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Abstract: In clinical diagnosis, an effective classification of ovarian carcinoma types is highly essential to avoid the 

number of deaths worldwide. For this reason, deep convolutional neural network (DCNN) has been designed to 

classify ovarian carcinoma previously. Then, insufficiency of a dataset was handled by augmenting the training 

samples using deep semi-supervised generative learning (DSSGL). But, these augmented images directly fed to the 

DCNN without segmentation causes improper classification of ovarian carcinoma in a significant regions. Also, its 

computation burden is high. Hence in this article, an enhanced U-Net (EUNet) is proposed as a segmentation module 

with the DSSGL-DCNN framework for enhancing the accuracy of classifying ovarian carcinoma. This EUNet 

comprises different units: the inception-residual (IR) unit, the dense-inception (DI) unit, the downsampling unit and 

the upsampling unit to create the feature-level segmented maps for a given CT scan. But, raising the expansion ratio 

in the DI unit will provide several variables which make the framework more complex and slower to train. So, the 

feature-level probability map is also generated which is thresholded to binary and fused with the feature-level 

segmented maps to create the discriminative segmented sample. In ovarian carcinoma classification, the training CT 

images are first augmented by the DSSGL method and given to the EUNet. The resultant segmented images from 

EUNet are fed to the fused structure-based DCNN for categorizing the types of ovarian carcinomas effectively. 

Finally, the testing outcomes reveal that the DSSGL-EUNet-DCNN attains 91.63 % of accuracy for ovarian 

carcinoma categorization, whereas existing MLR, GoogleNet, DHL, 2-level DTEL and DSSGL-DCNN achieve 

80.24 %, 82.39 %, 85.51 %, 87.76 %, and 88.98 % respectively. 

Keywords: Ovarian carcinoma classification, DSSGL-DCNN, Segmentation, U-Net, Dense-inception, Inception-res, 

Downsampling, Upsampling. 

 

 

1. Introduction 

A tumor is a bacterial illness and is triggered to 

scatter into several cells by uncontrollable cellular 

metabolism. It's not only an expression for a 

particular disease but a substantial number of 

syndromes. The tumor is not linked to a certain area 

of the body, but starts as an uncontrollable cell 

compilation in the body and extends across the body 

when the malignant cells are recreating and entering 

the tissue. The second possibility is that some cells 

are less coordinated unlike normal cells since they 

do not develop into a properly active cell type. 

Genetic information is frequently known as the act 

of storing a functioning protein that can either 

constitute an enzyme or any functional product 

using a DNA-coded phenotype [1-3]. The regulation 

of the frequency of genotypes is a major 

contribution to the maintenance of cell function. 

Ovarian carcinoma is the most common type of 

gynecological cancer among different types of 

cancer. This represents 2.3 % of the entire fatality 

rate of tumors [4-6]. It has the highest mortality 

among gynecological diseases, as most cancers are 

pretty early hospitalized. Efficient medication is 

used to help treat metastatic cancer cells and also to 

improve the patients' survivability after surgery to 

remove the main ovarian carcinoma cells. However, 

the prognosis is quite challenging and susceptible to 

human and learning dissimilarities. 

From this viewpoint, an uncontrolled cell 
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colonoscopy is meticulously planned. Subsequently, 

anatomical and biological tests are carried out. To 

alleviate inaccuracies, these tests have been 

performed in unstable conditions; yet the errors are 

still in place [7]. Recognizing it earlier is the most 

efficient way to reduce cancer incidence. A broad 

range of surgical studies and clinical databases for 

ovarian cancer are probably featured. Bioinformatics 

research has examined the need for various 

anatomical structures and deep learning techniques 

in advancing diagnostic procedures to support 

earlier recognition by surgeons [8-10]. The mixture 

of images created from different methods of image 

analysis and guidance of advanced tomography 

innovations increase precision in ovarian carcinoma 

categorization. Deep neural networks (DNNs) with 

CT scans notably enable extremely effective 

medications and also drastically reduce fatality rates 

and prognostic errors [11]. The major advantage of 

deep understanding is to select expert experience 

and possibilities from a huge amount of data. 

Additionally, CT scans have several benefits 

including widespread usage, better reliability, less 

expensive and fast scanning duration. 

CT scans are therefore applied for the 

categorization and prognosis of ovarian carcinomas 

in current medications. Practically, CNN is widely 

known for the categorization and prognosis of 

various kinds of diseases with the help of CT scans 

including the nervous system, lung, epidermis, and 

so on [12-14]. On the other hand, there is no 

appropriate classification framework to detect and 

treat ovarian carcinoma from CT scans. For this 

reason, a DCNN framework using AlexNet has been 

introduced to categorize ovarian carcinoma cells by 

learning the CT scan database in an automated 

manner. This framework encompasses 5 

convolutional (Conv), 3 max-pooling and 2 

reconnect layers. Yet, its accuracy was not highly 

acceptable. 
As a result, DCNN was designed using the 

mixture of AlexNet, VGG and GoogLeNet 

structures. In this framework, the merging was 

conducted at the final softmax layers and the 

softmax scores of all structures were merged by the 

weighted sum for acquiring the final ovarian 

carcinoma category. To reduce overfitting, the 

DSSGL-DCNN framework was designed [15] with 

the help of the generative adversarial network 

(GAN) which solves the overfitting challenge. This 

GAN was considered as the augmentation scheme to 

augment the number of training images which were 

later learned by the mixed structure-based DCNN. 

This learned framework was further applied to the 

testing images for categorizing ovarian carcinoma. 

Conversely, the considered images were directly fed 

to the DCNN classifier without segmenting its 

significant regions, which leads to an improper 

classification and a high computation complexity 

because it was not able to manage a huge quantity of 

images. 

To solve this problem, a segmentation 

framework is introduced in the DSSGL-DCNN. The 

segmentation is done by using the U-Net structure 

which partitions the region-of-interests (ROIs) from 

the CT scans to classify ovarian carcinoma. This 

classic U-Net is a pixel-to-pixel, back-to-back fully 

convolutional network (FCN) having skip units 

among evaluation and formulation routes [16]. In 

contrast, it comprises only a few layers and so it is 

not sufficiently deep to achieve effective 

segmentation.  

Therefore in this paper, a EUNet is proposed as 

a segmentation module with the DSSGL-DCNN 

framework. It produces a feature-level segmented 

sample and a feature-level probability map for 

enhancing the accuracy of classifying ovarian 

carcinoma. In this EUNet structure, the inception 

and the dense connection units are combined into 

the classic U-Net for enhancing the efficiency of 

segmenting the ovarian CT scans. It encompasses 

the analysis and synthesis routes. These routes have 

different types of units such as the IR unit, the DI 

unit, the downsampling unit and the upsampling unit. 

First, the IR unit is used for increasing the network 

size by modifying the classic Conv layers. Then, the 

DI unit is used for segmenting the features in ROIs 

and creating the network deeper with no extra 

learning factors. Also, the downsampling is used for 

decreasing the feature maps dimension to speed up 

the training process and the upsampling block is 

applied for resizing the segmented feature maps. But, 

raising the expansion fraction in the DI unit will 

provide several variables which make the 

framework more complex and slower to train. For 

this purpose, the feature-level probability map is 

further generated which is thresholded to binary and 

fused with the segmented feature maps to generate 

the discriminative segmented mask.  

This resultant segmented mask is fed to the 

fused structure-based DCNN for categorizing the 

types of ovarian carcinomas effectively. Thus, this 

DSSGL-EUNet-DCNN framework can increase the 

accuracy of categorizing ovarian CT scans into 

many types. The remaining sections of this paper are 

emphasized as follows: Section 2 discusses different 

deep learning frameworks to recognize and 

categorize carcinoma. Section 3 describes the 

EUNet with the DSSGL-DCNN framework for 

ovarian carcinoma categorization and section 4 
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displays its effectiveness. Section 5 concludes the 

work and recommends the upcoming improvement. 

2. Literature survey 

The potential of MALDI-imaging was examined 

[17] in a mixture with linear and nonlinear machine 

learning schemes to categorize epithelial ovarian 

carcinoma subclasses from tissue microarray. They 

utilized linear discriminant analysis (LDA), SVMs 

with linear and radial basis function (RBF) kernels, 

neural network and CNN to determine classifiers for 

epithelial ovarian tumor histotypes depending on the 

MALDI-imaging-derived proteomic signs.  

The diagnostic outcomes of in vivo imaging of 

patients with ovarian lesions was studied [18] by a 

co-registered photoacoustic and ultrasound system. 

First, many ovaries from various patients were 

imaged in vivo. Then, photoacoustic functional 

features within an ROI in every ovarian tissue were 

obtained. Also, a t-test was conducted on all features 

to choose the important features and the independent 

predictors were measured by analyzing the 

similarity between every pair of predictors. Further, 

a generalized linear model (GLM) and SVM were 

applied to categorize the ovarian lesions.  

The entire-slide histopathology scans and 

proteomics information from serous ovarian 

carcinoma patients was assessed [19]. Also, CNN 

structures such as VGGNet, AlexNet and GoogleNet 

were applied to mix histopathology and practical 

omics results, as well as, to estimate the patients’ 

response to platinum-based chemotherapy.  

An evolutionary multi-objective optimization 

based tool (EBST) [20] has been designed to find 

microRNAs with promising biomarkers in ovarian 

tumors. At first, the serum microRNA profiles were 

collected and the fisher discriminant ratio (FDR) 

filtering was done as pre-processing. Then, the 

modified multi-objective imperialist competitive 

algorithm was used to choose the relevant feature 

subsets by optimizing multiple objective functions. 

Further, the 𝑙1-SVM classifier has been applied to 

categorize the chosen features.  

An integrated method [21] has been developed 

to choose the features and categorize the ovarian 

tumor. First, the features were chosen by the 

different chromosome choice schemes: relationship 

coefficient, T-statistics and Kruskal-Wallis trial. 

Then, the chosen characteristics were adopted using 

the central force adaptation, lighting addition 

process adaptation, genetic bee colony optimization 

and artificial algae optimization. Further, the 

optimized features were categorized with the 

different classifiers: LDA, K-Nearest neighbor 

(KNN), logistic regression (LR), SVM with RBF 

kernel, and multi-layer perceptron (MLP).  

A 2-level deep transfer and ensemble learning 

(DTEL) scheme was designed [22] using CNN and 

progressive resizing for automated categorization of 

epithelial ovarian carcinoma from the whole-slide 

scans. In level 1, the low-resolution patches were 

given to the pre-learned VGG19 and the final 1000-

class FC unit was substituted by the 5-class FC unit. 

The softmax was performed to find the categorical 

distribution related to the 5 subclasses of ovarian 

carcinoma. In the second level, the initial Conv unit 

of VGG19 was replaced by 2 randomly initialized 

Conv units at top of the trained network from level 1 

to further improve the efficiency. Then, a matrix 

was generated to combine the patch-level and slide-

level categorization and allocate the label to every 

patch based on the outcomes of the level 2 classifier. 

At last, a random forest (RF) classifier was applied 

to predict the whole-slide image-level labels.  

A 2D radiomics method was designed [23] with 

CT to segregate normal and malignant ovarian 

neoplasms. First, the data about the patients with 

surgically-verified normal or malignant ovarian 

carcinomas were collected and split into 2 sets: 

training and test sets. The ITK-SNAP software was 

utilized to delineate the ROIs related to the lesions 

of the maximum diameters in plain CT image slices. 

Then, the texture characteristics were captured by 

the analysis kit (AK) software. The training set was 

utilized to choose the optimal characteristics based 

on the maximum-relevance minimum-redundancy 

(mRMR) conditions and the least absolute shrinkage 

and selection operator (LASSO). Moreover, a 

radiomics model using multivariate logistic 

regression (MLR) was applied for classification.  

A deep hybrid learning (DHL) structure was 

developed [24]  to categorize ovarian carcinoma. 

First, the ovarian carcinoma images were 

preprocessed and given to the 21-layered CNN for 

feature extraction. This CNN has a series of incept 

layers and squeeze layers. The extracted features 

were then classified by the random forest and 

XGBoost to identify ovarian carcinoma.  

2.1 Research contribution 

From this survey, it is addressed that the most 

standard machine learning algorithms are only 

suitable for segmenting and classifying a small 

number of training images.  

The classification efficiency was reduced [17] 

since the tiny normal areas may be present in the 

carcinoma areas. The efficiency was less [18], since 

the overall number of accessible independent  
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Figure. 1 Schematic representation of DSSGL-EUNet-DCNN framework for ovarian carcinoma categorization 

 

samples was not sufficient for training and testing 

these classifiers.  

Only on serous ovarian carcinoma was focused, 

whereas other categories of ovarian carcinoma were 

not involved [19]. An appropriate kernel functions 

of SVM to be selected [20] properly to achieve 

better efficiency. The classifiers proposed in [21] 

have less accuracy and high training time for large-

scale datasets. 

The accuracy of [22] was not effective since it 

needs a larger database and segmentation models 

that involve features from various patch dimensions. 

The ROI partition for ovarian carcinoma was 

conducted manually [23], which provides inter- and 

intra-observer variability. The analysis [24] was 

limited to inadequate images and the CNN must be 

fine-tuned to increase the efficiency. 

So, to solve these challenges, this study aims to 

develop a new model to segment the ovarian 

carcinoma regions and classify their classes 

precisely from a large amount of CT images. 

3. Proposed methodology 

In this section, the DSSGL-EUNet-DCNN-based 

ovarian carcinoma categorization framework is 

described in detail and its schematic diagram is 

portrayed in Fig. 1. First, the training CT images are 

gathered and the DSSGL is applied as an image 

augmentation scheme which augments the number 

of training images. Then, the augmented training 

samples are given to the EUNet for segmenting 

ROIs in ovarian CT scans. Further, the segmented 

feature map is fed to the fused architecture-based 

DCNN for categorizing ovarian carcinoma. The 

entire process of this DSSGL-EUNet-DCNN 

framework is presented in Algorithm 1. 

3.1 Image acquisition and augmentation 

Initially, the ovarian carcinoma CT scans are 

collected from the cancer genome atlas-ovarian 

(TCGA-OV) dataset [25] which encloses the 43 

ovarian carcinoma CT scans in DICOM format. 

These CT scans are augmented by the DSSGL 

method [15], which uses the semi-supervised GAN 

model for increasing the number of training samples. 

So, it produces a total of 497 images for 7 

different ovarian carcinoma classes such as ovarian 

epithelial tumor, germ cell cancer, sex cord-stromal 

cancer, serous carcinoma, mucinous carcinoma, 

endometrioid carcinoma and clear cell carcinoma. 

Then, those augmented samples are provided to the 

EUNet for the segmentation process. 

3.2 EUNet-based segmentation 

The structure of EUNet is illustrated in Fig. 2  
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Figure. 2 Overall structure of EUNet for segmentation process 

 

 
Figure. 3 Overall structure of IR unit 

 

which comprises the analysis route and the synthesis 

route. Such routes involve 4 different units: the IR 

unit, the DI unit, the downsampling and the 

upsampling units. The evaluation route has 3 IR 

units, 1 DI unit and 4 downsampling units. Similarly, 

the formulation route has 3 IR units, 1 DI unit and 4 

upsampling units. In the mid of the U-Net, 1 DI unit 

is employed and it has many inception layers 

compared to others. 

3.2.1. IR unit 

An adapted residual inception unit is introduced 

to be utilized in the evaluation and formulation 

routes. The major aim is to combine attribute maps 

from various divisions of distinct kernels that will 

create a system broader and able to train many 

features. Also, the residual links provide the training 

simpler because it trains an operation regarding the 

entry attribute maps rather than training an 

unreferenced operation. As portrayed in Fig. 3, in 

this unit, every Conv layer is following the Batch 

Regularization (BR) excluding bottleneck layers to 

prevent gradient vanishing when preserving Conv 

layers. 

Consider 𝑎𝑖 is the outcome of 𝑖𝑡ℎ layer, ℎ𝑛×𝑛(∙) 

is a 𝑛 × 𝑛  kernel Conv layer and ℎ𝑟(∙) is the BR. 

The operation of concatenation is substituted using 

the symbol of ∘ and 1 × 1 dimension Conv kernel 

denotes the bottleneck layer. So, the outcome of the 

unit from the evaluation route is as: 

 

ℎ𝑖+1 = ℎ1×1 (ℎ1×1(𝑎𝑖) ∘ ℎ𝑟 (ℎ3×3(ℎ1×1(𝑎𝑖)))) ∘ 

ℎ𝑟 (ℎ3×3 (ℎ𝑟 (ℎ3×3(ℎ1×1(𝑎𝑖))))) + 𝑎𝑖  (1) 

3.2.2. DI unit 

In this unit, the inception unit presented is added 

into the dense link unit. Via configuring the padding 

as a matching approach in the Conv layer, the  
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Figure. 4 Overall structure of DI unit 

 

 
Figure. 5 Overall structure of every IR unit in DI unit 

 

outcomes of the inception unit can stay in the 

identical dimension of the attribute map as the 

entries. So, the inception unit is observed as a 

broader Conv layer because it is a concatenate of 

various kernel dimensions with pooling layers. The 

primary goal is to integrate the inception unit into 

the dense link structure and broader with no gradient 

vanishing or unwanted estimation.  

Fig. 4 depicts the structure of DI unit and Fig. 5 

portrays the detail of every IR unit in the DI unit. 

The inception unit with the residual link in the 

dense link unit is varied from the classic IR unit 

since the BR is employed following every Conv 

layer. The dense link’s major aim is to create the 

system deeper through concatenating previous Conv 

outcomes; however narrower with the diminutive 

hyper-parameter of expansion ratio. So, the dense 

link unit is fine-tuned for enhancing its efficiency in 

the dense link unit. Based on this manner, the DI 

units have been employed in the mid of the U-Net in 

which the dimension of the attribute map is tiny and 

a huge kernel is substituted using 2 minor kernels 

for decreasing the processing difficulty. 

Consider ℎ𝑛×𝑛(∙) is a 𝑛 × 𝑛  kernel Conv layer, 

ℎ𝑟(∙)  is the BR and 𝑚𝑛×𝑛(∙)  is the max-pooling. 

The symbol ∘ denotes the concatenation and 𝑓𝐼𝑅(∙) 

is the operation of the bottleneck layer after the new 

IR unit. So, the outcome of this IR unit is as: 

 

𝑎𝑖+1 = ℎ1×1 (ℎ1×1(𝑎𝑖) ∘ ℎ𝑟 (ℎ1×1(𝑚3×3(𝑎𝑖)))) ∘ 

ℎ𝑟 (ℎ3×1 (ℎ𝑟 (ℎ1×3(ℎ1×1(𝑎𝑖))))) + 𝑎𝑖  (2) 

 

The outcome of 𝑖 + 1𝑡ℎ layer in the DI unit is as: 

 

𝑎𝑖+1 = 𝑓𝐼𝑅([𝑎0, 𝑎1, … , 𝑎𝑖])   (3) 

 

In Eq. (3), [𝑎0, 𝑎1, … , 𝑎𝑖] is the concatenation of 

the attribute maps generated in the layers 0,1, … , 𝑖. 
In total, 3 DI units have been developed: 1 unit is 

employed in the evaluation route, 1 is in the 

formulation route and the final unit is applied in the 

mid of the U-Net. Every DI unit excluding the mid-

unit comprises 12 new IR units and the mid-unit 

comprises 24 IR units. The expansion ratio is 

considered as the entry of the IR unit. Because of 

the concatenation link, the dimension of the attribute 

map is not altered. 

3.2.3. Downsampling and upsampling units 

These 2 blocks comprise a similar structure 

excluding the Conv and max-pooling layers in the 

downsampling unit and the deconvolution and up-

sample layers in the upsampling unit. These are 

observed as a shortened inception unit with 3 

divisions. Max-pooling and upsampling 2D layers 

are applied for decreasing and extending the 

dimension of feature maps, accordingly which 

results in feature loss and less precision. So, these 

issues are solved by these 2 blocks. 

Consider ℎ𝑛×𝑛
2 (∙), 𝑔𝑛×𝑛

2 (∙), 𝑚3×3
2 (∙)and 𝑢2(∙) are 

the Conv, Conv transposed, max-pooling and the 

upsampling with 2 strides. The representation for the 

downsampling unit is as: 
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𝑎𝑖+1 = ℎ1×1 (ℎ3×3
2 (ℎ1×1(𝑎𝑖)) ∘

ℎ3×3
2 (ℎ3×3(ℎ1×1(𝑎𝑖))) ∘ 𝑚3×3

2 (𝑎𝑖))       (4) 

 

Also, the representation for the upsampling unit 

is as: 

 

𝑎𝑖+1 = ℎ1×1 (ℎ3×3
2 (ℎ1×1(𝑎𝑖)) ∘

ℎ3×3
2 (ℎ3×3(ℎ1×1(𝑎𝑖))) ∘ 𝑢2(𝑎𝑖))   (5) 

 

The entire network structure is developed 

followed by the idea of encoder-decoder design with 

skip links. The encoding task relates to the 

evaluation route and the decoding task relates to the 

formulation route. In the encoder, while the learning 

samples are fed to the network as the entries, the 

layer index is increased by twice once every IR or 

DI unit and the dimension of attribute maps is 

decreased by ½ following the downsampling unit. In 

the decoder, the layer of attribute maps is decreased 

by ½ once for every IR or DI unit and the dimension 

of attribute maps are increased by twice following 

the upsampling unit. Thus, it segments the ROIs 

from the CT scans and produces feature-level 

segmented maps. 

To enhance the accuracy, a feature-level 

probability map is also created which has the highest 

range of the possibility of each sample being in one 

of the seven ovarian carcinomas. This map is 

thresholded to binary and fused with the feature-

level segmented maps for generating the 

discriminative segmented feature map. Consider, the 

encoder in EUNet creates a 𝐿-dimensional feature 

map 𝑦  of real values where 𝐿  is the number of 

ovarian carcinoma classes. The real values in 𝑦 are 

regularized by the softmax factor 𝜑  for creating 

another 𝐿-dimensional feature map �̅� = 𝜑(𝑦). It is 

appropriate to consider that feature maps with low 

possibility can have less discriminativeness. If 

max(�̅�) > 𝜀 , then the feature map is termed as 

discriminative where 𝜀 denotes the threshold value. 

3.3 Fused DCNN-based classification 

After segmenting the training samples, the 

DCNN classification is performed to categorize 

ovarian carcinoma. This DCNN is based on the 

mixture of AlexNet, GoogLeNet and VGG 

structures [15] wherein the results of each structure 

are concatenated at the final softmax layer using a 

weighted sum-rule strategy. This gives the resultant 

class of ovarian carcinomas precisely. Table 1 lists 

all the parameters used in this study. 

Table 1. Parameters used for DSSGL-EUNet-DCNN  

Parameters Description 

𝑎𝑖 Output of 𝑖𝑡ℎ layer in IR unit 

ℎ𝑛×𝑛(∙) 𝑛 × 𝑛 kernel Conv layer 

ℎ𝑟(∙) Batch normalization 

𝑚𝑛×𝑛(∙) Max-pooling 

∘ Concatenation 

𝑓𝐼𝑅(∙) Operation of the bottleneck layer after 

the new IR unit 

[𝑎0, 𝑎1, … , 𝑎𝑖] Concatenation of the attribute maps 

generated in the layers 0,1, … , 𝑖 
ℎ𝑛×𝑛

2 (∙) Conv with 2 strides 

𝑔𝑛×𝑛
2 (∙) Conv transposed with 2 strides 

𝑚3×3
2 (∙) Max-pooling with 2 strides 

𝑢2(∙) Upsampling with 2 strides 

𝐿 Number of ovarian carcinoma classes 

�̅� 𝐿-dimensional feature map 

𝜑 Softmax function 

 

Algorithm 1: DSSGL-EUNet-DCNN 

Input: Ovarian carcinoma CT scans 

Output: Classified categories of ovarian 

carcinoma  

Begin 

Acquire the TCGA-OV dataset; 

Split the dataset into training and testing sets; 

𝒇𝒐𝒓(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡)  

Perform the DSSGL to create the additional 

image samples; 

Add these images to the training set; 

Train EUNet to create the feature-level 

segmented maps and probability maps; 

Get the final discriminative segmented feature 

map by fusing these 2 maps; 

𝒆𝒏𝒅 𝒇𝒐𝒓  

𝑓𝒐𝒓(𝑒𝑎𝑐ℎ 𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑣𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑒𝑑 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑚𝑎𝑝)  

Train the fused DCNN classifier; 

Test the fused DCNN classifier using the testing 

samples; 

Validate the efficiency of classifying the ovarian 

carcinoma categories; 

𝒆𝒏𝒅 𝒇𝒐𝒓  

End   

4. Experimental results 

In this section, the efficiency of DSSGL-EUNet-

DCNN is analyzed by implementing it in Matlab 

2017b with the help of the TCGA-OV dataset [25]. 

Among 497 CT scans, 350 scans (50 samples from 

every ovarian carcinoma category) are used for 

training and 147 scans (21 samples from every 

ovarian carcinoma category) are used for testing. 

Also, its efficiency regarding different metrics is 

compared with implementing the DSSGL-DCNN  
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Figure. 6 Comparison of accuracy 

 

(Fusion) [15], GoogleNet [19], 2-level DTEL [22], 

MLR [23], DHL [24] frameworks for ovarian 

carcinoma segmentation and classification. 

4.1 Accuracy 

It is the fraction of accurate classification of 

ovarian cancer categories over the total number of 

attempts executed. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑇𝑁)

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (6) 

 

TP is a result where the classifier categorizes 

ovarian cancers as themselves e.g., clear cell 

carcinoma is classified as clear cell carcinoma. TN 

is a result where the classifier categorizes the non-

ovarian cancers as non-ovarian cancers. FP is a 

result where the classifier inexactly categorizes 

ovarian cancers as non-ovarian cancers. FN is a 

result where the classifier inexactly categorizes the 

non-ovarian cancers as ovarian cancers. 

Fig. 6 displays the accuracy achieved for MLR, 

GoogleNet, DHL, 2-layer DTEL, DSSGL-DCNN 

(fusion), and DSSGL-EUNet-DCNN (fusion) 

frameworks to categorize the ovarian carcinomas. It 

examines that the DSSGL-EUNet-DCNN (fused 

structure) framework accomplishes a greater 

accuracy than the other frameworks i.e., the 

accuracy of DSSGL-EUNet-DCNN (fusion) is 

14.19 % larger than the MLR, 11.21 % larger than 

the GoogleNet, 7.16 % larger than the DHL, 4.41 % 

larger than the 2-layer DTEL and 2.98 % larger than 

the DSSGL-DCNN (fusion) frameworks. 

4.2 Precision 

It is the ratio of exactly classified categories of 

ovarian cancers at true positive (TP) and false 

positive (FP) rates. 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
    (7) 

 

Figure. 7 Comparison of precision 
 

 
Figure. 8 Comparison of recall 

 

Fig. 7 exhibits the precision obtained for MLR, 

GoogleNet, DHL, 2-layer DTEL, DSSGL-DCNN 

(fusion), and DSSGL-EUNet-DCNN (fusion) 

frameworks to categorize the ovarian carcinomas. It 

indicates that the DSSGL-EUNet-DCNN (fused 

structure) framework achieves a greater precision 

than the other frameworks i.e., the precision of 

DSSGL-EUNet-DCNN (fusion) is 14.17 % greater 

than the MLR, 11.22 % greater than the GoogleNet, 

7.15 % greater than the DHL, 4.27 % greater than 

the 2-layer DTEL and 2.98 % greater than the 

DSSGL-DCNN (fusion) frameworks. 

4.3 Recall 

It is the ratio of exactly classified categories of 

ovarian cancers at TP and false negative (FN) rates. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (8) 

 

Fig. 8 shows the recall obtained for MLR, 

GoogleNet, DHL, 2-layer DTEL, DSSGL-DCNN 

(fusion), and DSSGL-EUNet-DCNN (fusion) 

frameworks to categorize the ovarian carcinomas. It 

indicates that the DSSGL-EUNet-DCNN (fused 

structure) framework achieves a greater recall than 

the other frameworks i.e., the recall of DSSGL- 
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Figure. 9 Comparison of F-measure 

 

EUNet-DCNN (fusion) is 13.99 % higher than the 

MLR, 11.04 % higher than the GoogleNet, 7.09 % 

higher than the DHL, 4.17 % higher than the 2-layer 

DTEL and 2.94 % higher than the DSSGL-DCNN 

(fusion) frameworks. 

4.4 F-measure 

It is computed as the harmonic average of 

precision and recall. 
 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∙𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (9) 

 

Fig. 9 shows the f-measure obtained for MLR, 

GoogleNet, DHL, 2-layer DTEL, DSSGL-DCNN 

(fusion), and DSSGL-EUNet-DCNN (fusion) 

frameworks to categorize the ovarian carcinomas. It 

indicates that the DSSGL-EUNet-DCNN (fused 

structure) framework achieves a greater recall than 

the other frameworks i.e., the recall of DSSGL-

EUNet-DCNN (fusion) is 14.07 % higher than the 

MLR, 11.12 % higher than the GoogleNet, 7.11 % 

higher than the DHL, 4.19 % higher than the 2-layer 

DTEL and 2.92 % higher than the DSSGL-DCNN 

(fusion) frameworks. 

5. Conclusion 

In this article, a DSSGL-EUNet-DCNN 

framework is designed to improve the accuracy of 

classifying ovarian carcinoma. At first, the training 

CT scans are augmented by the DSSGL and fed to 

the EUNet. This EUNet comprises different units: 

the IR unit, the DI unit, the downsampling and the 

upsampling units to create the feature-level 

segmented maps for a given CT scan. Also, the 

feature-level probability map is generated and 

thresholded to binary. This map is further merged 

with the feature-level segmented maps to create the 

discriminative segmented sample. This resultant 

segmented sample is fed to the fused structure-based 

DCNN to train and classify the types of ovarian 

carcinomas. To conclude, the findings revealed that 

the DSSGL-EUNet-DCNN seems to have an 

accuracy of 91.63 % compared to the MLR, 

GoogleNet, DHL, 2-level DTEL and DSSGL-

DCNN frameworks for segmenting and categorizing 

ovarian cancer types. However, the efficiency of this 

classification depends on the selection of DCNN 

hyperparameters. So, the future work will focus on 

optimizing the hyperparameters used for DCNN 

training to enhance the accuracy. 
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