs is multiprocessing. The

multiprocessing concept in the GN-PPN method

uses CPU cores simultaneously and does not share

resources. The graph is divided into several

subgraphs based on the number of threads, and then

each subgraph is assigned to each thread. Then in

each thread, the edge betweenness and pair

dependencies are calculated. The multiprocessing

concept is implemented using a process-based

parallelism library from Python, namely

multiprocessing. The multiprocessing concept of the

proposed method shows in Fig. 1.

4.2 Step II: Calculate edge betweenness and pair

dependency simultaneously

At this stage, the parallelization process is used

in the proposed GN-PPN method, namely

calculating the edge betweenness and pair

dependency in parallel. If the GN method only

calculates edge betweenness, then in GN-PPN, pair

dependencies will also be calculated. The process of

calculating edge betweenness and pair dependencies

is carried out on each subgraph that is in each thread

used. Each thread will produce two results based on

these two calculations: the node pair with the

highest edge betweenness value and the node with

the highest pair dependencies value. The two results

will then be sent to the main host CPU and used for

the next stage of the GN-PPN method.

Edge betweenness is the number of shortest

paths between all nodes in the network that pass

through the edges [21]. The more often the shortest

path between nodes on the network passes through

the edge, the greater the edge betweenness of that

edge will be.

The pair dependency is calculated using the

formula below [15].

𝛿𝑠𝑡(𝑣) =
𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡
 (4)

𝜎𝑠𝑡 denotes the number of shortest paths from 𝑠 to 𝑡

and 𝛿𝑠𝑡(𝑣) is the number of shortest paths from 𝑠 to

𝑡 which go through 𝑣 [15].

Received: June 17, 2022. Revised: August 27, 2022. 277

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.26

Figure. 1 Multiprocessing concept of the proposed GN-PPN method

4.3 Step III: Erase node pair with the highest

values of edge betweenness and pair

dependency

The last step in GN-PPN is performed on the

main host CPU. From the two values sent by each

thread, the node pair with the highest edge

betweenness value and the node with the highest

pair dependencies will be selected. Next, if a node

(𝑎) with the highest pair dependency value is the

same as the node in the edge (𝑎, 𝑏) with the highest

edge betweenness value, the nodes are deleted. If

several pairs of nodes meet this condition, those

pairs of nodes will be deleted simultaneously. In the

case there is no pair of nodes with the highest value

betweenness and pair dependencies, matching is

used for the pair of nodes with the seconds, the

third-highest value of edge betweenness and pair

dependencies until the node pair is deleted. Like the

original GN method, the modularity calculation is

then carried out to measure the quality of the

resulting communities.

5. Experiments and results

This section describes the dataset, experimental

scenarios, and results of the experiments.

5.1 Dataset

The dataset used two types of datasets for

evaluating the GN-PPN method. The first type is

five graph datasets with only positive weights, i.e.,

Celegens [22], Jazz [23], Coauthorship [24], and

Usairports by Pajek Dataset. The second type is two

graph datasets with positive and negative weights,

i.e., BitcoinAlpha and BitcoinOTC [5, 6]. Not all

BitcoinAlpha and BitcoinOTC datasets are used in

the evaluation; only part is used due to the

computation limitation. We experimented with

different edges for these two dataset types to see

how the computation time progresses as the graph

size increases. For example, with the BitcoinOTC

dataset, we took different edges, starting from 113;

the data is labeled oct100.

5.2 Experiment scenario

To evaluate our proposed method, we performed

two sets of experiments. The first set of experiments

is to compare the performance of GN-PPN with GN

in creating the community on data containing

positive weights.

The second set of experiments is to compare the

performance of the proposed method (GN-PPN)

with GN [7], modified GN (mGN) [15], and parallel

GN (PGN). The mGN method is a modified version

of the GN method. Modifications are made by

calculating edge betweenness in the GN method and

pair dependencies as research conducted by Bocu

and Tabirca [15]. The PGN method is a parallel

version of the original GN method [8]. In PGN, the

graph is divided into several subgraphs based on

threads. The number of threads used in this

evaluation is 2, 4, 8, and 16. Implementation of this

concept was using a multiprocessing module from

Python Standard Library. Furthermore, The number

of threads is attached to the method name for easy

identification. For example, PGN_2 means we used

PGN with two threads, while GN-PPN_4 means we

used GN-PPN with four threads.

In this second set of experiments, we measure

the modularity, Normalized Mutual Information

(NMI), and processing time required to perform

community detection on the input data. For

modularity, the formula used is as defined in Eq. (1).

NMI is used to measure the accuracy of the

proposed method using mutual information of

similarity (or dissimilarity) compared to the ground-

truth method [25]. The NMI is defined in Eq. (5).

Received: June 17, 2022. Revised: August 27, 2022. 278

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.26

𝑁𝑀𝐼(𝑋|𝑌) =
−2 ∑ ∑ 𝑁𝑖𝑗 log

𝑁𝑖𝑗𝑁

𝑁𝑖.𝑁.𝑗

𝐶𝑌
𝑗=1

𝐶𝑋
𝑖=1

∑ 𝑁𝑖. log
𝑁𝑖.
𝑁

𝐶𝑋
𝑖=1 +∑ 𝑁.𝑗

𝐶𝑌
𝑗=1 log

𝑁.𝑗

𝑁

 (5)

where 𝐶𝑋 and 𝐶𝑌 denote the number of communities

in partition 𝑋 and 𝑌 . The matrix 𝑁 has rows and

columns corresponding to communities in 𝑋 and 𝑌,

respectively. The element of 𝑁, 𝑁𝑖𝑗 is the number of

mutual nodes between communities 𝑖 and 𝑗 . The

terms 𝑁𝑖 . and 𝑁.𝑗 are the sum over rows and

columns. The value of NMI ranges from 0 to 1,

where NMI = 1 when partition 𝑋 is identical to

partition 𝑌. If partition 𝑋 is independent of partition

𝑌, then NMI = 0.

The processing time is calculated from running

the program until its results are displayed in seconds.

For implementation of the methods, we use Python

language.

5.3 Results

In this section, we discuss the result of our

experiments. We performed experiments for each

dataset and method five times and took the average

modularity, NMI and execution time.

The comparison of community generated from

GN-PPN and GN method can be seen in Fig. 1. The

community formed from the GN and the GN-PPN

methods has several differences. For example, in the

Celegens data, the GN method generated 11

communities and nine communities for the GN-PPN

method, in Jazz data generated seven communities

for the GN method and four communities for the

GN-PPN method, the Co-authorship data generated

273 communities for the GN method and 281

communities for the GN method. Usair97 data

generated 22 communities for the GN method and

63 for the GN-PPN method. The Celegens data

produced 29 and 116 isolated nodes, the Jazz data

contained 30 and 27 isolated nodes, the

Coauthorship data did not produce isolated graphs

and 15 isolated graphs, and the usair97 data

generated 81 and 47 isolated nodes for the GN and

GN-PPN methods, respectively.

Although there are differences in the number of

communities and isolated nodes formed, the GN and

GN-NPP methods can detect the same large

community in the data, such as the Celegens and

Jazz data.

The comparison of the modularity using Dijkstra

dan Johnson methods can be seen in Table 2 and 3,

respectively. GN-PPN with the Dijkstra algorithm

uses only positive weights (Table 2), while GN-PPN

with the Johnson algorithm uses graph datasets with

positive and negative weights (Table 3).

Modularity analysis of the GN-PPN and PGN

methods shows that the GN-PPN method has better

modularity than the PGN method on all threads. In

addition, compared with the mGN and GN methods,

the GN-PPN method shows stable results and is not

much different from the two methods. The result

shows that the quality of the community as

measured by using modularity and resulting from

the GN-PPN method is not much different from the

GN and mGN methods.

We only use the data containing positive and

negative weights combined with the Johnson

method to evaluate the NMI and processing time. A

comparison of NMI can be seen in Fig. 3. The

evaluation results show that the NMI value of the

GN-PPN is better than the NMI value of GN, mGN,

and all PGNs. For example, in the otc1000 data, the

NMI of GN-PPN from threads 2 to 16 increases

from 0.704 to 0.806. Similar results are also found

in the other data. In addition, the result also shows

that the NMI value of GN-PPN increases with the

increasing number of threads. However, we found

that the NMI value in all methods is equal to 1 for

alpha100 and alpha500 data. The condition means

that no community was formed.

The processing time comparison is shown in Fig.

4. The results show that the processing time of the

GN-PPN method is faster than other methods.

However, the processing time of the GN-PPN is

slower than the GN and mGN methods on otc100

and alpha100 data. For otc100 data, the GN and

mGN methods require a time of 1.424 seconds and

1.711 seconds, respectively. In comparison, the GN-

PPN method takes 3.572 seconds to 5.137 seconds.

Furthermore, for alpha100 data, the GN and mGN

methods take 1.209 seconds and 1.056 seconds,

respectively. At the same time, the GN-PPN method

takes 3.357 seconds to 10.552 seconds.

6. Discussion

The experiments show that the proposed method,

i.e. GN-PPN, gives the best performance in terms of

the processing time. The weight values of the graphs,

whether positive or negative, do not influence the

performance. The percentage of decreased

processing time for the GN-PPN method compared

to the GN method ranges from 47.443% to 90.180%,

for the mGN method is between 76.093% to

89.881%, while for the PGN method, it is

between38.541% to 95.427%. This decrease in time

is significant for increasing the amount of data used

in processing the GN-PPN method.

Received: June 17, 2022. Revised: August 27, 2022. 279

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.26

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure. 2 The community results of GN method on data: (a) Celegens, (b) Jazz, (c) Coauthorship, and (d) Usair97 and

GN-PPN method on data: (e) Celegens, (f) Jazz, (g) Coauthorship, and (h) Usair97

Table 2. The modularity results of GN, mGN, PGN, and GN-PPN using Dijkstra’s algorithm

No. Data GN mGN
PGN_

2

PGN_

4

PGN_

8

PGN

_16

GN-

PPN_2

GN-

PPN_4

GN-

PPN_8

GN-

PPN_16

1 Celegens 0.477 0.434 1.000 1.000 0.901 0.883 0.545 0.588 0.501 0.501

2 Jazz 0.580 0.394 0.692 0.416 0.426 0.401 0.420 0.400 0.388 0.413

3 Coauthorship 0.801 0.826 0.815 0.830 0.822 0.835 0.809 0.804 0.802 0.808

4 Usair97 0.811 0.870 0.024 0.217 0.174 0.408 0.907 0.907 0.907 0.925

Table 3. The modularity results of GN, mGN, PGN, and GN-PPN using Johnson’s algorithm

No Data

Method

GN mGN
PGN_

2

PGN_

4

PGN_

8

PGN_

16

GN-

PPN_2

GN-

PPN_4

GN-

PPN_8

GN-

PPN_16

1 otc100 0.582 0.588 0.394 0.484 0.559 0.592 0.563 0.555 0.575 0.574

2 otc500 0.354 0.320 0.000 0.018 0.041 0.124 0.262 0.262 0.250 0.236

3 otc1000 0.361 0.332 0.006 0.021 0.022 0.016 0.242 0.213 0.208 0.203

4 otc2000 0.405 0.400 0.003 0.008 0.014 0.013 0.247 0.250 0.216 0.214

5 alpha100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

6 alpha500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

7 alpha1000 0.461 0.461 0.000 0.000 0.000 0.008 0.332 0.339 0.277 0.086

8 alpha2000 0.566 0.511 0.000 0.000 0.000 0.000 0.484 0.440 0.338 0.182

Furthermore, the evaluation results of the

proposed method also show significant results.

Evaluation using NMI shows the results of the GN-

PPN method are better when compared to other

methods. Evaluation using modularity also shows

modularity's value, which is not much different from

other methods. Furthermore, the GN-PPN method

can also detect communities similar to other

methods such as GN.

However, the evaluation results of the GN-PPN

method related to processing time also show a slow

processing time when the GN-PPN method

processes data with a small amount of 100 data lists.

However, this delay in processing time does not

occur if the processed data is more significant than

500. The result proves that the GN-PPN method is

suitable for extensive data.

Received: June 17, 2022. Revised: August 27, 2022. 280

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.26

Figure. 3 The NMI of GN-PPN compared to GN, mGN, and PGN

Figure. 4 The processing time of GN-PPN compared to GN, mGN, and PGN

7. Conclusion

This paper proposes the GN-PPN method for

detecting community in graphs based on the GN

method. The GN-PPN can process graphs with

positive and negative weights and utilizes

parallelization processes to speed up the processing

time. This method uses edge betweenness as the GN

method and combines it with pair dependencies. The

experiment results on graphs with only positive or

positive and negative weights show that GN-PPN

outperforms other methods in terms of processing

time, the accuracy of detection community and

modularity. This result shows promising results of

GN-PPN.

For future work, several developments can be

done, primarily related to the modularity of the GN-

PPN method. The evaluation results of the GN-PPN

method show that this method has a modularity that

is not much different from other methods such as

GN, mGN and PGN. However, this method's

processing time and accuracy are better than other

methods. Further research needs to be done

significantly to increase the modularity of the GN-

PPN method. Furthermore, the density of the dataset

used can be investigated to analyze further the

impact of a graph's density on this GN-PPN method.

Conflicts of Interest

The authors declare no conflict of interest.

0.000

0.200

0.400

0.600

0.800

1.000

1.200
N

M
I

Data

otc100

otc500

otc1000

otc2000

alpha100

alpha500

alpha1000

alpha2000

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

O T C 1 0 0 O T C 5 0 0 O T C 1 0 0 0 O T C 2 0 0 0 A L P H A 1 0 0 A L P H A 5 0 0A L P H A 1 0 0 0A L P H A 2 0 0 0

TI
M

E
(S

EC
O

N
D

)

DATA

GN

mGN

PGN_2

PGN_4

PGN_8

PGN_16

GN-PPN_2

GN-PPN _4

GN-PPN _8

GN-PPN _16

Received: June 17, 2022. Revised: August 27, 2022. 281

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.26

Author Contributions

Conceptualization and validation are conducted

by Neny Sulistianingsih, Edi Winarko, and Anny

Kartika Sari. Methodology, software, formal

analysis, investigation, visualization, writing—Neny

Sulistianingsih conducts original draft preparation.

Neny Sulistianingsih and Edi Winarko provide

resources; for writing, such as review and editing,

and Edi Winarko and Anny Kartika Sari conduct

supervision.

References

[1] Y. Du, J. Wang, and Q. Li, “An android

malware detection approach using community

structures of weighted function call graphs”,

IEEE Access, Vol. 5, pp. 475-479, 2018.

[2] D. Budic, K. Skracic, and I. Bodrušic,

“Optimizing Mobile Radio Access Network

Spectrum Refarming using Community

Detection Algorithms”, In: Proc. of

International Convention on Information and

Communication Technology, pp. 475-479, 2019.

[3] P. N. H. Pham, B. N. T. Nguyen, Q. T. N. Co,

N. T. Nguyen, P. Tran, and V. Snášel, “An

efficient hybrid algorithm for community

structure detection in complex networks based

on node influence”, ICIC Express Letters, Part

B: Applications, Vol. 12, No. 10, pp. 899-908,

2021.

[4] V. Karyotis, K. Tsitseklis, K. Sotiropoulos, and

S. Papavassiliou, “Enhancing Community

Detection for Big Sensor Data Clustering via

Hyperbolic Network Embedding”, In: Proc. of

International Conference on Pervasive

Computing and Communications Workshops,

pp. 266-271, 2018.

[5] S. Kumar, F. Spezzano, V. S. Subrahmanian,

and C. Faloutsos, “Edge Weight Prediction in

Weighted Signed Networks”, In: Proc. of IEEE

International Conf. in Data Mining, pp. 221-

230, 2016.

[6] S. Kumar, B. Hooi, D. Makhija, M. Kumar, C.

Faloutsos, and V. S. Subrahmanian, “REV2:

Fraudulent User Prediction in Rating

Platforms”, In: Proc. of ACM International

Conference on Web Search and Data Mining,

pp. 333-341, 2018.

[7] M. Girvan and M. E. J. Newman, “Community

Structure in Social and Biological Networks”,

In: Proc. of the National Academy of Sciences

of the United States of America, Vol. 99, No. 12,

pp. 7821-7826, 2002.

[8] F. Jamour, S. Skiadopoulos, and P. Kalnis,

“Parallel Algorithm for Incremental

Betweenness Centrality on Large Graphs”,

IEEE Transactions on Parallel and Distributed

Systems, Vol. 29, No. 3, pp. 659-672, 2018.

[9] H. Kashima, K. Tsuda, and A. Inokuchi,

“Marginalized kernels between labelled

graphs”, In: Proc. of International Conference

on Machine Learning, Washington, pp. 321-

328, 2003.

[10] A. K. Yadav, R. Johari, and R. Dahiya,

“Identification of Centrality Measures in Social

Network using Network Science”, In: Proc. of

International Conference on Computing,

Communication and Intelligent Systems, pp.

229-234, 2019.

[11] M. S. Saputri, A. Wibisono, A. Krisnadhi, A. Y.

L. Yohanes, T. A. Faisal, A. W. Utama, M. A.

M. Ariefa, A. Ramadhani, and A. Muda,

“Browsing Behavior Analysis from Wi-Fi Logs

Based on Community Detection: Case Study on

Educational Institution”, In: Proc. of

International Workshop on Big Data and

Information Security, pp. 87-92, 2018.

[12] A. Nita, S. Manolache, C. M. Ciocanea, and L.

Rozylowicz, “Characterizing Protected Areas

Management using Ego-networks”, In: Proc. of

International Conference on Advances in Social

Networks Analysis and Mining, pp. 642-643,

2017.

[13] R. C. Jisha, P. S. Indrajith, and S. Abhishek,

“Community Detection Using Graph

Partitioning”, In: Proc. of 2nd Global

Conference for Advancement in Technology, pp.

1-6, 2021.

[14] M. Y. Daha, M. S. M. Zahid, A. Alashhab, and

S. U. Hassan, “Comparative Analysis of

Community Detection Methods for Link

Failure Recovery in Software Defined

Networks”, In: Proc. of International Conf. on

Intelligent Cybernetics Technology &

Applications, pp. 157-162, 2021.

[15] R. Bocu and S. Tabirca, “Protein Communities

Detection Optimization Through an Improved

Parallel Newman-Girvan Algorithm”, In: Proc.

of Roedunet International Conference, pp. 380-

385, 2010.

[16] S. Moon, J. Lee, and M. Kang, “Scalable

Community Detection from Networks by

Computing Edge Betweenness on MapReduce”,

In: Proc. of International Conference on Big

Data and Smart Computing, pp. 145-148, 2014.

[17] R. Fan, K. Xu, and J. Zhao, “A GPU-based

solution for fast calculation of the betweenness

centrality in large weighted networks”, PeerJ

Computer Science, Vol. 3, pp. 1-23, 2017.

[18] S. Fortunato, “Community detection in graphs”,

Received: June 17, 2022. Revised: August 27, 2022. 282

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.26

Physics Reports, Vol. 486, No. 3-5, pp. 75-174,

2010.

[19] J. Ljucovi and S. Tomovic, “Analyzing Clusters

in the University of Montenegro Collaboration

Network”, In: Proc. of Mediterranean

Conference on Embedded Computing, pp. 264-

267, 2016.

[20] W. Li and D. Schuurmans, “Modular

Community Detection in Networks”, In: Proc.

of International Joint Conf. on Artificial

Intelligence Modular, pp. 1366-1371, 2011.

[21] P. Xiong, W. Ping, and H. Chen, “Comparison

of Community Detection Algorithms on

Contracts Networks”, In: Proc. of Chinese

Control Conference, pp. 7475-7479, 2021.

[22] D. J. Watts and S. H. Strogatz, “Collective

Dynamics of Small-World Networks”, Nature,

Vol. 393, pp. 440-442, 1998.

[23] P. M. Gleiser and L. Danon, “Community

Structure in Jazz”, Advance Complex Systems,

Vol. 06, No. 04, pp. 565-573, 2003.

[24] M. E. J. Newman, “Finding community

structure in networks using the eigenvectors of

matrices”, Physical Review. E, Statistical,

Nonlinear, and Soft Matter Physics, Vol. 74,

No. 3, 2006.

[25] H. Zare, M. Hajiabadi, and M. Jalili, “Detection

of Community Structures in Networks with

Nodal Features based on Generative

Probabilistic Approach”, IEEE Transactions on

Knowledge and Data Engineering, Vol. 33, No.

7, pp. 2863-2874, 2021.

