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Abstract: The fake images and visuals can easily spread among social media users and they largely impact decision-

making in society. Image forgery has become increasingly common as more non-professionals have access to image 

manipulation tools. These fake images are so sneaky that an ordinary person cannot guess them. Through social media, 

such photos are utilized to promote erroneous information in society. Image forgery detection is about segmenting the 

forged part from the images, primarily a region of interest. This paper suggests a unique method that depends on a 

dual attention network to detect forged segments. This network contains self-attention modules that contribute to 

extracting and matching features in the channel and spatial domains. These features help locate and identify the forged 

portions of digital images at various scales and channels. This experimental study uses typical datasets such as CASIA 

V1.0, CASIA V2.0, and Columbia. Proposed IFLNet technique outperforms other advanced techniques with a 

precision of 96 %, recall rate of 95 %, accuracy rate of 98 %, F1-score of 96 % and IoU score of 92 % for Columbia 

dataset and correspondingly other two datasets also. 
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1. Introduction 

Nowadays, altered and fraudulent pictures are 

shared across social media for various purposes to 

attract and influence people. Fake photographs are 

employed in various circumstances, such as 

journalism, police interrogation, and forensics. 

Editing digital photographs has grown easier due to 

the advent of photo editing tools. Furthermore, such 

software leaves no visible traces, making it extremely 

difficult to distinguish between a manipulated and a  

 

 
                      (a)                                       (b) 

Figure. 1 Copy move forgery technique: (a) initial image 

and (b) tampered image with copy move technique 

 
               (a)                         (b)                          (c)  

Figure. 2 Splicing forgery techniques: (a) & b) are 

original images, and (c) forged images with splicing 

technique 

 

genuine photograph. 

Active and passive methodologies are the two 

fundamental sorts of tampering detection strategies. 

The former depends on authentication information 

implanted in the picture, like digital signature or 

digital watermark. Passively manipulated images are 

the most common and have been an area of 

examination interest. Copy-move and splicing are 

widely used image-altering techniques. Fig. 1 shows 

the altered picture with the copy-move strategy, 
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wherein a piece of a picture is reordered into one 

more picture to modify the data it contains [1], [2]. 

Fig. 2 shows the altered picture with splicing strategy 

[3], [4]; it includes replacing a particular piece of one 

picture with a part of another picture. Several post-

processing operations [5] can also be made to the 

pasted region to ensure that the area created fits into 

the environment and is not conspicuous. These 

modifications include rotation, resizing, blending, 

and other similar techniques. 

The goal of this work is to effectively localize the 

tampered area using convolutional neural networks 

(CNN). The proposed methodology uses a fully 

convolutional network (FCN) along with self-

attention technique to describe feature 

interdependencies in the channel and spatial domains. 

DANet is a semantic scene segmentation network 

proposed by J. Fu [6]. This network contains two self-

attention sections; namely channel attention module 

(CAM) and position attention module (PAM). In the 

spatial domain, PAM captures the spatial 

interdependencies across feature maps. Aggregating 

features use a weighted summation to update the 

feature at a particular point, with the weights 

determined by attribute matches among the matching 

two states. Any two states with identical attributes 

can help each other improve, regardless of their 

spatial distance. CAM is also used to capture 

interdependencies total station maps, with each 

station map receiving the burdened total of all 

interdependent station maps. Features obtained from 

both the attention modules are combined in a parallel 

fashion to get improved feature representations using 

which the forged part are localized.  

This research paper is organized as follows: 

Section 2 illustrates the existing methods for image 

forgery detection and section 3 represent the 

suggested methodology to detect image forgery. 

section 4 covers detail about datasets used, and 

evaluation metrics and also discusses the results 

obtained followed by conclusions in section 5. 

2. Related works 

Copy-move and splicing have been the mass 

widely used forgery methods. Initial research works 

on image forgery detection used blockade methods to 

spot copy-move forgeries [7-13] which share the 

image into multiple parts. Features like discrete 

cosine transform (DCT), discrete wavelet transform 

(DWT), and local binary pattern (LBP), etc. were 

removed from the figure blocks and a comparison is 

conducted to identify similar blocks. Forgery 

detection is not accurate when the image’s duplicated 

patch is post-processed and it also requires huge 

computational time for block comparison. Later, 

researchers used keypoint extraction techniques like 

scale invariant feature transform (SIFT), speeded up 

robust features (SURF), oriented FAST and rotated 

BRIEF (ORB) etc. to identify the forged part in an 

image. Keypoint-based strategy for identifying image 

copy-move forgeries is built using the Helmert 

transform and simple linear iterative clustering 

(SLIC) superpixel segmentation in the article [14]. 

The Helmert transform can also be used to find 

geometric correlations between matched pairs and 

merge clusters. SLIC approach was employed to 

determine the precise area of the tampering. Kunj 

Bihari Meena and Vipin Tyagi [15] developed a 

hybrid strategy by combining fourier mellin 

transform (FMT) and SIFT techniques. The SIFT 

descriptor was applied to the smooth area of the 

image to extract the key points from the texture area. 

The retrieved features are compared to find duplicate 

regions of the image. Under various geometric 

changes and post-processing operations, this 

approach works better in a reasonable amount of time. 

To further enhance the performance multiple 

keypoint extraction methods are used together in 

identifying the forged part. Keypoint based methods 

have the advantage of reduced computational time in 

forgery localization but have limitations in 

identifying the small and smooth forged area [16-24]. 

In recent times, a lot of researchers have 

successfully examined the usability and effectiveness 

of convolution neural network (CNN) [25] in the 

domain of image tampering, as linked to the 

conventional techniques. Articles [26-27], refer to a 

collection of significant studies in the field of image 

tampering detection using CNNs. Ying [28] suggest 

a two-stage deep learning system to detect tampering 

in images. A stack auto encoder network was formed 

based on wavelet characteristics of images to obtain 

intricate characteristics for each image patch. Later, 

the relevant data from each patch was combined, and 

prediction has done. A reliable identification 

technique must be used to deal with low-resolution 

images caused by compression or scaling. By 

detecting changes in chroma and saturation, a flat 

CNN has been successfully trained to distinguish 

tampered regions in low-resolution images in the 

article [29]. This has been accomplished by 

transforming the image from RGB to YCrCb type. 

CrCb channels are employed in CNN layers to 

eliminate the illumination details.  

Researchers [30] demonstrated a new method to 

detect tampering using ImageNet architecture and 

then significantly alter the net structure using 

minimal training samples. The researchers suggested 

utilizing a coarse to refined CNN approach to detect 



Received:  July 22, 2022.     Revised: August 19, 2022.                                                                                                   168 

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022           DOI: 10.22266/ijies2022.1231.17 

 

the modified area. A coarse CNN was utilized to 

forecast suspicious coarse tampering locations, and a 

refined CNN was used to improve the coarse-CNN 

identification findings [31] along with adaptive 

clustering technique. However, this clustering result 

only applies to single tampered object and may only 

be used to approximately localize the tamper's precise 

location. Researchers [32] add spatial characteristics 

to a U-Net encoder with a DenseNet structure to 

predict the binary mask of tampered areas. In 

uncompressed photos, the detection of tampering was 

lowered when using advanced tampering techniques, 

whereas localization of tampered areas is decreased 

in low-compressed JPEG images. The authors of the 

article [33] present an improved mask regional 

convolutional neural network (Mask R-CNN) that 

adds a Sobel filter to the Mask R-CNN to capture 

distinguishing features between manipulated and 

non-manipulated areas. The Sobel filter is used as a 

tool to ensure that predicted masks have image 

gradients that are close to those of the ground truth 

mask. 

BusterNet technique [34] proposed a solution for 

detecting fake copy-move photos, which discovers 

the source and target areas. It also describes how well 

a large quantity of usable and trustworthy copy-move 

forgery data may be generated from datasets to 

address the training data deficit. Detection 

performance on CASIA and CoMoFoD datasets was 

remarkable using this approach and resilient to 

tampering approaches. A basic (10-layer) CNN-

based deep learning technique was utilized in the 

article to train a hierarchical representation based on 

automatic RGB image creation as input. The pre-

trained CNN extracts solid characteristics from the 

test figure, and the concluding discriminants for 

SVM categorization are to get used a feature fusion 

technique. Article [35] proposed a CNN-based 

approach where YCbCr, PRNU and edge features are 

extracted using adaptively selected ratios to produce 

the best-mixed features for effective tampering 

detection. 

Trans Forensics [36] uses dense correction 

modules, which can correct mask predictions. This 

method is not only capable of capturing 

discriminatory plots and producing high-quality 

mask predictions, but it is also unaffected by patch 

sequence order or manipulation sorts. The 

encoder/decoder based technique called Fals-Unet is 

suggested in article [37]. Encoder, like Resnet50, 

analyses differences in attributes between modified 

and unmanipulated areas using spatial maps. To 

detect distorted regions, the decoder learns how to 

convert feature maps of low resolution into pixel-by-

pixel predictions. DCU- net model includes the 

encoder, decoder and feature fusion [38] and can only 

detect splicing operations of fixed size images. Edge 

details of the tampered regions were retrieved using 

high pass filters. The tampered image, as well as the 

manipulated residual image, is fed into the model. 

The depth features retrieved from the two-channel 

coding network were then fused, and the modified 

features are extracted with varying granularities by 

dilation convolution, followed by secondary fusion. 

Finally, the decoder receives the fused feature map, 

to provide the expected image.  

Rao [39] developed a multi-semantic attention 

model and integrated it into a CNN. The tamper 

detection performance of this approach needs to be 

improved for tampering in small areas. Based on the 

fact that JPEG files undergo double compression, 

Bianchi [42] proposed a method whose performance 

is invalid if image post processing operations, such as 

resizing, are used in-between the two compressions, 

and it occasionally generates false alarms in image 

regions with either low intensity. Dirik [43] and 

Ferrera [48] calculated the estimate of color filter 

array (CFA) number patterns and they analyzed noise 

based on CFA. FCN model [44] transformed a CNN 

classification into a fully convolutional classification 

by replacing fully connected layers in order to 

produce spatial heat maps. Finally, they used a 

deconvolution layer to up-sample the heat maps for 

generating dense per-pixel labeling. U-Net model 

[45] employed intermediate skip connection which 

captures low level semantic information which can be 

used for tampering localization. 

RRU-Net [46] adds residual learning and 

feedback process to the traditional U-Net algorithm, 

which improves the detection effect of the model 

greatly. Lin [47] used DQ effects in the JPEG images 

to detect tampering without any post-processing 

operations. Salloum [49] evaluated a multi-task FCN 

(MFCN) that utilizes two output branches for multi-

task learning. One branch is used to learn the surface 

label, while the other branch is used to learn the edge 

or boundary of the spliced region. Though numerous 

research works are done to detect and effectively 

localize the tampered areas, there are a few 

challenges that need to be addressed. This work aims 

to provide a framework for detecting and localizing 

tampered areas from digital images.  

Major contributions of this work are 

 

• Successfully capture the feature maps at different 

scales and channels to achieve forgery 

localization 

• Copy-move and splicing tampering operation are 

detected efficiently from tampered images even  
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Figure. 3 Proposed methodology 

 

 
Figure. 4 DANet for image forgery detection and localization 

 

after undergoing multiple post-processing 

operations. 

• Achieved remarkable results in detecting 

tampering across data files such as CASIA V1.0, 

Columbia and CASIA V2.0 

3. Methodology 

This section discusses the working of DANet as 

proposed by the authors of [6], its modules, and the 

framework used in identifying image forgery. As 

shown in Fig. 3, all images from the datasets are 

resized to the dimension of 512x512  pixels. Images 

are divided in the ratio of 80:20 as training and testing 

images. The datasets employed in this work have 

fewer images, which would make the neural 

network’s training phase less efficient. To rise above 

this limitation, horizontal flipping, vertical flipping, 

and rotation augmentation techniques are used in this 

work to increase the number of training and 

validation images. Augmented images are then 

passed to the DANet which extracts similar feature 

maps at both the channel domain and spatial domain. 

The ground truth image obtained from the model is in 

RGB format. Using masking operation, the RGB 

image is converted to the binary image where a 

region in white color indicates the forged region and 

other parts of the image are authentic areas. These 

binary images are later compared with the ground 

truth images for performance evaluation. 

3.1 DANet model 

ResNet50 is used as the backbone architecture. 

The last two steps of down-sampling operations are 

abolished, and dilated convolutions are employed, 

resulting in a 1/8 increase in the final feature map size. 

It retains a larger amount of information when no 

additional parameters are provided. As a result of the 

convolution methods applied, the features concerning 

pixels with similar labels will differ. Intra-class 

inconsistency is introduced due to these 

discrepancies, resulting in a loss in recognition 

accuracy. A connection between features and the 

attention mechanism is established to overcome this 

challenge. This technology’s ability to include long-

range contextual information into feature 

representation is useful in detecting forgeries. When 

combined with two different types of attention 

modules as depicted in Fig. 4, the network better 

reflects local characteristics at the pixel level while 

simultaneously giving a global context for the 

information being processed. Parallel modules would 

receive features from dilated ResNet. An attention 

matrix is created in the Position Attention module 

that depicts the connection among any two picture 

elements of the aspect. Later, it is multiplied with the  
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Figure. 5 PAM Network [6] 

 

 
Figure. 6 CAM Network [6] 

 

original characteristics to get the result. Long-range 

context representations are obtained by performing a 

section-wise addition process on a previously 

increased matrix and the original structure, described 

in more detail in the following section. CAM has 

similar steps, except for dimensionality reduction to 

model cross-channel relationships. The production of 

the two attention segment is integrated to improve the 

performance of forgery localization.  

3.2 PAM Net 

The feature of PAM is given in Fig. 5. Feature 

map “A” is generated from the backbone network. 

1x1 Convolution is applied on A ϵ RCxHxW to generate 

P, Q and R feature maps where (P, Q) ϵ RCxHxW. P and 

Q are reshaped to RCxN, where N=HxW represents the 

sum of pixels. Matrix multiplication is performed 

between the transfer of P and Q. Spatial attention map 

S ϵ RNxN as shown in Eq. (1) which indicates the 

similar feature representations between two positions 

and is obtained by applying a softmax layer. The 

more related aspect representation of the two states 

provides to the greater relationship between them. R 

is redesigned to R ϵ RCxN and multiplied by the 

rearrange of matrix S and the product matrix is 

redesigned to R ϵ RCxHxW. A section-wise addition is 

achieved between the product matrix and original 

aspect A to get the final yield E ϵ RCxHxW as shown in 

Eq. (2). Scale parameter α is primed to 0 and slowly 

learns to allocate more weight. Similar features 

would be associated between two pixels regardless of 

their distance. “E” has a worldwide conceptual view 

and aggregates settings selectively. The output 

feature plan of the residual network is referred to as 

A. 

 

𝑠𝑗𝑖 =
𝑒𝑥𝑝(𝑝𝑖,𝑞𝑖)

∑ 𝑒𝑥𝑝(𝑝𝑖,𝑞𝑖)𝑛
𝑖=1

                        (1) 

 

𝐸𝑗 =∝ ∑ (𝑠𝑗𝑖𝐷𝑖) + 𝐴𝑗
𝑁
𝑖=1                             (2) 

3.3 CAM network 

The structure of CAM is shown in Fig. 6. Feature 

map A ϵ RCxHxW is redesigned to size RCxN and then 

matrix development is performed among A and the 

transfer of network attention map X ϵ RCxC is obtained 

by applying a softmax layer as shown in Eq. (3). 

where xji measures the ith network’s impact on the jth 

network. Matrix development is achieved on the 

transpose of X and A and the resultant matrix is 

reshaped to RCxHxW. The resultant matrix is grown by 

a scale limitation β and a section-wise sum operation 

is achieved with A to find the final output E ϵ RCxHxW 

as shown in Eq. (4) where β gradually acquires a 

weight from 0. The concluding aspect map of each 

network is a burdened sum of all aspects of all 

networks and real aspects which models the long-

scope semantic addictions between aspect maps. By 

exploiting the interdependencies between channel 
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maps, we could emphasize inter-reliant aspect maps 

and improve the aspect demonstration of a particular 

definition. The yield of two attention modules is 

converted by a convolution layer and a section-wise 

sum is used to complete aspect fusion. 

 

𝑥𝑗𝑖 =
𝐴𝑖,𝐴𝑗

∑ 𝑒𝑥𝑝(𝐴𝑖,𝐴𝑗)𝑐
𝑖=1

                   (3) 

 

𝐸𝑗 = 𝛽 ∑ (𝑥𝑗𝑖 . 𝐴𝑗) + 𝐴𝑗
𝑐
𝑖=1                 (4) 

4. Results and discussion 

Various experiments are carried out for the 

assessment of the suggested model. The performance 

of the projected model in identifying and locating 

tampering is demonstrated using the results obtained. 

This section covers the datasets, and evaluation 

techniques. 

4.1 Datasets 

For evaluation, standard datasets such as CASIA 

V1.0, CASIA V2.0, and Columbia. The CASIA V1.0 

[40] data files contain 1721 JPEG picture with an 

extension of 384x256 pixel sizes. The original set 

includes 800 photos, whereas the altered set contains 

921. A genuine photograph can belong to any of the 

nine categories: objects, sceneries, architecture, and 

plants, for example. The copy and paste technique in 

Adobe Photoshop is used to provide tampered 

pictures. It may also be altered before being copied 

onto an image by doing a few manipulations such as 

rotation, scaling, and other effects. 

CASIA V2.0 is a compared and expanded replica 

of V1.0. It has a total of 12614 different photos. The 

authentic set has 7,491 genuine images, whereas the 

altered set contains 5,123 changed images. V2.0 

includes TIFF and JPEG images with varying Q 

factors. Unlike in V1.0, the images in V2.0 are of 

varying extent, scope from 320x240 to 800x600 

picture elements. Before pasting, edited picture 

region(s) can be treated with ascending, rotating, or 

extra deformation actions to generate a combined 

picture. Blurring might be used on the edited region 

or elsewhere in the manipulated image. CASIA 

datasets provide ground truth images that are used for 

performance evaluation. Columbia dataset [41] has 

183 images while the spliced set contains 180 images. 

Spliced images are created by copying and pasting 

objects of interest into actual photos using Adobe 

Photoshop. No post-function processes are functional 

to the tampered regions or images. For the Columbia 

dataset, border covers are provided to mark the 

boundaries of the manipulated area. These pictures 

catch whole inside or outside scenes rather than just  
 

 
Figure. 7. Performance evaluation metrics 

 

blocks of photos which in turn is challenging. 

4.2 Evaluation metrics 

Localization performance is measured at the pixel 

level. For evaluation, the output image generated 

from this work is likened to the basic facts images 

provided in the dataset. As illustrated in Fig. 7, Tp 

represents the pixels that are forged and identified as 

forged; Fn represents the pixels which forged but are 

not predicted as forged; Fp indicates non-forged 

pixels which are wrongly identified as forged pixels; 

Tn represents the non-forged pixels that are correctly 

categorized as non-forged pixels. Benchmark metrics 

such as precision PI, intersection over union score UI, 

accuracy AI, F1-Score FI, and recall RI are used as 

shown in Eqs. (5-9). PI refers to the chances that the 

identified area is truly found, while the likelihood of 

forged regions detected as forged is denoted by RI. FI 

represents the combined performance of PI and RI. 

Metric AI is used to assess the accuracy of the forged 

area localization. The area of overlap between the 

predicted and actually forged segments, divided by 

the area of union between the two areas, is 

represented by UI. 

 

  

𝑃𝐼 =
𝑇𝑝

(𝑇𝑝+𝐹𝑝)

                                                

(5) 

 

𝑅𝐼 =
𝑇𝑝

(𝑇𝑝+𝐹𝑛)

                                                

(6) 

 

    
𝐹𝐼 = (2𝑃𝐼𝑅𝐼)/(𝑃𝐼 + 𝑅𝐼)

                           
(7) 

 

𝐴𝐼 =
(𝑇𝑝+𝑇𝑛)

(𝑇𝑝+𝑇𝑛+𝐹𝑝+𝐹𝑛)
                                    

(8) 

 

 

𝑈𝐼 =
𝑇𝑝

(𝑇𝑝+𝐹𝑛+𝑇𝑛)
                                           

(9) 

4.3 Evaluation 

This section presents the outcomes of the 

suggested methodology and a comparison to other 

advanced fake detection approaches. AdamW setting 

is used to train the network. The localization network  
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Table 1. Comparative results for Columbia dataset 

Method FI RI AI PI 

NADQ [42] 0.2378 0.2254 0.6557 0.3292 

CFA [43] 0.5836 0.5994 0.8646 0.7472 

FCN [44] 0.6885 0.6126 0.8847 0.9001 

C2RNet [31] 0.695 0.612 - 0.804 

U-Net [45] 0.7779 0.6987 0.9134 0.985 

RRU-Net [46] 0.915 0.8073 - 0.961 

DU-DC-EC Net [32] 0.9307 - 0.9663 - 

D-Unet [33] 0.93 0.901 - 0.96 

DCU-Net-Rimg[38] 0.8858 0.8252 0.9407 0.9965 

DCU-Net-RGB [38] 0.9175 0.8637 0.9545 0.9981 

DCU-Net-NFF [38] 0.9216 0.9004 0.9647 0.9971 

DCU-Net [38] 0.9498 0.9176 0.9727 0.9871 

IFLNet (Proposed) 0.9589 0.9533 0.9212 0.96472 
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F1-Score:  

0.993493 

Precision: 

0.987156 

Recall: 0.999912 

 

 

   
F1-Score:  

0.990191 

Precision: 

0.998516 

Recall: 0.982003 

 

 

F1-Score:  

0.990805 

Precision: 

0.985233 

Recall: 0.99644 

 

Figure. 8 Results for Columbia dataset 

 

 
Figure. 9 Train loss vs validation loss for Columbia dataset 
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Figure. 10 Comparative analysis of CASIA V1.0 dataset 
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Image 

Ground Truth Output Results 

a) 

 

F1-Score: 0.963957 

Precision:  0.9307 

Recall : 0.999679 

b) 

 

F1-Score:  0.9785 

Precision:  0.962019 

Recall : 0.995556 

c) 

 

 

F1-Score:  0.968454 

Precision:  0.951098 

Recall : 0.986455 

 

d) 

 

F1-Score:  0.915122 

Precision:  0.877694 

Recall : 0.955884 

e) 

 

F1-Score:  0.957415 

Precision:  0.941165 

Recall : 0.974236 

f) 

 

 

F1-Score:  0.971225 

Precision:  0.95221 

Recall : 0.991016 

 

 

g) 

 

F1-Score:  0.946567 

Precision:  0.940932 

Recall : 0.95227 

 

Figure. 11 CASIA V1.0 output images: (a)-(d) Detection of splicing tampered images and (e)-(g) Detection of  copy-

move tampered images 
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Figure. 12 Output images for CASIA V2.0 dataset 

 

 
Figure. 13 Performance of CASIA V1.0, V2.0 and Columbia datasets 
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is defined using Pytorch 1.6.0 to train the model. 

Epoch value is fixed to 300, while the group size is 

fixed to 16. Dice loss is used for the loss purpose. 

The Columbia dataset contains spliced images 

that are not post-processed. Fig. 8 compares the 

dataset’s ground truth image with the predicted 

output image. As can be observed, the achieved 

results are quite comparable to the ground truth image. 

Fig. 9 depicts the loss during the training and 

validation phases. It clearly shows that the suggested 

model is optimal and does not undergo an over-fitting 

or under fitting problem. The proposed 

methodology’s comparison study with other current 

approaches is shown in Table 1. 

CASIA V1.0 dataset contains both spliced 

tampered pictures along with copy-move tampered 

pictures. In terms of F1-Score, Fig. 10 depicts the 

comparative analysis for the CASIA V1.0 dataset. 

Results are compared with existing work ADQ1[46], 

CFA1 [47], DCT [48], MFCN [49], C2RNet [31] and 

the result images from the suggested procedure are 

shown in Fig. 11. In this figure (a-d) images are 

spliced images and (e-g) copy-move tampered 

images. This figure shows that the recall rate is 

remarkable, implying that the forged pixels are nearly 

classified as forged using the proposed methodology. 

CASIA V2.0 tampered photos are more difficult 

to work with because the tampered portions are 

subjected to many post-processing procedures. Even 

with multiple post-processing processes, the 

proposed methodology successfully detects tampered 

areas. The resulting image in Fig. 12(a) displays the 

tampered section copied and pasted over the same 

image. Detection of tampering in a textured area is 

shown in Fig. 12(b); the detection of multiple pasted 

areas and also small forged regions are shown in Fig. 

12(c); the detection of tampered areas that are resized 

is demonstrated in Figs. 12(d), 12(e) depicts the 

detection of tampered regions that have undergone 

rotation transformation along with resizing, and 

similarly, Fig. 12(f) portrays the detection of the 

rotated tampered area.  

The proposed methodology is robust to multiple 

transformations, copy-moves, and splicing detection 

in small and smooth areas. Fig. 13 depicts the overall 

performance of the datasets used in this work. 

Finding splicing operation detection from the 

Columbia dataset achieves better results. From the 

results obtained, it is understood that CASIA V1.0 is 

still a challenge while detecting forgeries from small 

and smooth regions. CASIA V2.0 dataset images 

contain copy move and splicing tampered areas that 

have undergone transformations and are highly 

challenging. Improving the performance of CASIA 

datasets would be the scope of this future work. 

The proposed methodology is robust to multiple 

transformations, copy-moves, and splicing detection 

in small and smooth areas. Fig. 13 depicts the overall 

performance of the datasets used in this work. 

Finding splicing operation detection from the 

Columbia dataset achieves better results. From the 

results obtained, it is understood that CASIA V1.0 is 

still a challenge while detecting forgeries from small 

and smooth regions. CASIA V2.0 dataset images 

contain copy move and splicing tampered areas that 

have undergone transformations and are highly 

challenging. Improving the performance of CASIA 

datasets would be the scope of this future work. 

5. Conclusion 

The proposed method depends on the dual 

attention network to detect copy-move and splicing 

tampering detection. Resnet50 is used as a support 

network and two parallel attention networks (CAM 

and PAM) are used for feature extraction at different 

scale levels and channel levels. Images are 

augmented to provide a balanced dataset for neural 

network training purposes. Tampered areas are 

localized using this proposed methodology, and 

performance evaluation is done using the 

segmentation grade such as recall, precision, IoU 

score, and F1-Score. The outcomes show that the 

suggested procedure scores well in detecting the 

falsified area at a better rate than the existing other 

algorithms. The extensive experiments are done on 

Columbia, CASIA V1.0, and CASIA V2.0 datasets. 

The suggested methodology can detect multiple 

forgeries, multiple copy-move detections, and 

different transformations of the tampered area. 

Detection of regions tampered with in the case of 

small and smooth regions and multiple fakes 

detection is still a challenge for some images. Further 

work will consider improving the performance in 

detecting multiple copies and small forged areas. In 

the future, this research work can be used to check the 

performance using different attention modules to 

improve the feature extraction process and better 

segmentation of the forged area. 
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