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Abstract: One of the challenging tasks in an active distribution network (AND) embedded with intermittent 

renewable energy sources (RES) under islanding conditions is the maintenance of frequency and voltage profiles 

within tolerable limits. Failing to maintain these operational requirements may lead to voltage collapse or complete 

blackout of the network. In order to avoid this scenario, ADNs may function with contemporary load shedding 

schemes but these schemes may result in an inadvertent and excessive amount of load shedding, thereby 

consequently causing unsatisfactory and low reliability at the consumer level. Thus, this paper used Pelican 

optimization algorithm (POA) approach for minimising the amount of load to be shed by determining the optimal 

amount of load to be shed within the consumers’ specified limits. Simulations are performed on IEEE 33-bus by 

assuming different kinds of renewable and distribution generation (DG) units. The computational efficiency of POA 

is compared with literature works and its performance is also characterised based on 25-indipendent runs of each 

case. The results obtained by POA are observed to be superior in terms of global optima and less run time. Also, the 

ADN is observed as satisfactory operation with fewer distribution losses, an improved voltage profile, and enhanced 

stability margins by imposing optimal load controls to the consumer.         

Keywords: Active distribution system, Direct load control, Islanding mode, Renewable energy, Voltage stability 

index, Multi-objective mouth flame optimization. 

 

 

1. Introduction 

A microgrid (MG) is a small power grid that can 

run by itself or in cooperation with other major 

power grids. Such MGs can be treated as active 

distribution networks (ADN) and are more eco-

friendly with renewable energy (RE) based small-

scale distribution generation (DG) units [1]. ADN 

can be treated as a smart grid (SG), in which an 

electrical grid that includes automation, 

communication, and information technology 

systems that can monitor power flows from points of 

generation to points of consumption and control the 

power flow or curtail the load to match generation in 

real-time or very-close to real-time. Controllable 

load management in a smart grid (SG) environment 

can provide many ancillary services to the grid, 

including frequency and voltage controls. Despite 

the fact that RE sources are better for the 

environment, the facts that they are intermittent and 

have high penetration levels have become major 

obstacles in the way of preserving energy balance 

and have also led to a variety of power quality 

problems in ADNs [2].  

On the other hand, islanding operations might be 

caused by a variety of probable uncertainties within 

the network zone or at the upstream-grid. Also, the 

economic aims of utilities in a deregulated 

environment can occasionally trigger purposeful 

islanding operations. This can happen when the 

environment is deregulated [3]. However, it is 

possible that the integrated DGs will be unable to 

meet demand in any ADN. It is possible that this 

scenario will lead to load shedding in the present. 

Load shedding schemes are typically designed for 

either under frequency load shedding (UFLS) [4] or 

under voltage load shedding (UVLS) [5]. These 
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plans, on the other hand, are inefficient and do not 

conduct a thorough assessment of the optimal 

amount of load to shed, which leads to load 

shedding that is either excessive or insufficient. To 

stop this from happening, ADNs need to be 

switched over to smart grids (SG) that have demand 

response (DR) capabilities [6]. 

Many researchers in the literature focused on 

load shedding for managing islanded microgrids 

(IMG) primarily on technical grounds [7]. 

Anticipating likely abnormalities and possibilities, 

as well as planning energy management approaches 

before and after islanding, is critical [8]. In [9], 

steady-state distributive load shedding under 

contingencies is solved by prioritising significant 

loads and Glowworm swarm optimization (GSO). In 

[10], an improved harmony search algorithm 

(IHSA) is proposed for optimal load shedding to 

avoid blackouts considering generator and 

generation shortage uncertainties. In [11], higher 

eigen-value load buses are considered for load 

shedding under generation shortage and 

contingencies, and the optimal amount of load shed 

is derived using a hybrid genetic algorithm and 

neural network (GA-NN) approach. In [12], 

conventional UFLS with fixed load priorities is 

surpassed by different heuristic approaches, namely 

binary evolutionary programming (BEP), binary 

genetic algorithm (BGA), and binary particle swarm 

optimization (BPSO) for managing frequency 

deviations for high photovoltaic (PV) penetration. 

Aan adaptive neural fuzzy inference system 

(ANFIS) is developed to avoid UFLS caused by 

variation in PV and wind turbine (WT) generation 

[13]. In [14], minimization of load shed and voltage 

profile improvement are used to formulate multi-

objective functions while solving optimal load 

shedding for variation of PV generation using the 

hybrid firefly algorithm and particle swarm 

optimization (FAPSO). In [15], a backtracking 

search algorithm (BSA) is proposed for voltage 

stability assurance with a distributed optimal amount 

of load shed and is evaluated for balancing the 

hourly load demand with available DG generation 

under islanding conditions. In [16], fast voltage 

stability index (FVSI) values based on loads are 

selected for the UVLS scheme for managing 

contingencies. The objective function is formulated 

for the minimum amount of load shed and voltage 

profile improvement using hybrid GA-PSO. In [17], 

the UFLS scheme is solved under DG tripping by 

mixed integer linear programming (MILP) by 

categorising load buses as non-critical, semi-critical, 

and critical using the voltage stability index (VSI). 

In [18], artificial bee colony (ABC) based priority 

based load shed is solved in islanded MG with RES 

for sudden load increment and line contingencies. In 

[19], a multiple-deme parallel genetic algorithm 

(MDPGA) is introduced for load balance when there 

is a low voltage stability margin due to either line 

contingencies and/or generator failures. In [20-22], 

based on the coordination of the load importance 

factor (LIF), the reciprocal phase angle sensitivity 

(RPAS), and the voltage electrical distance (VED) 

to rank the load buses, the analytical hierarchy 

process (AHP) algorithm-based approach to load 

shedding for restoring the frequency under 

generation shortage is used. In [23], conservative 

voltage reduction (CVR) based load shedding is 

implemented while restoring the RE integrated 

distribution network from an intentional island using 

mixed-integer quadratic constraint programming 

(MIQCP). In [24], non-critical and critical buses are 

identified for UFLS by evaluating power imbalance 

using polynomial regression and the optimal load 

shed problem is solved using MILP. In [25], nodal 

analysis and participation factors are employed for 

identifying weak buses, and later, differential 

evaluation (DE) is used for optimal load shed for 

improving voltage profile. In [26], to balance the 

hourly load demand with the available DG 

generation under islanding conditions, a grasshopper 

optimization algorithm (GOA) is proposed for 

voltage stability guarantee with a distributed optimal 

amount of load shed is analysed. ischaotic slime 

mould algorithm (CSMA) [27] for optimal load 

control (OLC) for voltage stability improvement in 

islanded RE integrated AND. In [28], an adaptive 

inertia weight teaching-learning-based optimization 

(ATLBO) for OLC is introduced with the goal of 

maximising social welfare in a smart grid (SG) 

environment.  

According to the works reviewed above, 

prioritising loads and then determining the optimal 

amount of load to be shed for maintaining frequency, 

voltage, and energy balance is unavoidable, 

especially under islanding conditions. is a 

significant difference between load shedding (LS) in 

a traditional power system and load control (LC) in 

a smart grid environment. Only energy balance and 

technical aspects were considered in LS, with no 

regard to consumer satisfaction. However, LC 

considers not only energy balance and technical 

aspects but also consumer satisfaction. There are 

many works in literature that focus on LS, but only a 

few works that focus on LC. On the other hand, 

adaption of meta-heuristic approaches can ensure 

optimal results compared to conventional 

approaches. The majority of the reviewed works are 

focused on load shed in conventional ADNs, 
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whereas a few works [15, 26–28] are focused on 

OLC in a SG environment. In this background, the 

research has the following contributions. 

• Introduces a recent pelican optimization 

algorithm (POA) for OLC in the SG environment 

for sustaining islanding conditions. 

• A multi-objective function for optimising the 

amount of load to be shed and the voltage 

deviation index (VDI) is formulated. 

• Distributed optimal direct load control (DLC) is 

determined by using the consumer load control 

range. 

• Simulations are performed on the IEEE 33-bus 

considering the uncertainty of PV, WT, and DGs 

and load.. 

• POA's global optima have been identified as 

competitive to other algorithms PSO, TLBO, 

GOA, and BOA.  

The rest of the essay is organised as follows: 

section 2 provides details on the mathematical 

modelling of various AND components. A problem 

formulation with multiple equal and unequal bounds 

is described in section 3. In section 4, the modelling 

of the pelican optimization algorithm is described. 

Section 5 provides an explanation of the simulation 

outcomes for the IEEE 33-bus RDN. Section 6 of 

the study's conclusion provides a summary of its key 

contributions.    

2. Modelling of active distribution system  

In this work, the proposed AND is assumed to 

have photovoltaic (PV) and wind turbine (WT) 

based DGs. Also, all of the network's consumers are 

presumptively outfitted with some controllable loads 

from a central control centre, such as heat pumps 

and electric vehicles. In this work, each consumer 

enters into an agreement with the network operator 

(NO) for a demand response (DR) program based on 

direct load control (DLC) by defining the maximum 

allowable load control throughout the day.    

2.1 Photovoltaic system 

A solar photovoltaic (PV) system uses the 

photovoltaic effect to directly convert light energy 

into electrical energy. PV inverters, in general, 

prefer to operate at unity power factor, and their 

impact can thus be generalised as a negative active 

power injection at their incident bus. 

 

𝑃𝑙𝑑(𝑘),ℎ
̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑃𝑙𝑑(𝑘),ℎ − 𝑃𝑝𝑣(𝑘),ℎ        (1) 

 

where 𝑃𝑙𝑑(𝑘),ℎ  and 𝑃𝑙𝑑(𝑘),ℎ
̅̅ ̅̅ ̅̅ ̅̅ ̅  are the active power 

demands of a bus-k, at time-h, before and after PV 

system integration respectively; 𝑃𝑝𝑣(𝑘),ℎ  is the 

active power generation by PV system at bus-k 

during time-h. 

2.2 Wind turbine system 

The free wind stream transmits some of its 

kinetic energy to the turbine rotor as it interacts with 

it, which causes the rotor's speed to decrease. 

Mechanical power is created from this differential in 

kinetic energy. The AC power is then stabilised via 

an AC/AC converter and then connected to the grid. 

In general, the WT inverter preferred to operate at a 

constant power factor of 0.866. As a result, its 

impact can be summed up as a negative real and 

reactive power injection at the incident bus. 

 

𝑃𝑙𝑑(𝑘),ℎ
̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑃𝑙𝑑(𝑘),ℎ − 𝑃𝑤𝑡(𝑘),ℎ        (2) 

 

𝑄𝑙𝑑(𝑘),ℎ
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝑄𝑙𝑑(𝑘),ℎ − 𝑄𝑤𝑡(𝑘),ℎ        (3) 

 

𝑄𝑤𝑡(𝑘),ℎ = 𝑃𝑤𝑡(𝑘),ℎ × 𝑡𝑎𝑛(∅𝑤𝑡)   (4) 

 

where 𝑄𝑙𝑑(𝑘),ℎ  and 𝑄𝑙𝑑(𝑘),ℎ
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  are the reactive power 

demands of a bus-k, at time-h, before and after WT 

system integration respectively; 𝑃𝑤𝑡(𝑘),ℎ  and 

𝑄𝑤𝑡(𝑘),ℎ  are the active and reactive power 

generations by WT system at bus-k during time-h, 

∅𝑤𝑡 is the operating power factor of WT.  

2.3 Diesel generator  

Diesel generators (DGs) are extremely helpful 

pieces of equipment that convert diesel fuel into 

electric current. These machines use a combination 

of a diesel engine and an electric generator to 

produce electricity for their users. The following 

equation can be used to determine the DG's hourly 

fuel consumption. 

 

𝐹𝐷𝐺,𝑡 = 𝛼𝑓𝑐 × 𝑃𝐷𝐺,𝑡 + 𝛽𝑓𝑐 × 𝑃𝐷𝐺,𝑟             (5) 

 

where 𝐹𝐷𝐺,𝑡  are the DG’s hourly fuel conception,  

𝛼𝑓𝑐 =0.2461 and 𝛽𝑓𝑐 =0.084151 are the coefficients 

of DG’s fuel consumption curve in Lt/kWh, 

respectively; 𝑃𝐷𝐺,𝑡  and 𝑃𝐷𝐺,𝑟  are the actual power 

generation and the power ratings of the DG, 

respectively.   

2.4 Direct load control  

The load control of a bus is also assumed to be 

maintained at all times at its original power factor, 

and thus the active and reactive powers are 

multiplied by a scaling factor.   
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𝑃𝑙𝑑(𝑘),ℎ
̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑃𝑙𝑑(𝑘),ℎ × 𝜌(𝑘),ℎ        (6) 

 

𝑄𝑙𝑑(𝑘),ℎ
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝑄𝑙𝑑(𝑘),ℎ × 𝜌(𝑘),ℎ        (7) 

 

where 𝜌(𝑘),ℎ is the load control factor (LCF) of bus-

k at time-h.  

3. Problem formulation 

In this section, the proposed multi-objective 

function and its equal and unequal constraints are 

expressed mathematically. 

3.1 Objective function 

In this research, the load control is to balance 

available distribution generation (DG) units’ 

apparent power with apparent loading conditions on 

the network under islanding conditions anticipating 

at any time. In addition, loss minimization and VSI 

maximization are also considered for attaining good 

operating conditions. Mathematically, 

 

𝑂𝐹 = {(𝑆𝑑𝑔,ℎ − 𝑆𝑙𝑑,ℎ) + 𝑃𝑙𝑠,𝑡 + 𝑉𝑆𝐼ℎ}       (8) 

 

where 𝑆𝑑𝑔,𝑡  and 𝑆𝑙𝑑,𝑡  are the apparent powers of 

total DGs’ generation and network load, at a time-h, 

respectively; 𝑃𝑙𝑠,𝑡  and 𝑉𝑆𝐼𝑡  are the distribution 

losses and voltage stability index of the network at a 

time-h, respectively.  

3.2 Constraints 

The 𝑂𝐹 is subjected to the following equal and 

unequal constraints such as (i) real and reactive 

power supply-demand balances, (ii) voltage limits, 

(iii) branch current/MVA limits, and (iv) 

consumer’s load control limits, as defined below: 

 

∑ 𝑃𝑑𝑔(𝑖),ℎ
𝑛𝑑𝑔
𝑖=1 = 𝑃𝑙𝑠,ℎ + ∑ 𝑃𝑙𝑑(𝑘),ℎ

𝑛𝑏𝑢𝑠
𝑘        (9) 

 

∑ 𝑄𝑑𝑔(𝑖),ℎ
𝑛𝑑𝑔
𝑖=1 = 𝑄𝑙𝑠,ℎ + ∑ 𝑄𝑙𝑑(𝑘),ℎ

𝑛𝑏𝑢𝑠
𝑘         (10) 

 

|𝑉(𝑘)|
𝑚𝑖𝑛

≤ |𝑉(𝑘)| ≤ |𝑉(𝑘)|
𝑚𝑎𝑥

                   (11) 

 

|𝐼(𝑙)| ≤ |𝐼(𝑙)|
𝑚𝑎𝑥

                    (12) 

 

𝜌min(k) ≤ 𝜌(𝑘) ≤ 𝜌max(k)              (13) 

 

where 𝑃𝑑𝑔(𝑖),ℎ ,  𝑄𝑑𝑔(𝑖),ℎ are the active and reactive 

powers of ith DG at time-h, respectively; 𝑃𝑙𝑠,ℎ and 

𝑄𝑙𝑠,ℎ  are the active and reactive power losses, at 

time-h, respectively; 𝑃𝑙𝑑(𝑘),ℎ  , 𝑄𝑙𝑑(𝑘),ℎ  are the real 

and reactive power loads at bus-k, at time-h, 

respectively; |𝑉(𝑘)|
𝑚𝑖𝑛

, |𝑉(𝑘)|
𝑚𝑎𝑥

 are the minimum 

and maximum limits of voltage magnitudes at bus-k, 

respectively; |𝐼(𝑙)|  , |𝐼(𝑙)|
𝑚𝑎𝑥

 are the current of 

branch-l and its maximum limit, respectively; 𝑛𝑏𝑢𝑠 

and 𝑛𝑑𝑔  are the number of buses and number of 

DGs, respectively. 

4. Pelican optimization algorithm 

Pelicans dive from 10 to 20 metres to catch their 

prey after locating it. Some animals hunt at lower 

elevations. Then, they spread their wings on the 

water to mislead fish into shallower water, where 

they can easily catch and eat them. Because of the 

water that enters the pelican's beak when it catches 

fish, it must tilt its head forward before swallowing. 

Pelicans have become skilled hunters as a result of 

their clever hunting behaviour and tactics. The 

modelling of the aforementioned strategy served as 

the primary source of inspiration for the design of 

the proposed POA [29].   

4.1 Modeling of pelican optimization algorithm 

Pelicans are included in the POA's population-

based approach. Each member of a population-based 

algorithm is a solution. Every candidate has a spot in 

the search space, which impacts the values they 

offer for optimization variables. Starting with the 

problem's lower and upper bounds, random 

members are chosen.  

 

𝑝𝑖𝑗 = 𝑝𝑗,𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑 × (𝑝𝑗,𝑚𝑎𝑥 − 𝑝𝑗,𝑚𝑖𝑛),  

𝑖 = 1,2, … , 𝑑𝑠, 𝑗 = 1,2, … , 𝑠𝑣             (14) 

 

where 𝑝𝑖𝑗 is the jth variable of ith solution, 𝑑𝑠 is the 

dimension of search space, 𝑠𝑣  is the number of 

search variables, 𝑟𝑎𝑛𝑑 is a random number between 

0 and 1, 𝑝𝑗,𝑚𝑖𝑛  and 𝑝𝑗,𝑚𝑎𝑥  are the minimum and 

maximum limit of jth variable, respectively.      

Pelican’s movement towards prey is modelled 

as exploration phase in POA.     

 

𝑝𝑖𝑗
𝑚1 = {

𝑝𝑖𝑗 + 𝑟𝑎𝑛𝑑(𝑙𝑝𝑗 − 𝑅. 𝑝𝑖𝑗) 𝑓𝑝 < 𝑓𝑖

𝑝𝑖𝑗 + 𝑟𝑎𝑛𝑑(𝑝𝑖𝑗 − 𝑙𝑝𝑗) 𝑒𝑙𝑠𝑒    
  (15) 

 

where 𝑙𝑝𝑗  is the location of prey, 𝑝𝑖𝑗
𝑚1  is the jth 

variable of ith solution describing first movement of 

pelican, 𝑓𝑝 is the objective function, 𝑅 is a random 

number, which may become either 1 or 2 in each  
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Figure. 1 Islanding scenario – A 

 

iteration. If 𝑅 becomes 2, then pelican’s scan space 

increases significantly. This way, 𝑅  is the major 

controlling variable of POA for influencing its 

exploration phase.   

The suggested POA accepts a pelican's new 

position if the objective function improves than 

earlier iteration. Effective updating prevents the 

algorithm from shifting to non-optimal locations. 

 

𝑃𝑖 = {
𝑃𝑖

𝑚1 𝐹𝑖
𝑚1 < 𝑓𝑖

𝑃𝑖    𝑒𝑙𝑠𝑒        
                (16) 

 

where 𝑃𝑖
𝑚1 is the new position of jth variable in first 

movement of pelican and 𝐹𝑖
𝑚1 is its corresponding 

objective function.  

The second phase of POA is the movement of 

pelicans winging on the water surface as an 

exploitation phase. Pelicans swim to the surface of 

the water and flap their wings to make fish jump up. 

They then catch the fish in a pouch around their 

necks. This strategy helps the pelicans in the 

attacked area catch more fish. Modelling how 

pelicans act changes the suggested POA to better 

places to hunt. This method makes both local search 

and the use of POAs better. This hunting behaviour 

of pelicans is modelled by,  

 

𝑝𝑖𝑗
𝑚2 = 𝑝𝑖𝑗 + 𝑅𝑛𝑏(2. 𝑟𝑎𝑛𝑑 − 1). 𝑝𝑖𝑗       (17) 

 

𝑅𝑛𝑏 = 𝑅. (1 −
𝑘

𝐾
)                     (18) 

 

where 𝑃𝑖
𝑚2 is the new position of jth variable in the 

second movement of pelican, R is a constant equal 

to 0.2, k and K are the number of current and 

maximum iteration, respectively; 𝑅𝑛𝑏 represents the 

population's neighbourhood radius to try to find a 

better solution close to each member. This 

parameter changes how much the POA can be used, 

which brings us closer to a global solution.  

The pelican's new position if the objective 

function improves more than in the earlier iteration. 

Effective updating prevents the algorithm from 

shifting to non-optimal locations.. 

 

𝑃𝑖 = {
𝑃𝑖

𝑚2 𝐹𝑖
𝑚2 < 𝑓𝑖

𝑃𝑖    𝑒𝑙𝑠𝑒        
                     (19) 

 

where 𝑃𝑖
𝑚1 is the new position of jth variable in first 

movement of pelican and 𝐹𝑖
𝑚1 is its corresponding 

objective function.  

After all members of the population have been 

changed based on the first and second phases, the 

best candidate solution is changed based on the new 

status of the population and the values of the 

objective function. The algorithm moves on to the 

next iteration, during which the stages of the 

proposed POA based on Eqs. (15–18) are repeated 

until the end of execution. The best candidate 

solution from the algorithm's steps is almost the best 

way to solve the problem.  

5. Results and discussion 

All simulations are performed on IEEE 33-bus 

system The simulations are run on a PC with 4 GB 

of RAM, a 64-bit operating system, and an Intel® 

CoreTM i5-2410M CPU running at 2.30 GHz. For 

two scenarios, simulations are run. Scenario 1 

considers various islanded modes based on existing 

research [15, 26-27], and a load control program is 

implemented. In Scenario 2, the uncertainty w.r.t. 

RES is considered. All simulations are performed on 

the IEEE 33-bus system.  

5.1 Load control for different islanded scenarios   

In this case study, optimal load control for four 

different islanding conditions is determined.  

5.1.1. Islanding mode – A  

In this case, the entire network is assumed to be 

islanded from the substation bus, thus separated MG 

consists of all 4 DGs and all load buses as shown in 

Fig. 1. By considering all DGs operating at their 

maximum level, then the total real power is equal to 

1830 kW, i.e., PV1 = 30 (bus-4), PV2 = 600 (bus-25), 

WT=400 (bus-30), and DG = 800 (bus-7). The 

maximum reactive power is equal to 692.9016 kVAr, 

(i.e., WT and DGs at 0.866 leading power factor). 

Thus, the available DGs’ power is 1956.8 kVA. 

Whereas the network has total peak loading 

condition is 4369.4 kVA (3715 kW + j 2300 kVAr). 

This is around 55.22% extra than available 

generation, which is also equal to the required 

amount of load for control using the proposed 

algorithm.  
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Table 1. Performance after load control in different islanding scenarios 

Method 
Pload  

(kW) 

Qload  

(kVAr) 

Ploss  

(kW) 

Qloss  

(kVAr) 

Vmin  

(p.u.) 

AVD  

(p.u.) 

Sload  

(kVA) 

ΔSdg,extra  

(kVA) 

A 1326.46 1386.87 26.694 18.192 0.9696 0.4917 1950.69 6.11 

B 728.24 569.32 18.165 13.178 0.9648 0.3276 946.79 3.09 

C 1066.20 1015.77 21.329 14.939 0.9680 0.3785 1498.36 4.44 

D 812.09 1105.78 28.457 20.009 0.9705 0.4610 1404.97 6.73 

 

 
Figure. 2 Islanding scenario – B 

 

 
Figure. 3 Islanding scenario – C  

 

 
Figure. 4 Islanding scenario – D 

5.1.2. Islanding mode – B  

In this case, the network (bus-3 to bus-18) is 

assumed to be islanded from the rest of network, 

thus separated MG consists of all 2 DGs and all load 

buses as shown in Fig. 2. By considering 2 DGs 

operating condition at their maximum level, then the 

total real power is equal to 830 kW, i.e., PV1 = 30 

(bus-4), and DG = 800 (bus-7). The maximum 

reactive power is equal to 461.9344 kVAr, (i.e., 

DGs at 0.866 leading power factor). Thus, the 

available DGs’ power is 949.886 kVA. Whereas the 

network has total loading condition is 1560.905 

kVA (1405 kW + j 680 kVAr). This is around 

39.15% extra than available generation, which is 

also equal to the required amount of load for control 

using the proposed algorithm.  

5.1.3. Islanding mode – C  

In this case, the network (bus-3 to bus-18 and 

bus-23 to bus-25) is assumed to be islanded from the 

rest of network, thus separated MG consists of all 3 

DGs and all load buses as shown in Fig. 3. By 

considering all 3 DGs operating condition at their 

maximum level, then the total real power is equal to 

1430 kW, i.e., PV1 = 30 (bus-4), PV2 = 600 (bus-25), 

and DG = 800 (bus-7). The maximum reactive 

power is equal to 461.9344 kVAr, (i.e., DG at 0.866 

leading power factor). Thus, the available DGs’ 

power is 1502.8 kVA. Whereas the network has 

total loading condition is 2594.056 kVA (2335 kW 

+ j 1130 kVAr). This is around 42.07% extra than 

available generation, which is also equal to the 

required amount of load for control using the 

proposed algorithm. 

5.1.4. Islanding mode – D  

In this case, the network (bus-3 to bus-18 and 

bus-26 to bus-33) is assumed to be islanded from the 

rest of network, thus separated MG consists of all 3 

DGs and all load buses as shown in Fig. 4. By 

considering 3 DGs operating condition at their 

maximum level, then the total real power is equal to 

1230 kW, i.e., PV1 = 30 (bus-4), WT=400 (bus-30), 

and DG = 800 (bus-7). The maximum reactive 

power is equal to 692.9016 kVAr, (i.e., WT and 

DGs at 0.866 leading power factor). Thus, the 

available DGs’ power is 1411.7 kVA. Whereas the 

network has total loading condition is 2839.46 kVA 

(2325 kW + j 1630 kVAr). This is around 42.07% 

extra than available generation, which is also equal 

to the required amount of load for control using the 

proposed algorithm.  

For all four cases, the results of POA are given in 

Table 1. The energy balance (SGeneration ~ SDemand) 

should be positive and minimum. As seen in last 

column in Table 1, the POA is effectively controlled 

the load in all islanding scenarios. 
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Table 2. Comparison of POA results with literature and 

other algorithms 

Method 

Load to be 

curtailed  

(kW) 

Actual load 

curtailed  

(kW) 

Mismatch 

in load 

control  

BSA [15] 1161 1390.5 229.5 

GA [15] 1161 1287.5 126.5 

GA [26] 1161 1351 190 

PSO [26] 1161 1264 103 

GW [26] 1161 1184 23 

GOA [26] 1161 1176 15 

PSO 1161 1175.23 14.23 

TLBO 1161 1172.56 11.56 

GOA 1161 1170.98 9.98 

BOA 1161 1168.14 7.14 

POA 1161 1165.24 4.24 

 

Figure. 5. Hourly variability factors for loads, PVs, DG 

and WT as considered in [15, 26-28] 

 

 
Figure. 6 The convergence characteristics of POA in 

different cases are given in Fig. 5 

5.2 Comparative analysis with literature    

As considered in [15, 26-28], the hourly variation 

in network loading profile and power generations 

are given in Fig. 5. The islanded scenario-A is 

considered as similar to Fig. 1. For each hour, the 

best results of POA over 25 independent runs are 

given in Table 2. The changes in generation (kVA), 

load (kVA), extra load (%) before and after 

optimization, correspondingly network performance 

are given. An explanation of results obtained for 

hour-9 is presented here. During hour-9, the PV1 = 

14 kW, PV2 = 200 kW, WT = 400 W and DG = 800 

kW and thus, the total generation is 1414 kW. 

Whereas the network load is around 0.6931 p.u. and 

it is equal to 2575 kW, thus it is around 1161 kW 

extra than available generation (i.e, 45.09%), which 

is needed to be shed.  

The comparison of POA with literature is given 

in Table 2. In [15], BAS as well as GA are used but, 

the amount of load controlled is more than required. 

Similarly, in [26], GA, PSO, GW and GOA are also 

caused for extra load control than POA. However, 

these works have reported extra load curtailment, 

which cannot be treated as global optima. From this, 

POA exhibits very good results than literature and 

shown its computational superiority over other 

algorithms. The convergence characteristics of 

different algorithms are given in Fig. 6.  

Since consumers are voluntarily participating in 

the demand response programme in a smart grid 

environment, there is a need for economic benefits 

or incentives to be settled. This aspect can be treated 

as one of the possible future extensions of this work. 

On the other hand, as per the free lunch theorem 

(NFLT), there is no such algorithm for all kinds of 

optimization problems for proving global optima. In 

this regard, the computational efficiency of POA 

should be compared to that of other recent 

algorithms, such as the multi leader optimizer 

(MLO) [31], the three influential members based 

optimizer (TIMBO) [32], the randomly selected 

leader based optimizer (RSLBO) [33], the squirrel 

search optimizer (SSO) [34], the puzzle 

optimization algorithm (POA) [35], and the ring toss 

game-based optimization algorithm (RTGBO) [36].     

6. Conclusion  

In this research, a modern pelican optimization 

algorithm, also known as POA, for OLC in SG 

environment is presented in order to maintain 

islanding requirements. There is a formulation of a 

multi-objective function with the goal of optimising 

the amount of load that can be shed and the voltage 

deviation index (VDI). The distributed optimal 

direct load control, also known as DLC, is figured 

out by employing the load control range of the 

consumers. Simulations are carried out using the 

IEEE 33-bus, taking into account the 

unpredictability of the PV, WT, and DGs loads. 

Four islanding scenarios have been considered. The 
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DGs’ available powers in kVA are 1956.8, 949.9, 

1502.8 and 1411.7, under islanding scenarios A, B, 

C and D, respectively. Whereas, the network loading 

conditions in kVAr are 4369.4, 1560.9, 2594.1 and 

2839.46 during islanding scenarios A, B, C and D, 

respectively. These situations are caused to have 

load control. Including distribution losses, the 

proposed POA is able to curtail the load effectively 

for all the load points nearly to the available DGs 

power and thus, energy balance are obtained 

consumers satisfactory. By having optimal load 

control and dispatching remaining amount of loads, 

the available DGs’ powers in kVA are 6.11, 3.09, 

4.44 and 6.73, under islanding modes A, B, C, and 

D, respectively. In comparison to literature, POA is 

resulted for less load control and also converged 

highly competitive with other algorithms such as 

PSO, TLBO, GOA, and BOA by its global optimal 

solution.  

Conflicts of interest 

Authors declare that no conflicts of interest.  

Author contributions 

Anjani Parvathi K: Conceptualization, software, 

investigation, writing—original draft preparation, 

Kotaiah N.C and Radha Rani K: validation, formal 

analysis, and supervision. 

References 

[1] E. Papadis and G. Tsatsaronis, “Challenges in 

the decarbonization of the energy sector”, 

Energy, Vol. 205, p. 118025, 2020. 

[2] S. Impram, S. V. Nese, and B. Oral, 

“Challenges of renewable energy penetration 

on power system flexibility: A survey”, Energy 

Strategy Reviews, Vol. 31, p. 100539, 2020. 

[3] P. D. N. Porras, A. López, and J. C. S. Elena, 

“Deregulation in the energy sector and its 

economic effects on the power sector: A 

literature review”, Sustainability, Vol. 13, No. 

6, p. 3429, 2021. 

[4] L. Sigrist, L. Rouco, and F. M. Echavarren, “A 

review of the state of the art of UFLS schemes 

for isolated power systems”, International 

Journal of Electrical Power & Energy Systems, 

Vol. 99, pp. 525-539, 2018. 

[5] R. M. Larik, M. W. Mustafa, and M. N. Aman, 

“A critical review of the state‐of‐art schemes 

for under voltage load shedding”, International 

Transactions on Electrical Energy Systems, 

Vol. 29, No. 5, p. e2828, 2019. 

[6] M. Hussain and Y. Gao, “A review of demand 

response in an efficient smart grid 

environment”, The Electricity Journal, Vol. 31, 

No. 5, pp. 55-63, 2018. 

[7] N. N. Bakar, M. Y. Hassan, M. F. Sulaima, M. 

N. M. Nasir, and A. Khamis, “Microgrid and 

load shedding scheme during islanded mode: A 

review”, Renewable and Sustainable Energy 

Reviews, Vol. 71, pp. 161-169, 2017. 

[8] A. A. Anderson and S. Suryanarayanan, 

“Review of energy management and planning 

of islanded microgrids”, CSEE Journal of 

Power and Energy Systems, Vol. 6, No. 2, pp. 

329-343, 2019. 

[9] R. Mageshvaran and T. Jayabarathi, “GSO 

based optimization of steady state load 

shedding in power systems to mitigate blackout 

during generation contingencies”, Ain Shams 

Engineering Journal, Vol. 6, No. 1, pp. 145-

160, 2015. 

[10] R. Mageshvaran and T. Jayabarathi, “Steady 

state load shedding to mitigate blackout in 

power systems using an improved harmony 

search algorithm”, Ain Shams Engineering 

Journal, Vol. 6, No. 3, pp. 819-834, 2015. 

[11] V. Tamilselvan and T. Jayabarathi, “A hybrid 

method for optimal load shedding and 

improving voltage stability”, Ain Shams 

Engineering Journal, Vol. 7, No. 1, pp. 223-

232, 2016. 

[12] M. Dreidy, H. Mokhlis, and S. Mekhilef, 

“Application of meta-heuristic techniques for 

optimal load shedding in islanded distribution 

network with high penetration of solar PV 

generation”, Energies, Vol. 10, No. 2, p. 150, 

2017. 

[13] F. Conteh, S. Tobaru, M. E. Lotfy, A. Yona, 

and T. Senjyu, “An effective Load shedding 

technique for micro-grids using artificial neural 

network and adaptive neuro-fuzzy inference 

system”, Aims Energy, Vol. 5, No. 5, pp. 814-

837, 2017 

[14] J. Jallad, S. Mekhilef, H. Mokhlis, J. Laghari, 

and O. Badran, “Application of hybrid meta-

heuristic techniques for optimal load shedding 

planning and operation in an islanded 

distribution network integrated with distributed 

generation”, Energies, Vol. 11, No. 5, p. 1134, 

2018. 

[15] A. Khamis, H. Shareef, A. Mohamed, and Z. Y. 

Dong, “A load shedding scheme for DG 

integrated islanded power system utilizing 

backtracking search algorithm”, Ain Shams 

Engineering Journal, Vol. 9, No. 1, pp. 161-

172, 2018. 



Received:  June 25, 2022.     Revised: August 19, 2022.                                                                                                   140 

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022           DOI: 10.22266/ijies2022.1231.14 

 

[16] R. M. Larik, M. W. Mustafa, M. N. Aman, T. 

A. Jumani, S. Sajid, and M. K. Panjwani, “An 

improved algorithm for optimal load shedding 

in power systems”, Energies, Vol. 11, No. 7, p. 

1808, 2018. 

[17] S. Sarwar, H. Mokhlis, M. Othman, M. A. 

Muhammad, J. A. Laghari, N. N. Mansor, H. 

Mohamad, and A. Pourdaryaei, “A mixed 

integer linear programming based load 

shedding technique for improving the 

sustainability of islanded distribution systems”, 

Sustainability, Vol. 12, No. 15, p. 6234, 2020. 

[18] L. O. Mogaka, G. N. Nyakoe, and M. J. Saulo, 

“Islanded microgrid congestion control by load 

prioritization and shedding using ABC 

algorithm”, International Journal of Electrical 

& Computer Engineering, Vol. 10, No. 5, pp. 

4552-4561, 2020. 

[19] A. G. Rahimabadi, H. Razmi, H. D. Mojarrad, 

“Multiple-deme parallel genetic algorithm 

based on modular neural network for effective 

load shedding”, Soft Computing, Vol. 25, No. 

21, pp. 13779-13794, 2021. 

[20] N. T. Le, A. T. Nguyen, T. T. Hoang, H. M. V. 

Nguyen, A. H. Quyen, and B. T. Phan, 

“Distributed Load Shedding considering the 

Multicriteria Decision-Making Based on the 

Application of the Analytic Hierarchy Process”, 

Mathematical Problems in Engineering, Vol. 

2021, p. 6834501, 2021. 

[21] A. T. Nguyen, N. T. Le, A. H. Quyen, B. T. 

Phan, T. P. Trieu, and T. D. Hua, “Application 

of AHP algorithm on power distribution of load 

shedding in island microgrid”, International 

Journal of Electrical and Computer 

Engineering, Vol. 11, No. 2, p. 1011, 2021. 

[22] L. T. Nhung, T. T. Phung, H. M. Nguyen, T. N. 

Le, T. A. Nguyen, and T. D. Vo, “Load 

Shedding in Microgrids with Dual Neural 

Networks and AHP Algorithm”, Engineering, 

Technology & Applied Science Research, Vol. 

12, No. 1, pp. 8090-8095, 2022. 

[23] J. Xu, B. Xie, S. Liao, Z. Yuan, D. Ke, Y. Sun, 

X. Li, and X. Peng, “Load shedding and 

restoration for intentional island with 

renewable distributed generation”, Journal of 

Modern Power Systems and Clean Energy, Vol. 

9, No. 3, pp. 612-624, 2021. 

[24] S. Sarwar, H. Mokhlis, M. Othman, H. Shareef, 

L. Wang, N. N. Mansor, A. S. Khairuddin, and 

H. Mohamad, “Application of polynomial 

regression and MILP for under-frequency load 

shedding scheme in islanded distribution 

system”, Alexandria Engineering Journal, Vol. 

61, No. 1, pp. 659-674, 2022. 

[25] O. T. Amusan, N. I. Nwulu, and S. L. 

Gbadamosi, “Identification of Weak Buses for 

Optimal Load Shedding Using Differential 

Evolution”, Sustainability, Vol. 14, No. 6, p. 

3146, 2022. 

[26] M. Ahmadipour, M. M. Othman, Z. Salam, M. 

Alrifaey, H. M. Ridha, and V. Veerasamy, 

“Optimal load shedding scheme using 

grasshopper optimization algorithm for 

islanded power system with distributed energy 

resources”, Ain Shams Engineering Journal, p. 

101835, 2022. 

[27] M. S. Abid, H. J. Apon, A. Ahmed, and K. A. 

Morshed, “Chaotic slime mould optimization 

algorithm for optimal load-shedding in 

distribution system”, Ain Shams Engineering 

Journal, Vol. 13, No. 4, p. 101659, 2022. 

[28] N. John, V. Janamala, and J. Rodrigues, 

“Optimal Load Control for Economic Energy 

Equilibrium in Smart Grid Using Adaptive 

Inertia Weight Teaching-Learning-Based 

Optimization”, International Journal of 

Intelligent Engineering and Systems, Vol. 15, 

No. 2, pp. 243-250, 2022, doi: 

10.22266/ijies2022.0430.22. 

[29] P. Trojovský and M. Dehghani, “Pelican 

optimization algorithm: A novel nature-inspired 

algorithm for engineering applications”, 

Sensors, Vol. 22, No. 3, p. 855, 2022. 

[30] S. H. Dolatabadi, M. Ghorbanian, P. Siano, and 

N. D. Hatziargyriou, “An enhanced IEEE 33 

bus benchmark test system for distribution 

system studies”, IEEE Transactions on Power 

Systems, Vol. 36, No. 3, pp. 2565-2572, 2020. 

[31] M. Dehghani, Z. Montazeri, A. Dehghani, R. 

A. R. Mendoza, H. Samet, J. M. Guerrero, and 

G. Dhiman, “MLO: Multi leader optimizer”, 

Int. J. Intell. Eng. Syst., Vol. 13, No. 6, pp. 364-

373, 2020, doi: 10.22266/ijies2020.1231.32. 

[32] F. A. Zeidabadi, M. Dehghani, O. P. Malik, 

“TIMBO: Three Influential Members Based 

Optimizer”, Int. J. Intell. Eng. Syst., Vol. 14, 

No. 5, pp. 121-128, 2021, doi: 

10.22266/ijies2021.1031.12. 

[33] F. A. Zeidabadi, M. Dehghani, and O. P. Malik, 

“RSLBO: Random Selected Leader Based 

Optimizer”, Int. J. Intell. Eng. Syst., Vol. 14, 

No. 5, pp. 529-538, 2021, doi: 

10.22266/ijies2021.1031.46.  

[34] M. Sumanl, V. P. Sakthivel, and P. D. Sathya, 

“Squirrel search optimizer: nature inspired 

metaheuristic strategy for solving disparate 

economic dispatch problems”, Int. J. Intell. 

Eng. Syst., Vol. 13, No. 5, pp. 111-121, 2020, 

doi: 10.22266/ijies2020.1031.11. 



Received:  June 25, 2022.     Revised: August 19, 2022.                                                                                                   141 

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022           DOI: 10.22266/ijies2022.1231.14 

 

[35] F. A. Zeidabadi and M. Dehghani, “POA: 

Puzzle optimization algorithm”, Int. J. Intell. 

Eng. Syst., Vol. 15, No. 1, pp. 273-281, 2022, 

doi: 10.22266/ijies2022.0228.25. 

[36] S. A. Doumari, H. Givi, M. Dehghani, and O. 

P. Malik, “Ring toss game-based optimization 

algorithm for solving various optimization 

problems”, Int. J. Intell. Eng. Syst., Vol. 14, 

No. 3, pp. 545-554, 2021, doi: 

10.22266/ijies2021.0630.46. 

 


