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Abstract: Deep learning has become a popular study area in recent years. While deep learning software generates 

tremendous positive results in some cases, faults in the programme can have fatal repercussions, in safety-critical 

applications, this is extremely significant. Researchers have conducted various empirical investigations on defects in 

deep learning systems to better understand the bug characteristic of deep learning software. Despite the fact that 

these studies are useful, none of them investigate the problem in TensorFlow, a deep learning framework. They feel 

that some fundamental concerns about deep learning library difficulties remain unsolved. The answers to these 

questions are crucial and helpful because they constitute the underlying library of many deep learning endeavours. 

Many deep learning initiatives are influenced by its flaws. In this paper we pre-process a dataset that is openly 

accessible by performing data normalization and log transformation. To prepare the data input for the deep learning 

model, we next undertake data modelling. Third, we send the modelled data to a deep neural network-based model 

that was specifically created to forecast the number of faults. We test the suggested method on two well-known 

datasets as well. The evaluation's findings show that the suggested strategy is reliable and can outperform cutting-

edge methods. The suggested approach enhances the squared correlation coefficient by more than 8% while, on 

average, drastically reducing the mean square error by more than 14%. 

Keywords: Bug analysis, Deep learning, Empirical study, Tensorflow. 

 

 

1. Introduction 

Deep learning has been a prominent study topic 

in recent years, and academics have employed deep 

learning approaches to solve challenges in a variety 

of fields, including software analysis. Instead, then 

recreating the wheel while developing deep learning 

applications, programmers frequently rely on 

existing libraries. Because deep learning libraries 

are so common, one bug in one can propagate to 

bugs in many applications, which can have severe 

implications. For example, due to faults in their deep 

learning algorithms, A Google self-driving car 

collided with a Tesla automobile. Researchers have 

undertaken empirical investigations on deep 

learning programme faults to better understand them. 

in particular, conduct an empirical investigation to 

better understand TensorFlow application issues.  

In this method we proposed and implemented 

using tensor Flow applications are programs that 

leverage TensorFlow's APIs. Rather than focusing 

on TensorFlow applications, look into other deep 

learning tools like Caffe and Torch. Although their 

findings are beneficial in improving the quality of a 

single application, we are unaware of any other 

studies that have looked into the problems found in 

popular deep learning frameworks. Although 

TensorFlow flaws affect thousands of applications, 

many questions about these bugs remain 

unanswered. Numerous applications will benefit 

from a deeper understanding of such issues, 

However, because TensorFlow combines numerous 

sophisticated algorithms and is implemented in 

multiple programming languages, conducting the 
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needed empirical study is difficult. In earlier work, 

we conducted the first empirical analysis of 

TensorFlow flaws. In comparison to this work, our 

enhanced version adds two new features: Previously, 

they had just looked at the symptoms and causes of 

difficulties; however, in this expanded edition, we 

looked at bug fixes as well as a few linguistic flaws. 

2. Related work 

Programmers frequently base their deep learning 

applications on established libraries rather than 

creating the wheel. Tensor-Flow is the most well-

liked of these libraries, and a recent analysis reveals 

that more than 36,000 Git Hub projects are based on 

Tensor Flow. Due to their widespread use, deep 

learning libraries are prone to defects that might 

spread to several applications and have fatal results. 

Deep learning has become a popular study area in 

recent years. While deep learning software generates 

tremendous positive results in some cases, faults in 

the programme can have fatal repercussions, 

especially when it is utilised in safety-critical 

applications [1]. From embedded systems to smart 

homes, IoT systems are fast gaining traction. 

Despite their increasing popularity and usage, no 

comprehensive study has been conducted to evaluate 

IoT development problems from the perspective of 

practitioners [2]. We introduce ARCANA, a novel 

approach, in this paper. We use ARCANA to figure 

out why an autoencoder is reporting anomalies. The 

reconstruction process is portrayed as an 

optimization issue with the goal of considerably 

reducing anomalous traits from an anomaly [3].  

Deep neural networks (DNNs) are increasingly 

being used in software systems.  

DNNs have been demonstrated to have problems 

in the past. Due to a lack of understanding of model 

behaviour, conventional debugging tools do not 

assist localising DNN issues [4]. A rising number of 

mobile software applications are incorporating deep 

learning (DL). Mobile DL apps combine large-scale 

data DL models with DL programs in a variety of 

software apps [5]. A security mentality must be 

applied to all software engineering methods in order 

to produce secure software [6]. Statistical fault 

localization is a simple technique for identifying 

candidates for defective code places fast [7-8]. 

Researchers have conducted empirical 

investigations on these flaws in order to better 

understand deep learning program bugs. Conduct an 

empirical investigation in particular to comprehend 

Tensor Flow applications' bugs. A program that uses 

Tensor Flow's APIs is referred to as an application 

of Tensor Flow in this context. In today's 

manufacturing operations, monitoring rotating 

machinery is critical. Several machine learning and 

deep learning-based modules have demonstrated 

good defect identification and diagnosis outcomes 

[9-11]. Flaky tests have received a lot of attention in 

recent years, and with good reason. These tests are 

time and money consuming, and they reduce the 

reliability of the test scripts and build processes that 

they affect [12, 13]. The automatically generated 

crash reports can examine the root of the fault that 

caused the crash (also known as the crashing fault), 

which is an important aspect of software quality 

assurance [14-16].  

In this method we proposed and implemented 

using subjective traditional procedures have been 

employed often in recent decades [17]. To ascertain 

the cause of the recall, i.e., the defect type, each 

incidence was studied using root cause analysis [18]. 

These diagnosticians frequently work without 

adequate user instructions or comprehensive topic 

knowledge. In literature and practice, software 

problem diagnosis as performed in the field is 

underrepresented [19, 20]. 

A contribution of this paper is  

• In contrast to our previous work, which 

solely examined bug symptoms and causes, 

the extended version examined both bug 

fixes and bugs that occurred across deep 

learning method. 

• We compared the symptoms, causes, and 

repair patterns we had found. We discover 

that TensorFlow contains type confusions 

depending on the comparison, which the 

earlier studies had not mentioned. 

• Additionally, we discover that TensorFlow 

suffers dimension mismatches just like deep 

learning applications. Ten repair templates 

are found in Tensor Flow problems. We 

discover that correcting deep learning 

defects takes substantially the same repair 

steps as fixing bugs in other types of 

projects, despite the fact that fixing 

TensorFlow bugs requires specialized 

knowledge. Additionally shown is the 

relationship between typical mending 

patterns and their root causes. 

3. Proposed method 

3.1 Tensorflow implementation 

The calculations and steps of a machine learning 

process are represented by dataflow graphs in 

TensorFlow. Each node in a dataflow graph 

represents a single mathematical operation (for  
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Figure. 1 TensorFlow implementation 

 

example, matrix multiplication), and each edge 

indicates a data dependency, as shown in Eq. (1). 

 

𝑑 =  √∑ (𝑥𝑖 − 𝑦𝑖)𝑛
𝑖=1 2                    (1) 

 

The data format of data exchanged between two 

nodes at each edge is defined by a tensor (n-

dimensional arrays) show in Fig. 1. 

3.2 The tensorflow bug remediation process 

TensorFlow's source code is available on 

GitHub, where users can report bugs and track 

commits. When a user faces problems (such as a 

bug), she often submits an issue, which in this 

article is referred to as a bug report. This report's 

contents are used to figure out what's wrong. The 

bug report includes basic information like the 

operating system, the broken TensorFlow version, 

and code samples that can be used to reproduce the 

issue. Aside from that, the bug report includes a 

summary that details the problem. In addition, the 

reporter may be able to offer a practical bug fix. 

After getting an error, TensorFlow developers 

explain the possible causes and how to fix them. 

Developers can also refer to previous bug reports 

and pull requests when discussing a more complex 

bug. To label bug reports as "resolved" or "fixed," 

other open-source communities (e.g., Jira) employ 

more advanced issue trackers. On the other hand, 

GitHub's issue tracker is more basic, and its status is 

usually erroneous. 

While labels on bug reports do not represent the 

state of an issue, A pull request marked "ready to 

pull" has been fixed and is ready to combine. The 

label makes it simple to spot fixed pull requests. 

Some pull requests include links to associated bug 

reports, making finding bugs much easier. Several 

pull requests, however, are missing issue reports and 

are not provided by users. We look for problem 

fixes in pull requests using keywords (for example, 

bug) (Section 3.1). 

3.3 Dataset 

TensorFlow was the topic of our investigation 

after it was discovered that TensorFlow APIs are 

used in over 36,000 GitHub projects. TensorFlow 

issues have affected thousands of apps as a result. 

To extract authorised pull requests, we follow the 

steps below: 

Step 1: Labels are used to group pull requests. 

Begin with closed pull requests marked "ready to 

pull" to avoid cosmetic bugs. Because completed 

pull requests earlier to a specific date aren't 

recognized, As described in Step 2, By scanning 

keywords, we collect samples from previously 

closed pull requests. 

Step 2: Using keywords to find pull requests. To 

track down people who fix problems in closed pull 

requests, they utilize phrases like "bug," "fix," and 

"error." We remove bug fixes that remedy surface 

issues by using terms like "typo" and "doc." We are 

actively examining the remaining bug fixes, 

carefully evaluating their pull requests in order to 

identify genuine changes. 

Step 3: It is extracted bug reports and code 

changes. Using postings and commit, for each of our 

bug fixes, they receive an issue report as well as 

code updates. Symptoms, root causes (RQ1), and 

locations are identified using the data collected and 

the pull requests that go with it (RQ2). 

3.4 Manual analysis 

All bugs in our investigation will be manually 

inspected by two graduate students. Both students 

are computer science majors who have worked with 

deep learning techniques before. They've created at 

least two Tensor-Flow-based deep learning 

application projects in the last two years (for 

example, business data mining) The two students 

examine the bugs separately and compare their 

findings, following our technique. They discuss 

TensorFlow bugs at our weekly group meetings 

when they can't agree on a solution. Our first-

agreement rate is 92.57 percent. By dividing the 

consistent examples by the total cases, the initial 

agreement rate is calculated. 

3.5 RQ1's protocol 

Using taxonomies from previous studies, they 

built their own taxonomy of bug symptoms and 

causes. If they identify a TensorFlow issue that 

meets these requirements, they expand their 

taxonomy by adding an existing category. 
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𝑙𝑖𝑓𝑡(𝐴, 𝐵) =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐴) ・ 𝑃(𝐵)
                   (2) 

 

P(A), P(B), and P(A+B) are the probabilities that 

a bug belongs to category A, B, or both A and B. 

(C). (AB). If the lift value is larger than one, a 

symptom is associated with a root cause; otherwise, 

it is not. 

3.6 Model and software reliability 

Software reliability modeling is a mathematical 

approach in which the parameter estimates used 

have a direct impact on software reliability and fault 

prediction accuracy. In the G-O software 

dependability model, this study will estimate the 

properties of a representative model. The cumulative 

failure rate of the software system was calculated to 

be: 

 

𝑚(𝑡)  =  𝑎(1 −  𝑒𝑏𝑡)                      (3) 

 

Where m (t) denotes the predicted function of 

the cumulative number of failures till time t, and a 

denotes the total rate of failure that the software 

expects to find when the test is completed. and b is a 

proportionality constant with a range of 0; and (0, 1). 

3.7 Fitness function construction 

Creating a suitable fitness function, or objective 

optimization function, and changing the 

parameterization problem into a function 

optimization problem is the key to using intelligent 

optimization algorithms to estimate the software 

reliability model. Based on the characteristics of the 

software reliability model and the least square 

approach, the fitness function generated is as 

follows: 

 

𝑓𝑖𝑡 =
√∑ [𝑚(𝑡𝑖)𝑚0(𝑡𝑖)]2𝑛

𝑖=1

𝑛
                   (4) 

 

where fit denotes the proportional difference 

between the observed and expected number of 

software failures. The lower the fit value, the more 

precise the model fitting and, as a result, the better 

the parameter estimate result. During the testing 

 

 
Figure. 2 The relationship between repair methods 

 
Figure. 3 The variety of programming languages that are 

available 

 

period, a total of m (ti) failures were discovered 

(0,ti). For the test period (0, ti), the model predicts a 

total of m0 failures (ti). The i-th failure happens at 

time ti. 

3.8 Bug category correlation 

Fig. 2 depicts the root causes and repair patterns. 

In this diagram, rectangles indicate fundamental 

causes. Mending patterns can be seen in the rounded 

rectangles. Repair patterns with less than three 

issues are not considered [21]. Correlations are 

represented by lines, and correlations with values 

larger than one are highlighted. We rule out isolated 

fixes since not all bug patches follow the same 

repair pattern. Fig. 2 depicts the following 

relationships: 

In conclusion, our gathered fixes yield ten repair 

templates. they discover two novel templates when 

compared to previous studies, Although the majority 

of the templates we found overlap with those 

already in use. 

The distribution is depicted in Fig. 3.  

3.9 Scheme of MR categorization 

The following criteria were checked for each 

MR in the chosen sample: 'phase identified,' 'defect 

kind,' "real defect position,' 'defect trigger,' and 

'barrier analysis details,' among others. 

Information about phase detection when it 

comes to finding problems sooner, it's critical to 

know when the defect was discovered. The flaw can 

be discovered in any of the ten process phases see 

Table 1 that the analyst chooses. The analyst may 

also explain why the problem was not identified 

earlier. 

Types of defects Implementation, interface, and 

external defects were split into three categories. 

There are a variety of fault kinds within each of 

these classes. 
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Figure. 4 Vulnerability analysis using automated root 

cause 

3.10 Automated root cause analysis of 

vulnerabilities 

To correctly fix the vulnerability, they must first 

determine the source of the problem and then apply 

the patch. To identify risky places, several 

investigations are being carried out [22]. Fault 

localisation, pattern-based evaluation, the three 

types of automated vulnerability root cause analysis 

approaches addressed in this section are and taint 

analysis show in Fig. 4. 

3.10.1. Fault localization 

Fault localization is a technique that uses test 

scenarios to determine the location of a vulnerability. 

To detect faults, four approaches can be used: 

similarity-based, statistics-based, artificial 

intelligence-based, and program analysis-based fault 

localization [23]. The frequency with which 

sentences are executed in both successful and 

unsuccessful tests is used in similarity-based fault 

localization.  

Statistics-based fault localization calculates the 

chance of discovering an alternate path while 

applying conditional probability to select one. When 

a program is transformed into a behavior graph 

using graph mining tools, the AI-based defect 

localization methodology is a method of looking for 

a subgraph. The program-based fault localisation 

technique computes the edges in the control-flow 

graph connecting questionable code blocks to assess 

the suspicion of a code block. 

 

𝑠𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠𝑛𝑒𝑠𝑠(𝑖)  

=  𝑓 𝑎𝑖𝑙𝑒𝑑(𝑖) 

/√(𝑡𝑜𝑡𝑎𝑙𝑓 𝑎𝑖𝑙𝑒𝑑 (𝑖))  × (𝑓 𝑎𝑖𝑙𝑒𝑑(𝑖)) + (𝑝𝑎𝑠𝑠𝑒𝑑(𝑖)) 

(5) 

3.10.2. Similarity analysis using signatures 

Similarity analysis based on signatures compares 

bug signatures to those of other software to see if the 

target software has the same signature [24]. 

Although there are numerous functions in source 

code, comparing code to binary has severe 

limitations, such involves code cloning based on 

functions, instructions, and code similarity analysis. 

The main issue is that each CPU architecture creates 

its own binary code. 

 

𝑆(𝑋, 𝑌) =
1

𝑛
∑ (𝑛

𝑖=1
𝑥𝑖−𝑋𝑛

∅𝑥
) (

𝑦𝑖−𝑌𝑛

∅𝑥
)           (6) 

 

If X axis is (xi, xn) and Y axis (yi, yn) 

 

Where ∅𝐺 = √∑ (𝑛
𝑖=1

𝐺𝑖−𝐺𝑛

𝑛
)2              (7) 

 

A number of multi-platform research have been 

conducted to address this issue, depending on 

whether a weak code pattern is explored with an 

intermediary language or a weak code similarity 

inquiry is compared with an object, different 

analysis approaches are used. Because the 

executable file generated is unique, various studies 

have been conducted to develop a multi-platform 

environment for pattern similarity analysis. 

4. Experimental result 

4.1 Root causes 

Table 1 summarizes the main findings from deep 

learning applications. Some of the issues they 

observed aren't found in deep learning libraries or 

are unusual. They discover problems like improper 

model parameters and structure inefficiency in 

TensorFlow applications, for example. Crashing 

accounts for 92% of TensorFlow difficulties, with 

performance bugs accounting for the remaining 8%. 

When we compare TensorFlow flaws to the 

distribution, we find that they are more diverse. 

4.2 Identifying crucial root issues that can be 

improved or eliminated 

The distributions of MRs by defect type were 

evaluated as a preparatory step in determining 

dominating contributions, with the result that type 

algorithm and type functionality flaws vastly 

outweighed all other defect kinds in Table 1. A close 

look into MRs with the defect types 'algorithm' and 

'functionality.' The discovery phase has been related 

to the MRs for the defect types "algorithm" or 

"functionality" and the defect class 

"implementation":  

The data demonstrates that more than 60% of 

faults are discovered late in the process, after 

systems development and system testing, for all  
 

defect classifications. The fact that the average is 

60% suggests that the remainder 40% of all MRs are 

typically diagnosed early show in Fig. 5 and Table 2. 
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Table 1. They display the results for all examined MRs as 

well as subgroups of MRs classed as "algorithm" or 

"functionality" flaws 

Defect 

type 

SW 

planni

ng 

(perce

nt) 

Integrati

on of 

software 

(percent) 

Integrati

on of 

systems 

(percent) 

System 

evaluati

on 

(percent

) 

All MRs 15 27 39 14 

Algorithm 2 32 78 13 

Functional

ity 

17 25 49 18 

All other 

MRs 

35 22 36 8 

 

 
Figure. 5 The results are given for all MRs examined, as 

well as "algorithm" or "functionality" defects in subsets 

of MRs 

 
Table 2. displays the percentage of components with 

faults of less than N 

Defect 

type 

Architec

ture 

High-

level 

plann

ing 

Design 

and 

specifica

tion of 

compon

ents 

(percent

) 

Implement

ation of 

component

s (percent) 

All MRs 5 7 29 38 

Algorith

m 

1 1 47 49 

Function

ality 

3 12 23 45 

 

Because the average is 60%, the remainder 40% 

of all MRs are usually detected early. The 

connections between numerous root causes were 

studied to this purpose. There is no unusual behavior 

associated with the phase when the problem was 

introduced. Algorithm flaws appear during the 

design, specification, and implementation phases, 

and they deviate greatly from the standard defect 

detection distribution. Functional defects arise at 

about the same rate as the average. 
 

 
Figure. 6 Software process compliance metric 

 
Table 3. The number of faulty versions developed for 

each amount of defects, the size of the testing procedure, 

and the number of test runs for each are all depicted in 

this diagram 

 Gzip Replace Space Total 

1 faults 21 33 37 98 

2 faults 179 179 179 539 

3 faults 419 419 419 1257 

4 faults 540 540 540 1620 

5 faults 540 540 540 1620 

6 faults 540 540 540 1620 

7 faults 540 540 540 1620 

 

 
Figure. 7 For each quantity of mistakes, test suite size, 

and test executions, the number of incorrect versions 

created is shown 

 

4.3 Interference with fault-location 

The ability of a fault to obstruct the location of 

another problem. The presence of a defect causes 

the fault-localization approach to be inefficient in 

locating another problem, which we define as fault-

localization interference. While small amounts of 

ineffectiveness may be overlooked by developers, 

Fault localization interference refers to any decrease 

in fault-localization efficacy induced by the 

presence of another defect.  In the example in Fig. 6, 

if either bug1 or bug2 had been deleted, the other 

would have been better located (as indicated by the 
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results after eliminating the test case failures that 

they generated, respectively). As a result, each issue 

caused fault localization interference for the other in 

this scenario. 

Failure clustering is a technique for 

troubleshooting numerous errors at the same time, 

while previous research implies that failure 

clustering can reduce interference, the addition of 

another automated technique adds to the 

computational and operational costs. Previous 

studies focused on the localizability of certain 

individual flaws; However, developers are 

frequently unaware of the number or nature of issues 

that lead to failures show in Fig. 7. In such cases, the 

ability to locate any problem could aid in an 

iterative debugging process that results in a fault-

free program show in Table 3. 

5. Conclusion 

While empirical research has been carried out to 

properly appreciate deep learning concerns, it has 

generally focused on defects in its applications, 

leaving the source of errors within a deep library 

largely unexplained. They investigate 202 

TensorFlow vulnerabilities in order to have a better 

understanding of them. Our findings suggest that (1) 

the causes are more essential than the symptoms; 

and the causes are more important than the 

symptoms.  (2) There are several similarities 

between regular software defects and TensorFlow 

bugs; (3) Inconsistent defects are widespread in 

other supporting components in contrast; API 

implementations with inadequate data formatting 

(dimension and type) are prone to problems. They 

hope to explore flaws in other deep-learning 

libraries in the future in order to obtain a deeper 

understanding of deep-learning framework issues, as 

well as develop automated ways for detecting 

defects in deep-learning libraries. Furthermore, they 

investigate repair patterns by focusing on source 

files while ignoring configuration files. Read issue 

reports and their solutions to learn more about deep 

learning issues. The runtime behaviors of some bugs 

are not hidden and are difficult to discover via static 

analysis. In the future, they plan to use dynamic 

analysis to investigate the runtime behavior of deep 

learning difficulties. In our upcoming research, we 

want to look at how many software modules actually 

have defects by including more projects that were 

created using various programming languages as 

well as industry-sponsored projects. Additionally, 

rather than estimating it from the module level, we 

are more interested in estimating the amount of 

flaws. 
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