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Abstract: In this study, the problem of finding an optimal location and size of a distributed generator (DG) in 

distribution systems with considering operational distribution system constraints is proposed with the objective of 

maximizing DG hosting capacity (MDHC), reducing system loss, and improving voltage stability index (VSI). The 

proposed objective function is formulated as a multi-objective mixed-integer nonlinear optimization in order to solve 

it simultaneously. To solve this problem, the coronavirus herd immunity optimizer (CHIO), a bio-inspired 

metaheuristic optimization method, is herein proposed to simultaneously tackle a discrete and continuous DG 

integration problem in distribution systems. Extensive simulations on an IEEE 69-node system with different load 

levels and DG numbers are performed using MATLAB software to evaluate the efficacy of the proposed method. The 

simulation results demonstrate that the proposed method efficiently improves overall distribution system performance 

when compared to different DG numbers and load levels. Furthermore, the CHIO optimization method shows 

encouraging results and almost obtains the best results in all proposed cases when compared with well-known 

metaheuristic optimization methods such as genetic algorithm (GA), the hunger games search (HGS), the chaotic 

neural network algorithm (CNNA), and the water cycle algorithm (WCA). The CHIO can successfully offer a notable 

solution for the DG integration problem, and the obtained results, for example in case 1, revealed outperforming the 

CHIO compared to other methods in terms of the MDHC (i.e., 99.999 %), voltage profile improvement (i.e., the 

minimum voltage magnitude of 0.9696 p.u), VSI improvement  (i.e., 29.16 %), and system loss reduction (i.e., 

66.95 %) compared with the base case, respectively.  

Keywords: Coronavirus herd immunity optimizer, DG integration, Maximize DG hosting capacity, Power loss 

reduction, Voltage stability index. 

 

 

1. Introduction 

Integration of renewable energy resources 

generally has several benefits to the power generation 

and distribution sectors due to their positive 

contribution to the environment and sustainable 

society. As a result of unbelievable exponential 

development in the renewable energy industry in 

terms of lower-cost power generation, most 

governments are speeding up the process of 

harnessing as maximum possible renewable energy 

sources mainly in response to climate change and 

energy scarcity. Furthermore, distributed renewable 

energy sources such as a distributed generator (DG) 

have emerged as an undeniable solution to various 

operational issues confronting a distribution system 

(DS) such as voltage profile fluctuating, high-energy 

system loss, and system reliability [1]. However, 

uncontrolled DG penetration can result in some 

operational challenges due to its intermittent nature. 

Voltage limit violations, thermal overloading 

challenges, failed protection systems, and 

deteriorating power quality are all included in the list 

of problems. Therefore, it is crucial to choose the 

right size and position of the DG required for 

integration without creating such problems [2]. 

Additionally, it is critical to ensure that the maximum 

DG injected into the DS does not go above what is 

permitted by the system's operating constraints. This 

procedure is essentially described as the maximum 

DG hosting capacity (MDHC) [3]. André Even 
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originally suggested the notion of the hosting 

capacity (HC) in the context of distributed generating 

and defined it as the greatest number of DGs that may 

be incorporated into the DS before the system's 

performance deteriorates to unacceptable levels [4].  

Many studies have recently investigated the 

evaluation of the integration of the DGs into DSs 

using various techniques with various objectives of 

DG integration. 

Numerous strategies have been put forth to lower 

system losses and improve the DS's overall voltage 

profile using various techniques when the DG is 

present. For instance, an analytical method was 

proposed to assess the impact of optimal DG 

integration on the active and reactive losses in DS 

using particle swarm optimization [5]. The authors in 

[6] presented a comprehensive analysis of optimal 

DG location and size for a residential feeder 

intending to mainly improve loss reduction and the 

overall voltage profile. To demonstrate the 

superiority of the suggested strategy when compared 

to other methods, the authors of this research 

examined several cases employing various types of 

DGs. A new method was developed to integrate DGs 

into DSs to minimize the active power losses and 

enhance voltage stability margin [7]. The authors in 

[7] used the voltage stability margin index to find the 

best DG location and the optimum DG size is selected 

using MATLAB curve-fitting approximation. A new 

approach was presented to minimize the total system 

losses in DSs [8]. In this paper, the loss sensitivity 

factor is proposed for DG location and an intelligent 

water drop algorithm is used for optimal DG size. To 

lower system losses and improve voltage deviation, a 

hybrid metaheuristic technique using the salp swarm 

algorithm and whale optimization algorithm was 

suggested for solving the optimal DG location and 

size [9]. A modified moth flame optimization was 

proposed for solving the DG integration to improve 

the DS performance in terms of system losses, 

voltage deviation, and emission [10]. To minimize 

overall power losses and improve voltage and 

frequency profiles, the authors concentrated on 

determining the best placement and size for a 

photovoltaic distributed generation using particle 

swarm optimization and the genetic algorithm [11]. 

The DS's voltage stability index and network 

reconfiguration were both improved simultaneously 

by utilizing a modified water cycle algorithm in order 

to reduce system power losses while taking into 

account all operational restrictions [12].  

Although the aforesaid methods have 

significantly improved the performance of DSs, they 

haven't taken into account MDHC in DSs and have 

instead simply integrated DG placement and size to 

achieve lower losses and optimize voltage profile.  

Several researchers have concluded that 

distribution utilities can gain greater advantages from 

the optimal DG size and placement if MDHC, system 

loss, and voltage stability are all prioritized at the 

same time [13]. This is done in an effort to further 

enhance the DS's performance, not only in terms of 

improving voltage stability and reducing system loss 

but also in terms of MDHC. For instance, different 

researchers offered methods to simultaneously 

determine the best network reconfiguration and DG 

integration in order to maximize the MDHC and 

reduce system losses [14, 15]. Furthermore, some 

approaches were employed to maximize MDHC and 

improve overall system performance via well-known 

promising strategies using, mathematical, heuristic, 

and metaheuristic optimization techniques. These 

techniques have demonstrated their capacity to 

maximize the HC of distribution networks of various 

DG sizes.  

For instance, in [16], A multi-objective bilevel 

optimization problem was formulated to maximize 

the total active losses reduction, the HC, and the 

annual total cost reduction for two real DSs. In this 

study, two case studies are conducted using DGs and 

a soft open point, including the deterministic and 

probabilistic case studies. In [17], a modified version 

of moth flame optimization was presented to enhance 

the DS capacity for hosting renewable energy by 

providing a novel bi-layer optimization model for 

DGs allocation in an active distribution network. In 

[18], to increase the DG hosting capacity of 

distribution networks, a new optimum static var 

compensator planning approach was presented. In 

this paper, a stochastic programming problem with 

two stages was used to formulate this problem. 

Even if the simulation results from these 

techniques show a promising increase in the 

performance of the DS, it is still necessary to look for 

better overall performance.  

The aforementioned studies proposed addressing 

the DG integration problem by focusing on either 

only the MDHC improvement or the MDHC and 

system loss reduction together with constrained 

voltage limits. In this study, the coronavirus herd 

immunity optimizer (CHIO) is used to suggest the 

best DG integration with the simultaneous goals of 

optimizing MDHC, minimizing system losses, and 

enhancing voltage stability index (VSI).  

There are several cutting-edge optimizers 

inspired by nature or humans that may be utilized 

effectively to solve difficult OPs with high accuracy 

and quick convergence [19-21]. On the basis of an 

outstanding way of searching for a global solution, 

the CHIO is proposed in this article to provide an 



Received:  July 27, 2022.     Revised: August 16, 2022.                                                                                                   121 

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022           DOI: 10.22266/ijies2022.1231.13 

 

extra enhancement of the DS performance [22].  

The CHIO optimization method is currently 

considered a state-of-the-art method and has been 

utilized effectively in many engineering disciplines 

to tackle challenging linear and nonlinear 

optimization problems (OPs) with remarkable 

accuracy and rapid convergence [23]. Several 

researchers have developed and used the CHIO to 

address optimization issues [24, 25]. For instance, a 

new fuzzy multi-criteria approach based on an 

improved CHIO is proposed to solve the 

reconfiguration problem in the DS with only binary 

variables [26]. However, nobody has taken into 

account both continuous and discrete variables 

simultaneously. 

The primary contribution of this paper is to 

propose an efficient method to address the optimal 

DG integration problem into the DSs while taking 

into account all operational constraints. To overcome 

this problem, the CHIO is proposed, which addresses 

the non-linear multi-objective optimization problem 

while simultaneously dealing with discrete and 

continuous search spaces (e.g., DG allocation 

problem). Due to its high spreading rate, CHIO, 

which is based on the herd immunity (HI) concept, 

performs exceptionally well in navigating 

complicated search spaces. This helps the algorithm 

avoid becoming trapped on local solutions by 

exploring almost all feasible regions in search of the 

best solutions. Also, when it comes to balancing 

exploitation and exploration to find the optimal 

solution, CHIO is highly adept. 

CHIO's goal is to find the best possible solution 

for the size and location of the DG that satisfies the 

MDHC, minimizes power loss, increases voltage 

stability, and keeps all operational constraints within 

tolerable limits. Various cases and comparisons are 

presented to further highlight and illustrate the 

effectiveness of the suggested method in terms of the 

MDHC, loss reduction, and VSI improvement while 

accounting for the existence of DGs in the DS.  

The rest of this paper is structured as follows. The 

proposed CHIO is fully described in section 2. The 

formulation of the problem is shown in section 3. The 

case study is described in section 4. The numerical 

results and discussion are given in section 5. In 

section 6, the conclusion is described.  

2. Proposed CHIO 

This section first describes the structure of the 

suggested optimization approach for addressing 

problems before presenting how it works.  

2.1 Inspiration 

Viruses are tiny pathogens that can only multiply 

in an organism's live cells. They may spread 

physiologically and get amplified by multiplying 

hosts. In Wuhan, China, the corona-virus illness 

(COVID-19) was initially identified in December 

2019. The disease's epidemic was reported by the 

world health organization. A novel strain of COVID-

19 was discovered for the first time in Wuhan after 

several cases of pneumonia that seemed to have no 

known cause and the failure of the available 

vaccinations and therapies at that time.  

Experts describe immunity as the body's natural 

resistance to infectious diseases or their toxins in both 

people and animals. Immunity may be inherent or 

learned. Individuals no longer get the sickness as a 

result. The HI is gained and the illness is stopped in 

its tracks when a significant portion of the population 

obtains this immunity [22].  

2.2 Herd immunity 

When a population has a sufficient number of 

individuals with an infection-specific immunity to 

successfully halt the spread of a disease, this is 

referred to as having HI [22].  

HI mathematical modeling is the foundation of 

the CHIO. This algorithm is based on the idea that 

disease may be prevented in society by making the 

majority of the population amenable to vaccination. 

Because the immune population does not spread the 

disease, additional vulnerable members of the 

community are not affected. Fig. 1 depicts the 

concept of HI.  

2.3 Population hierarchy 

According to [22], HI is categorized into three 

groups based on the expanding population as shown 

in Fig. 2: 

 

a) Susceptible persons: represents the greatest part of 

the population used to build the CHIO optimization 

structure, which can be defined as persons who are in 

direct touch with infected people.  

b) Infected persons: it is considered the second 

biggest population which will increase if the social 

distance is not noticed until they are more secure or 

even pass away (i.e., confirmed cases).  

c) Immune persons: persons whose numbers begin at 

zero and increase as the population increase. The 

pandemic eventually comes to an end after the vast 

majority of individuals are immune.  
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2.4 Social distancing 

In order to stop the spread of illnesses during viral 

pandemics, the idea of social distance is applied.  

The idea of social distancing (SD) in the CHIO is 

focused on separating the present individual and the 

candidate from the group of individuals who may be 

susceptible, infected, or safe. The frequency of 

COVID-19 infection can be significantly decreased 

by the SD.  

Fig. 3 illustrates how the disease's rate of 

transmission would slow due to social distance, 

which would eventually cause a pandemic to spring 

out. The disease's progress would be slowed and the 

pandemic's peak would be reached with fewer 

infected cases. As can be seen in Fig. 3, social 

isolation has reduced the incidence of the illness, 

which can even slow the spread of the illness and 

delay the peak of the epidemic [22].  

2.5 Proposed CHIO procedure 

This population-based meta-heuristic algorithm 

is based on the herb immunity approach which is 

modeled in the CHIO optimization algorithm. 

Following are the six main stages that make up the 

CHIO algorithm's structure [22]:  

 

Stage-1: Initialization 

This stage deals with the CHIO settings and the 

OP. 

The OP is expressed in terms of the objective 

function as illustrated in Eq. (1):  

 

min𝐱      𝑓(x)        x ∈ {xmin, xmax} 
 

Subject to 

 
𝑔(x) = 𝑤𝑛
ℎ(x) ≥ 𝑧𝑛

                             (1) 

 

 
Figure. 1 An illustration of HI [22] 

 
Figure. 2 Population hierarchy [22] 

 

 
Figure. 3 Effect of SD on COVID-19 outbreaks [22] 

 

Where 𝐱 is a vector, x = (𝑥1, 𝑥2, 𝑥3, …… , 𝑥𝑏) , 𝑏 

represents the total number of decision variables, 

xmin and xmax  denote the minimum and maximum 

bounds of the decision variables, 𝑔(x) = 𝑤𝑛  and 

ℎ(x) ≥ 𝑧𝑛  represents the equality and inequality 

constraints.  
The four algorithmic parameters of the CHIO 

algorithm are 𝐶0 , which is the number of early 

instances of infection started by a single person (e.g., 

𝐶0  = 1), herd immunity size (HIS), the size of the 

population, Max𝐼𝑡𝑟, the actual number of iterations, 

and n, which denotes the problem's dimensionality.  

In addition, CHIO includes two control settings. 

The algorithm's operators are controlled by the BRr 

parameter, which stands for basic reproduction rate 

and is dependent on the virus's predominance. 

Furthermore, a control parameter called Max𝐴𝑔𝑒 

specifies the average age of those that contract the 

virus, so once they reach Max𝐴𝑔𝑒, they either recover 

their health or pass away.  

Stage-2: Create the basic herd immunity 

population  

Generating a random starting population matrix is 

the first step in solving any OP, much like with any 

population-based meta-heuristic method. Therefore, 

the herd immunity population (HIP) with two-

dimensional matrix 𝑛 × 𝐻𝐼𝑆 is generated as follows 

in Eq. (2) and (3):  
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𝐻𝐼𝑃 = [
𝑥1
1 ⋯ 𝑥𝑛

1

⋮ ⋱ ⋮
𝑥1
𝐻𝐼𝑆 ⋯ 𝑥𝑛

𝐻𝐼𝑆
]              (2) 

 

Where 𝑥𝑖
𝑚 is generated using Eq. (3).  

 

𝑥𝑖
𝑚 = xmin,i + (xmax,i − xmin,i) × 𝑈(0,1)      (3) 

 

Eq. (1) is used to determine the objective function 

(or immunity rate) for each case. Additionally, the 

status vector S is formed in all individuals of the HIP 

by either one (i.e., an infected individual) or zero (i.e., 

a susceptible person). Be aware that (S) has as many 

ones at random initiation as 𝐶0.  

Stage-3: Evolution of herd immunity  

This stage is regarded as the main CHIO 

improvement loop. In this step, HIP is assessed using 

the following three rules to create a new HIP in which 

the individual gene, 𝑥𝑖
𝑚, keeps the same or is affected 

by social distance. The three rules can be expressed 

in Eq. (4): 

 

𝑥𝑖
𝑚(𝑡 + 1) =

{
 
 

 
 
𝑥𝑖
𝑚(𝑡),                       𝑟 ≥ BR𝑟 

𝐶(𝑥𝑖
𝑚(𝑡)),           𝑟 <

1

3
× 𝐵𝑅𝑟

𝑁(𝑥𝑖
𝑚(𝑡)),           𝑟 <

2

3
× 𝐵𝑅𝑟

𝑅(𝑥𝑖
𝑚(𝑡)),                  r < BR𝑟

  (4) 

 

Where r is an integer chosen at random from [0, 

1].  

The first rule is infected case, which is ranged 

from 0 to 
1

3
× 𝐵𝑅𝑟 . The new gene is created by 

analyzing how the gene from the infected case varies 

from the current gene, but its value is reduced by SD, 

which can be determined using Eqs. (5) and (6) as 

follows:  

 

𝑥𝑖
𝑚(𝑡 + 1) =  𝐶(𝑥𝑖

𝑚(𝑡))                (5) 

 

𝐶(𝑥𝑖
𝑚(𝑡)) = 𝑥𝑖

𝑚(𝑡) + 𝑟 × (𝑥𝑖
𝑚(𝑡) − 𝑥𝑖

𝑐(𝑡))      (6) 

 

Where 𝑥𝑖
𝑐(𝑡)  is selected randomly from diseased 

person taken from infected case 𝒙𝑐  based on the 

status vector S. 

The second rule is the susceptible case. In this 

case,  𝑥𝑖
𝑚will be modified based on SD calculating 

the difference between the current gene and a gene 

taken from any susceptible case 𝒙𝑏 with considering 

𝑟 within [
1

3
𝐵𝑅𝑟,

2

3
𝐵𝑅𝑟], which is quantified by Eqs. 

(7) and (8) as follows:  

 

𝑥𝑖
𝑚(𝑡 + 1) =  𝑁(𝑥𝑖

𝑚(𝑡))               (7) 

𝑁(𝑥𝑖
𝑚(𝑡)) = 𝑥𝑖

𝑚(𝑡) + 𝑟 × (𝑥𝑖
𝑚(𝑡) − 𝑥𝑖

𝑏(𝑡))    (8) 

 

Where 𝑥𝑖
𝑏(𝑡)  is randomly chosen from the 

susceptible case according to the status vector S.  

The last rule is the immune case, in this case, a 

new 𝑥𝑖
𝑚 will be derived by SD considering 𝑟 within 

[
2

3
𝐵𝑅𝑟 , 𝐵𝑅𝑟]. The new gene is created by calculating 

the difference between the gene derived from the 

immune case 𝒙𝑣  and the existing gene, which is 

quantified by Eqs. (9) and (10) as follows: 

 

𝑥𝑖
𝑚(𝑡 + 1) =  𝑅(𝑥𝑖

𝑚(𝑡))                   (9) 

 

𝑅(𝑥𝑖
𝑚(𝑡)) = 𝑥𝑖

𝑚(𝑡) + 𝑟 × (𝑥𝑖
𝑚(𝑡) − 𝑥𝑖

𝑣(𝑡))    (10) 

 

Where 𝑥𝑖
𝑣(𝑡)  is randomly selected from the 

immune case depending on the status vector S such 

that  

 

 𝑓(𝑥𝑣) = arg min
𝑚~{𝑘|𝑆𝑘=2}

𝑓(𝑥𝑚)                     (11) 

 

Stage -4: Update HIP 

In this stage, the HIP is updated by calculating the 

immunity rate 𝑓(𝒙𝑚(𝑡 + 1)) for each created case 

𝒙𝑚(𝑡 + 1), and the generated case only replaces the 

present case 𝒙𝑚(𝑡)  if 𝑓(𝒙𝑚(𝑡 + 1)) < 𝑓(𝒙𝑚(𝑡)) . 

Additionally, if the status vector, 𝑆𝑚 is equal to 1, the 

value of the age vector, 𝐴𝑚 is incremented to 1. The 

state vector, 𝑆𝑚  is modified, 𝒙𝑚  for each iteration 

based on the herd immune criteria, which employs 

the following Eq. (12):  

 

𝑆𝑚 =

{
 
 

 
 1     𝑓(𝒙𝑚(𝑡 + 1)) <

𝑓(𝒙)𝑚(𝑡+1)

∆𝑓(𝒙)
 ⋀ 𝑆𝑚 = 0

⋀ is_Corona(𝒙𝑚(𝑡 + 1))    

2      𝑓(𝒙𝑚(𝑡 + 1)) >
𝑓(𝒙)𝑚(𝑡+1)

∆𝑓(𝒙)
⋀ 𝑆𝑚 = 1

 

(12) 

 

If a new case has inherited a benefit from any 

infected cases, then is_Corona(𝒙𝑚(𝑡 + 1)) is equal to 

1, which is a binary value. Average population 

immune rates ∆𝑓(𝒙)can be expressed in Eq. (13). 

 

∆𝑓(𝒙) =
∑ 𝑓(𝑥𝑖)
𝐻𝐼𝑆
𝑖=1

𝐻𝐼𝑆
                       (13) 

 
Stage -5: Mortality cases 

For a specified iteration (i.e., 𝐴𝑚 ≥ Max𝐴𝑔𝑒), if 

the immunity rate 𝑓(𝒙𝑚(𝑡 + 1))  of the current 

infected person ( 𝑆𝑚 = 1 ) does not improve for the 

maximum repetition of the algorithm, then this 
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process is considered as a lost person and then 

reproduced from scratch according to the following 

Eq. (14) 

 

𝑥𝑖
𝑚(𝑡 + 1) = xmin,i + (xmax,i − xmin,i) × 𝑈(0,1) 

(14) 

 

Additionally,  𝑆𝑚  and 𝐴𝑚  are both set to zero. 

Increasing the current population may help to avoid 

getting trapped in a local solution.  

Stage-6: Stopping condition 

The CHIO continues stages 3 through 6 until the 

terminating condition is met, which is generally 

determined by reaching the maximum number of 

iterations. In this case, the total number of vulnerable 

and immune cases dominates the population. Infected 

cases are also eradicated.  

3. Problem formulation 

The objective considered herein is to obtain the 

best possible solution for the MDHC, loss reduction, 

and VSI improvement based on the CHIO algorithm. 

This goal can be achieved by solving a complex 

multi-optimization problem with discrete and 

continuous variables (i.e., the DG location and size). 

In this work, the objective function (OF) will be 

calculated using a deterministic approach with 

constant DG generation with unity power factor and 

load consumption. The following is a description of 

the OF and constraints: 

3.1 Objective function (OF) 

This study combines the MDHC, total power loss 

index, and voltage stability index to create the 

suggested OF while simultaneously considering the 

best DG location and size injected into the DSs. The 

formulation of each component of the OF is as 

follows:  

3.1.1. Maximize DG hosting capacity (MDHC) 

The MDHC, which is a percentage that cannot be 

higher than 100 %, is the ratio of all DG energy 

injected into the DSs to all connected loads. The 

MDHC is formulated in the following way 

represented in Eq. (15) [16]:  

 

𝑀𝐷𝐻𝐶 = 100.
∑ 𝑃𝐷𝐺,𝑖
𝑁𝐷𝐺
𝑖=1

∑ 𝑃𝑙𝑜𝑎𝑑,𝑗
𝑁𝐿
𝑗=1

                  (15) 

 

where 𝑁𝐷𝐺  is the total number of DGs, 𝑃𝐷𝐺,𝑖 
represents the DG generation injected at node 𝑖, 𝑁𝐿 is 

the total number of loads connected to the DS, 𝑃𝑙𝑜𝑎𝑑,𝑗 

represents the load connected at node 𝑗 , (𝑖, 𝑗) ∈
𝑁𝑛𝑜𝑑𝑒, 𝑁𝑛𝑜𝑑𝑒 identifies the total number of nodes.  

3.1.2. Total active power loss 

In general, the sum of the losses in all branches 

determines the total active loss,  
𝑃𝑙𝑜𝑠𝑠𝑇 , dissipating in the DS, which is described in Eq. 

(16) [11]:  

 

𝑃𝑙𝑜𝑠𝑠𝑇 = ∑
𝑃𝑖
2+𝑄𝑖

2

|𝑉𝑖|
2 𝑅𝑖,𝑗

𝑁𝑏𝑟
𝑖=1               (16) 

 

where 𝑁𝑏𝑟  denotes the total number of branches, 

active and reactive power drawn from node 𝑖  are 

represented by 𝑃𝑖 and 𝑄𝑖, respectively, 𝑉𝑖 is a voltage 

at node 𝑖 , 𝑅𝑖𝑗  is branch’s resistance that connects 

node 𝑖 and 𝑗, respectively.  

3.1.3. Voltage stability index (VSI) 

The DS performance may be assessed using the 

VSI. The primary purpose of the VSI is to analyze 

how DSs behave with regard to voltage stability 

margin and identify any potential operating point 

instability of system nodes [27]. The following Eq. 

(17) is a representation of the VSI formula at node j:  

 

VSI(j) = |𝑉𝑖|
2 − 4(𝑃𝑗𝑋𝑖𝑗 − 𝑄𝑗𝑅𝑖𝑗)

2
− 

4(𝑃𝑗𝑋𝑖𝑗 − 𝑄𝑗𝑅𝑖𝑗)
2
|𝑉𝑖|

2                    (17) 

 

where active and reactive power load at node 𝑗 
are indicated by 𝑃𝑗and 𝑄𝑗 represent, respectively, and 

𝑋𝑖𝑗 denotes reactance of the branch connecting node 

𝑖 and 𝑗, respectively. Eq. (18) can be used to compute 

the minimal VSI.  

 

VSI𝑚𝑖𝑛 = min (𝐕𝐒𝐈)                     (18) 

3.1.4. Operational constraints 

The following operational constraints classify the 

stated equality and inequality constraints 

requirements of the OF that must be highlighted [16]:  

 

I. All nodes in the DS must be kept within 

allowable bounds for inequality constraints 

expressed in Eq. (19): 

 

𝑉𝑚𝑖𝑛 ≤ |�̃�𝑖| ≤ 𝑉𝑚𝑎𝑥, ∀𝑖 ∈ {1,2,… . , 𝑁𝑛𝑜𝑑𝑒}         (19) 

 

Where 𝑉𝑚𝑖𝑛  and, 𝑉𝑚𝑎𝑥  indicates the lower and 

higher node voltage boundaries, respectively. The 

voltage magnitude constraints were determined to be 

0.95 p.u. and 1.05 p.u. based on the ANSI standard 
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[25]. 

II. The active power balance constraint is a need for 

equality constraints to be satisfied and is defined 

in Eq. (20). 

 

𝑃𝑙𝑜𝑠𝑠𝑇 + 𝑃𝑙𝑜𝑎𝑑𝑇 = 𝑃𝑠𝑢𝑏 + ∑ 𝑃𝐷𝐺,𝑖
𝑁𝐷𝐺
𝑖=1               (20) 

 

where 𝑃𝑙𝑜𝑎𝑑𝑇  denotes the total load that is 

connected to the DS and 𝑃𝑠𝑢𝑏  represents the total 

active power drawn from the main substation. 

III. Another inequality constraint that is taken into 

account is the branch's current limitation, which 

is expressed by Eq. (21):  

 

|𝐼𝑏| ≤ 𝐼𝑏
𝑟𝑎𝑡𝑒𝑑 , ∀𝑏 ∈ {1,2,… . , 𝑁𝑏𝑟}          (21) 

 

Where 𝐼𝑏  and 𝐼𝑏
𝑟𝑎𝑡𝑒𝑑 represent the current and 

maximum capacity of branch 𝑏.  

IV. DG hosting capacity limits. The quantity of DG 

total active power output that may be injected 

into the DS should be constrained and not go 

over a specific threshold limit, which is 

mathematically defined using Eqs. (22) and 

(23): 

 

0 ≤ ∑ 𝑃𝐷𝐺,𝑖
𝑁𝐷𝐺
𝑖=1 ≤ 𝑃𝑙𝑜𝑎𝑑𝑇            (22) 

 

or 

 

𝑀𝐷𝐻𝐶 ≤ 100%                   (23) 

 

Finally, the objective function in this study is 

formulated by combining the MDHC, the active loss 

index, and the VSI. It is denoted by the following 

definitions using Eq. (24):  

 

 

 

 
Figure. 4 Flowchart of the CHIO 
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𝑂𝐹 = min    
𝐗

(𝑤1 (1 −
∑ 𝑃𝐷𝐺,𝑖
𝑁𝐷𝐺
𝑖=1

∑ 𝑃𝑙𝑜𝑎𝑑,𝑗
𝑁𝐿
𝑗=1

) + 𝑤2 (
𝑃𝑙𝑜𝑠𝑠

𝑃𝑙𝑜𝑠𝑠,0
)  

+𝑤3(1 − VSI𝑚𝑖𝑛))   (24) 
 

where x is a row vector representing an initial 

candidate solution of the CHIO containing the DG 

locations and size, and weighted coefficients, 𝑤1, 𝑤2, 

and, 𝑤3, are used to reduce a multi-objective OP into 

a single OP, 𝑃𝑙𝑜𝑠𝑠,0  represents total active loss 

without DG injection. The objective function in Eq. 

(24) focuses primarily on the MDHC (i.e., 𝑤1 = 0.5) 

and system losses (i.e., 𝑤2  = 0.4), with a minor 

emphasis on voltage stability (i.e., 𝑤3 = 0.1).  

Fig. 4 highlights the primary structure of the 

proposed CHIO employed in this paper.  

4. Case study 

The test system used in this paper is an IEEE 69-

node radial DS to test the performance of the 

suggested technique as shown in Fig. 5. The total load 

is 3.8022 MW and 2.6941 MVAr, and the nominal 

voltage is set to 12.66 kV (or 1 p.u.). This DS 

contains 69 nodes and 73 branches. It generally has 5 

opened tie switches, which are shown by dotted lines, 

and 68 closed sectionalizing switches, which are 

shown by solid lines [29].  

Using the IEEE 69-node radial DS, the efficacy 

of the suggested method will be evaluated, and four 

different cases with different numbers of DGs are run 

to maximize MDHC, reduce losses, and improve VSI 

using the CHIO while taking into account all 

operational limits. In addition to the base case, these 

cases are categorized as follows:  

 

Base case: It is the case without considering the DG 

installation.  

Case 1: It is a nominal load, which is 100 % of the 

system load.  

Case 2: It is a heavy load in which active and reactive 

power loads are decreased by 50 % of the system load. 

Case 3: It is a light load in which active and reactive 

power loads are increased by 50 % of the system load.  

 

The superiority of the proposed method is 

verified by solving the same proposed problem using 

well-known meta-heuristic algorithms. Only case 1 is 

used for comparison between the CHIO and others. 

These compared algorithms are briefly described as 

follows: 

The genetic algorithm (GA) is a genetic and 

natural selection-based evolutionary algorithm that 

draws its inspiration from the thought processes that 

underlie biological evolution [29]. The hunger games 

search (HGS) is a metaheuristic algorithm based on 

the behaviors and actions taken by animals in their 

pursuit of food when they are driven by hunger [30]. 

The chaotic neural network algorithm (CNNA) is a 

metaheuristic algorithm that uses randomization and 

artificial neural networks to tackle optimization 

issues. Artificial neural networks and human nerve 

systems served as inspiration for this method [31]. 

The water cycle algorithm (WCA) is a meta-heuristic 

technique that was developed after studying how 

water moves naturally [32]. 

A power flow approach [33] is utilized in this 

study to assess the viability of proposed solutions. 

Different numbers of DGs are recommended for 

installation in the DS. The DG size restrictions are set 

to be between 0 and 4 MVA.  

5. Numerical results and discussions 

Table 1 shows the simulations of the four cases 

discussed above. The basic case, as shown in Table 1, 

is the case without DG injection in the test system. 

This is the worst case according to loss reduction, 

voltage magnitude violation, and minimal VSI. Table 

1 also includes case 1. In this case, three DGs are 

sequentially  injected. It can be observed that the 

number of DGs can give a positive impact on the 

system performance. As shown in Table 1, one DG is 

optimally selected by CHIO with optimal location 

and size in which the MDHC is significantly 

improved by 99.999 %, the system loss reduction 

improved to 23.08 %, the minimum voltage 

magnitude within permissible limits, and the 

minimum VSI is improved by 22.58 %. It can be also 

observed that the system loss has improved slightly 

because the CHIO is limited by one DG injection. 

That means the search space is extremely restricted 

by one location. As a result, the CHIO selected the 

optimal DG position and size that does not violate the 

system operating limits while optimizing the 

proposed OF. 

In the case of two DGs for case 1, the CHIO has 

greater flexibility to improve the overall system 

performance and it is clearly seen from the results in 

Table 1. In this case, when compared to the base case, 

the MDHC, system loss reduction, and minimum VSI 

are greatly improved by 99.994 %, 62.76 %, and 

28.39 %, respectively. Furthermore, the minimum 

voltage magnitude is within permitted limits. In the 

case of three DGs, the CHIO selected three DGs to be 

injected at optimal locations and sizes as shown in 

Fig. 5. From Table 1, as compared with the base case, 

MDHC is significantly improved by 99.999 %, the 

system loss reduction improved to 66.95 %, and the 

minimum voltage magnitude is improved to above 

acceptable limits, while minimum VSI has a modest  
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Figure. 5 The optimal DG location for modified IEEE 69-

node radial DS (i.e., case 1) 
 

improvement, which is nearly 29.22 %. This is 

expected because the proposed method mainly 

focuses on the MDHC and loss reduction with less 

emphasis on the VSI.  

Case 2 is also included in Table 1. In this case, the 

load system is increased by 1.5 percent (i.e., the total 

system load is 5.7033 MW and 4.041 MVAr) to show 

the proposed method's efficacy and whether it can 

improve the system performance or not when the 

system load is increased. From Table 1, the CHIO 

selected one DG with the maximum DG capacity (i.e., 

𝑆𝐷𝐺𝑚𝑎𝑥 = 4 MVA) and optimal location (i.e., node 

61) to improve the overall system performance. 

In the case of one DG for case 2, the MDHC is 

enhanced but has less improvement than in case 1. 

This is understandable since the active power of the 

load system has increased by 150 percent when 

compared to case 1, and the 𝑆𝐷𝐺𝑚𝑎𝑥 is smaller than 

the active power of the load system. Additionally, in 

comparison to the base case, the system loss 

reduction improved to 57.947 %, the minimum 

voltage magnitude is within acceptable limits, 

whereas the minimum VSI is significantly improved 

to 55.586 % due to the increase in the load system. 

Additionally, Table 1 demonstrates that the use of  

 

 
Figure. 6 Voltage profile for case 1 

 

 
Figure. 7 VSI profile for case 1 

 

 
Figure. 8 The influence of DG size and location on loss 

reduction percentage for all cases 
 

two and three DGs successfully enhances the test 

system's overall performance in case 2 when 

compared to the base case and one DG case. For 

instance, in the case of three DGs, the MDHC, system 

loss reduction, and the minimum VSI are greatly 

enhanced by 99.82 %, 70.377 %, and 59.77 %,  
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Table 1. Numerical results of the proposed CHIO with different load levels 
No. of 

DG 

DG size 

(MW) 

DG 

location 

MDHC 

(%) 

Power 

loss 

(kW) 

Loss 

reduction 

(%) 

Vmax/Vmin 

(p.u) 

Min VSI 

(p.u) 

 Case1 (Nominal Load 100%, 𝑺𝑫𝑮𝒎𝒂𝒙 = 4 MVA) 

Base case ----- ------ ------ 224.50 0.00 1/ 0.9094 0.6872 

1 3.8018 56 99.999 172.70 23.08 1/ 0.9569 0.8424 

2 1.8019, 2.0000 40, 61 99.999 83.60 62.76 1/0.9691 0.8823 

3 0.5299, 1.7607, 1.5111 17, 36, 61 99.999 74.20 66.95 1/0.9696 0.8880 

 Case2 (Heavy Load 150%, 𝑺𝑫𝑮𝒎𝒂𝒙 = 4 MVA) 

Base case ----- ------ ------ 558.80 0.00 1/ 0.8563 0.5424 

1 4.000 61 70.14 234.99 57.947 1/0.9584 0.8439 

2 2.928, 2.772 47, 61 99.95 191.82 65.672 1/0.9515 0.8497 

3 0.903, 2.255, 2.534 16, 40, 61 99.82 165.53 70.377 1/0.9632 0.8666 

 Case3 (Light Load 50%, 𝑺𝑫𝑮𝒎𝒂𝒙 = 4 MVA) 

Base case ----- ------ ------ 51.5 0.00 1/ 0.9568 0.8398 

1 1.9003 7 99.960 42.72 17.04 1/ 0.9663 0.8739 

2 1.131, 0.767 28, 62 99.840 21.35 58.54 1/ 0.9835 0.9357 

3 0.363, 0.917,0.611 12, 47, 61 99.480 19.96 61.24 1/ 0.9810 0.9272 

 
Table 2. Numerical results of the proposed CHIO for case 1 in a comparison with other methods 

No. of DG DG size  

(MW) 

DG location MDHC 

(%) 

Loss reduction 

(%) 

Vmax/Vm 

in (p.u) 

Min VSI 

(p.u) 

Base case ----- ------ ------ ---- 1/ 0.9094 0.6872 

1 

GA 3.800 56 99.942 23.10 1/0.9569 0.8424 

HGS 3.8018 56 99.999 23.08 1/0.9570 0.8424 

CNNA 3.8018 56 99.999 23.08 1/0.9569 0.8424 

WCA 3.8018 56 99.999 23.08 1/0.9569 0.8424 

CHIO 3.8018 56 99.999 23.08 1/ 0.9569 0.8424 

2 

GA 2.072, 1.708 36, 61 99.416 62.54 1/0.9674 0.8760 

HGS 2.161, 1.641 4, 61 99.999 62.18 1/0.9670 0.8746 

CNNA 2.140, 1.662 4, 61 99.999 62.33 1/0.9672 0.8751 

WCA 2.057, 1.745 47, 61 99.999 62.76 1/0.9676 0.8768 

CHIO 1.8019, 2.000 40, 61 99.999 62.76 1/0.9691 0.8823 

3 

GA 0.424, 1.644, 1.732 12, 28, 61 99.942 66.59 1/0.9748 0.9030 

HGS 1.104, 1.293, 1.405 3, 11, 61 99.999 65.55 1/0.9703 0.8903 

CNNA 1.046, 1.3245, 1.431 10, 49, 61 99.999 66.20 1/0.9697 0.8880 

WCA 1.506, 0.877, 1.419 2, 12, 61 99.999 66.24 1/0.9684 0.8830 

CHIO 0.529, 1.761, 1.511 17, 36, 61 99.999 66.95 1/0.9696 0.8880 

 

respectively, compared with the base case. Table 1 

further shows that in all cases, the CHIO is successful 

in optimizing DG position and size, with all system 

nodes remaining within the allowable limits. 

Finally, Table 1 depicts case 3. In this case, the 

load system is reduced by half (i.e., the total load is 

1.9011 MW and 1.3470 MVAr) to demonstrate the 

usefulness of the suggested technique. As indicated 

in Table 1 for case 3, the base case is considered as a 

moderate case in terms of system loss, voltage 

magnitude violation, and minimum VSI due to load 

system reduction. Nevertheless, the CHIO is 

successful in optimizing DG position and size in 

cases of injection one, two, and three DGs. In the case 

of three DG injections, for example, the CHIO chose 

three DGs to be injected in appropriate locations and 

sizes. From Table 1, as compared with the base case, 

MDHC is significantly improved to 99.480 %, the 

system loss reduction improved to 61.24 %, and the 

minimum voltage magnitude is significantly 

improved to above acceptable limits, while minimum 

VSI is improved by 10.40 %.  

Figs. 6 and 7 compare the voltage profile and VSI 

for case 1, including the basic case. Fig. 6 illustrates 

that the CHIO successfully selected the optimal DG 

locations and sizes, with the voltage magnitude at 

each node in the test system being within acceptable 

limits. Furthermore, Fig. 7 shows the VSI 

improvement for all system nodes compared with the 

base case.  
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As an example of the suggested CHIO, Fig. 8 

shows the influence of DGs with varied penetration 

levels on the loss reduction percentage for all cases. 

The presence of DGs with high penetration levels 

boosts the magnitude of the voltage. As a result, as 

illustrated in Fig. 8, the system loss reduction will be 

greatly improved.  

Table 2 compares the proposed method and the 

existing ones discussed in section 4 just for case 1 

using the same metrics in Table 1 except a power loss 

metric. As seen in Table 2 in the case of one DG, all 

comprising methods get the same results except GA. 

This is expected due to limited search space that is 

constrained by one control variable (i.e., DG location 

and size). When the search space is enlarged by 

increasing the control variables represented by DGs, 

the capacity of the proposed approach and other 

methods to discover superior results becomes 

apparent. According to Table 2, the CHIO and WCA 

methods are similar in terms of maximizing MHDC 

and outperforming other methods in terms of loss 

reduction and minimal VSI improvement when two 

DGs are used as variable controls. This is expected 

because both CHIO and WCA have a comparable 

ability to investigate almost all feasible regions in 

search space due to continuously changing the 

positions of candidate solutions to avoid becoming 

trapped in a local solution. However, the CHIO 

surpasses the WCA in terms of increasing the 

minimal VSI.  

In the case of three DGs, as shown in Table 2, the 

CHIO shows the best performance improvement, 

especially in reducing the system losses.  

This is expected because CHIO has a high 

spreading rate and excels at navigating complex 

search spaces because it is built on the HI concept.  

6. Conclusion 

An integrated approach, expressed as a mixed-

integer and non-linear optimization problem, is 

proposed to maximize DG hosting capacity (MDHC), 

decrease system loss, and increase voltage stability 

index (VSI) in distribution networks while 

restraining undesirable voltage magnitudes. The 

integrated technique is based on simultaneously 

determining an appropriate DG placement and size, 

which is solved using a coronavirus herd immunity 

optimizer (CHIO). The proposed method's 

performance is assessed using the IEEE 69-node 

radial DS at varying load levels and DG numbers, and 

it is compared to other existing approaches. Four 

cases are considered: base case, nominal load, heavy 

load, and light load. The results demonstrate the 

efficacy of the suggested method in achieving the 

stated goal when compared to well-known 

metaheuristic optimization methods. In each of these 

cases, the CHIO is capable of increasing MDHC by 

70.14–99.99 %, decreasing DS losses by 17.04–

70.37 %, increasing minimum VSI by 10.40–59.77 %, 

and maintaining acceptable voltage magnitudes. 
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