
Received: June 15, 2022. Revised: July 22, 2022. 83

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.09

Inside A Deep Learning Library, the Symptoms, Causes, and Fixes for Bugs

Anjali C1* Julia Punitha Malar Dhas2 J. Amar Pratap Singh1

1Department of Computer Science and Engineering, Noorul Islam Centre for Higher Education,

Kumaracoil, Tamil Nadu, 629180, India
2Department of Computer Science and Engineering, Karunya Institute of Technology and Sciences,

Coimbatore, Tamil Nadu, 641114, India

* Corresponding author’s Email: anjalic0753@gmail.com

Abstract: Deep learning has become a popular study area in recent years. While deep learning software generates

tremendous positive results in some cases, faults in the programme can have fatal repercussions, in safety-critical

applications, this is extremely significant. Researchers have conducted various empirical investigations on defects in

deep learning systems to better understand the bug characteristic of deep learning software. Despite the fact that

these studies are useful, none of them investigate the problem in TensorFlow, a deep learning framework. They feel

that some fundamental concerns about deep learning library difficulties remain unsolved. The answers to these

questions are crucial and helpful because they constitute the underlying library of many deep learning endeavours.

Many deep learning initiatives are influenced by its flaws. In this paper we pre-process a dataset that is openly

accessible by performing data normalization and log transformation. To prepare the data input for the deep learning

model, we next undertake data modelling. Third, we send the modelled data to a deep neural network-based model

that was specifically created to forecast the number of faults. We test the suggested method on two well-known

datasets as well. The evaluation's findings show that the suggested strategy is reliable and can outperform cutting-

edge methods. The suggested approach enhances the squared correlation coefficient by more than 8% while, on

average, drastically reducing the mean square error by more than 14%.

Keywords: Bug analysis, Deep learning, Empirical study, Tensorflow.

1. Introduction

Deep learning has been a prominent study topic

in recent years, and academics have employed deep

learning approaches to solve challenges in a variety

of fields, including software analysis. Instead, then

recreating the wheel while developing deep learning

applications, programmers frequently rely on

existing libraries. Because deep learning libraries

are so common, one bug in one can propagate to

bugs in many applications, which can have severe

implications. For example, due to faults in their deep

learning algorithms, A Google self-driving car

collided with a Tesla automobile. Researchers have

undertaken empirical investigations on deep

learning programme faults to better understand them.

in particular, conduct an empirical investigation to

better understand TensorFlow application issues.

In this method we proposed and implemented

using tensor Flow applications are programs that

leverage TensorFlow's APIs. Rather than focusing

on TensorFlow applications, look into other deep

learning tools like Caffe and Torch. Although their

findings are beneficial in improving the quality of a

single application, we are unaware of any other

studies that have looked into the problems found in

popular deep learning frameworks. Although

TensorFlow flaws affect thousands of applications,

many questions about these bugs remain

unanswered. Numerous applications will benefit

from a deeper understanding of such issues,

However, because TensorFlow combines numerous

sophisticated algorithms and is implemented in

multiple programming languages, conducting the

Received: June 15, 2022. Revised: July 22, 2022. 84

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.09

needed empirical study is difficult. In earlier work,

we conducted the first empirical analysis of

TensorFlow flaws. In comparison to this work, our

enhanced version adds two new features: Previously,

they had just looked at the symptoms and causes of

difficulties; however, in this expanded edition, we

looked at bug fixes as well as a few linguistic flaws.

2. Related work

Programmers frequently base their deep learning

applications on established libraries rather than

creating the wheel. Tensor-Flow is the most well-

liked of these libraries, and a recent analysis reveals

that more than 36,000 Git Hub projects are based on

Tensor Flow. Due to their widespread use, deep

learning libraries are prone to defects that might

spread to several applications and have fatal results.

Deep learning has become a popular study area in

recent years. While deep learning software generates

tremendous positive results in some cases, faults in

the programme can have fatal repercussions,

especially when it is utilised in safety-critical

applications [1]. From embedded systems to smart

homes, IoT systems are fast gaining traction.

Despite their increasing popularity and usage, no

comprehensive study has been conducted to evaluate

IoT development problems from the perspective of

practitioners [2]. We introduce ARCANA, a novel

approach, in this paper. We use ARCANA to figure

out why an autoencoder is reporting anomalies. The

reconstruction process is portrayed as an

optimization issue with the goal of considerably

reducing anomalous traits from an anomaly [3].

Deep neural networks (DNNs) are increasingly

being used in software systems.

DNNs have been demonstrated to have problems

in the past. Due to a lack of understanding of model

behaviour, conventional debugging tools do not

assist localising DNN issues [4]. A rising number of

mobile software applications are incorporating deep

learning (DL). Mobile DL apps combine large-scale

data DL models with DL programs in a variety of

software apps [5]. A security mentality must be

applied to all software engineering methods in order

to produce secure software [6]. Statistical fault

localization is a simple technique for identifying

candidates for defective code places fast [7-8].

Researchers have conducted empirical

investigations on these flaws in order to better

understand deep learning program bugs. Conduct an

empirical investigation in particular to comprehend

Tensor Flow applications' bugs. A program that uses

Tensor Flow's APIs is referred to as an application

of Tensor Flow in this context. In today's

manufacturing operations, monitoring rotating

machinery is critical. Several machine learning and

deep learning-based modules have demonstrated

good defect identification and diagnosis outcomes

[9-11]. Flaky tests have received a lot of attention in

recent years, and with good reason. These tests are

time and money consuming, and they reduce the

reliability of the test scripts and build processes that

they affect [12, 13]. The automatically generated

crash reports can examine the root of the fault that

caused the crash (also known as the crashing fault),

which is an important aspect of software quality

assurance [14-16].

In this method we proposed and implemented

using subjective traditional procedures have been

employed often in recent decades [17]. To ascertain

the cause of the recall, i.e., the defect type, each

incidence was studied using root cause analysis [18].

These diagnosticians frequently work without

adequate user instructions or comprehensive topic

knowledge. In literature and practice, software

problem diagnosis as performed in the field is

underrepresented [19, 20].

A contribution of this paper is

• In contrast to our previous work, which

solely examined bug symptoms and causes,

the extended version examined both bug

fixes and bugs that occurred across deep

learning method.

• We compared the symptoms, causes, and

repair patterns we had found. We discover

that TensorFlow contains type confusions

depending on the comparison, which the

earlier studies had not mentioned.

• Additionally, we discover that TensorFlow

suffers dimension mismatches just like deep

learning applications. Ten repair templates

are found in Tensor Flow problems. We

discover that correcting deep learning

defects takes substantially the same repair

steps as fixing bugs in other types of

projects, despite the fact that fixing

TensorFlow bugs requires specialized

knowledge. Additionally shown is the

relationship between typical mending

patterns and their root causes.

3. Proposed method

3.1 Tensorflow implementation

The calculations and steps of a machine learning

process are represented by dataflow graphs in

TensorFlow. Each node in a dataflow graph

represents a single mathematical operation (for

Received: June 15, 2022. Revised: July 22, 2022. 85

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.09

Figure. 1 TensorFlow implementation

example, matrix multiplication), and each edge

indicates a data dependency, as shown in Eq. (1).

𝑑 = √∑ (𝑥𝑖 − 𝑦𝑖)𝑛
𝑖=1 2 (1)

The data format of data exchanged between two

nodes at each edge is defined by a tensor (n-

dimensional arrays) show in Fig. 1.

3.2 The tensorflow bug remediation process

TensorFlow's source code is available on

GitHub, where users can report bugs and track

commits. When a user faces problems (such as a

bug), she often submits an issue, which in this

article is referred to as a bug report. This report's

contents are used to figure out what's wrong. The

bug report includes basic information like the

operating system, the broken TensorFlow version,

and code samples that can be used to reproduce the

issue. Aside from that, the bug report includes a

summary that details the problem. In addition, the

reporter may be able to offer a practical bug fix.

After getting an error, TensorFlow developers

explain the possible causes and how to fix them.

Developers can also refer to previous bug reports

and pull requests when discussing a more complex

bug. To label bug reports as "resolved" or "fixed,"

other open-source communities (e.g., Jira) employ

more advanced issue trackers. On the other hand,

GitHub's issue tracker is more basic, and its status is

usually erroneous.

While labels on bug reports do not represent the

state of an issue, A pull request marked "ready to

pull" has been fixed and is ready to combine. The

label makes it simple to spot fixed pull requests.

Some pull requests include links to associated bug

reports, making finding bugs much easier. Several

pull requests, however, are missing issue reports and

are not provided by users. We look for problem

fixes in pull requests using keywords (for example,

bug) (Section 3.1).

3.3 Dataset

TensorFlow was the topic of our investigation

after it was discovered that TensorFlow APIs are

used in over 36,000 GitHub projects. TensorFlow

issues have affected thousands of apps as a result.

To extract authorised pull requests, we follow the

steps below:

Step 1: Labels are used to group pull requests.

Begin with closed pull requests marked "ready to

pull" to avoid cosmetic bugs. Because completed

pull requests earlier to a specific date aren't

recognized, As described in Step 2, By scanning

keywords, we collect samples from previously

closed pull requests.

Step 2: Using keywords to find pull requests. To

track down people who fix problems in closed pull

requests, they utilize phrases like "bug," "fix," and

"error." We remove bug fixes that remedy surface

issues by using terms like "typo" and "doc." We are

actively examining the remaining bug fixes,

carefully evaluating their pull requests in order to

identify genuine changes.

Step 3: It is extracted bug reports and code

changes. Using postings and commit, for each of our

bug fixes, they receive an issue report as well as

code updates. Symptoms, root causes (RQ1), and

locations are identified using the data collected and

the pull requests that go with it (RQ2).

3.4 Manual analysis

All bugs in our investigation will be manually

inspected by two graduate students. Both students

are computer science majors who have worked with

deep learning techniques before. They've created at

least two Tensor-Flow-based deep learning

application projects in the last two years (for

example, business data mining) The two students

examine the bugs separately and compare their

findings, following our technique. They discuss

TensorFlow bugs at our weekly group meetings

when they can't agree on a solution. Our first-

agreement rate is 92.57 percent. By dividing the

consistent examples by the total cases, the initial

agreement rate is calculated.

3.5 RQ1's protocol

Using taxonomies from previous studies, they

built their own taxonomy of bug symptoms and

causes. If they identify a TensorFlow issue that

meets these requirements, they expand their

taxonomy by adding an existing category.

Received: June 15, 2022. Revised: July 22, 2022. 86

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.09

𝑙𝑖𝑓𝑡(𝐴, 𝐵) =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐴) ・ 𝑃(𝐵)
 (2)

P(A), P(B), and P(A+B) are the probabilities that

a bug belongs to category A, B, or both A and B.

(C). (AB). If the lift value is larger than one, a

symptom is associated with a root cause; otherwise,

it is not.

3.6 Model and software reliability

Software reliability modeling is a mathematical

approach in which the parameter estimates used

have a direct impact on software reliability and fault

prediction accuracy. In the G-O software

dependability model, this study will estimate the

properties of a representative model. The cumulative

failure rate of the software system was calculated to

be:

𝑚(𝑡) = 𝑎(1 − 𝑒𝑏𝑡) (3)

Where m (t) denotes the predicted function of

the cumulative number of failures till time t, and a

denotes the total rate of failure that the software

expects to find when the test is completed. and b is a

proportionality constant with a range of 0; and (0, 1).

3.7 Fitness function construction

Creating a suitable fitness function, or objective

optimization function, and changing the

parameterization problem into a function

optimization problem is the key to using intelligent

optimization algorithms to estimate the software

reliability model. Based on the characteristics of the

software reliability model and the least square

approach, the fitness function generated is as

follows:

𝑓𝑖𝑡 =
√∑ [𝑚(𝑡𝑖)𝑚0(𝑡𝑖)]2𝑛

𝑖=1

𝑛
 (4)

where fit denotes the proportional difference

between the observed and expected number of

software failures. The lower the fit value, the more

precise the model fitting and, as a result, the better

the parameter estimate result. During the testing

Figure. 2 The relationship between repair methods

Figure. 3 The variety of programming languages that are

available

period, a total of m (ti) failures were discovered

(0,ti). For the test period (0, ti), the model predicts a

total of m0 failures (ti). The i-th failure happens at

time ti.

3.8 Bug category correlation

Fig. 2 depicts the root causes and repair patterns.

In this diagram, rectangles indicate fundamental

causes. Mending patterns can be seen in the rounded

rectangles. Repair patterns with less than three

issues are not considered [21]. Correlations are

represented by lines, and correlations with values

larger than one are highlighted. We rule out isolated

fixes since not all bug patches follow the same

repair pattern. Fig. 2 depicts the following

relationships:

In conclusion, our gathered fixes yield ten repair

templates. they discover two novel templates when

compared to previous studies, Although the majority

of the templates we found overlap with those

already in use.

The distribution is depicted in Fig. 3.

3.9 Scheme of MR categorization

The following criteria were checked for each

MR in the chosen sample: 'phase identified,' 'defect

kind,' "real defect position,' 'defect trigger,' and

'barrier analysis details,' among others.

Information about phase detection when it

comes to finding problems sooner, it's critical to

know when the defect was discovered. The flaw can

be discovered in any of the ten process phases see

Table 1 that the analyst chooses. The analyst may

also explain why the problem was not identified

earlier.

Types of defects Implementation, interface, and

external defects were split into three categories.

There are a variety of fault kinds within each of

these classes.

Received: June 15, 2022. Revised: July 22, 2022. 87

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.09

Figure. 4 Vulnerability analysis using automated root

cause

3.10 Automated root cause analysis of

vulnerabilities

To correctly fix the vulnerability, they must first

determine the source of the problem and then apply

the patch. To identify risky places, several

investigations are being carried out [22]. Fault

localisation, pattern-based evaluation, the three

types of automated vulnerability root cause analysis

approaches addressed in this section are and taint

analysis show in Fig. 4.

3.10.1. Fault localization

Fault localization is a technique that uses test

scenarios to determine the location of a vulnerability.

To detect faults, four approaches can be used:

similarity-based, statistics-based, artificial

intelligence-based, and program analysis-based fault

localization [23]. The frequency with which

sentences are executed in both successful and

unsuccessful tests is used in similarity-based fault

localization.

Statistics-based fault localization calculates the

chance of discovering an alternate path while

applying conditional probability to select one. When

a program is transformed into a behavior graph

using graph mining tools, the AI-based defect

localization methodology is a method of looking for

a subgraph. The program-based fault localisation

technique computes the edges in the control-flow

graph connecting questionable code blocks to assess

the suspicion of a code block.

𝑠𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠𝑛𝑒𝑠𝑠(𝑖)

= 𝑓 𝑎𝑖𝑙𝑒𝑑(𝑖)

/√(𝑡𝑜𝑡𝑎𝑙𝑓 𝑎𝑖𝑙𝑒𝑑 (𝑖)) × (𝑓 𝑎𝑖𝑙𝑒𝑑(𝑖)) + (𝑝𝑎𝑠𝑠𝑒𝑑(𝑖))

(5)

3.10.2. Similarity analysis using signatures

Similarity analysis based on signatures compares

bug signatures to those of other software to see if the

target software has the same signature [24].

Although there are numerous functions in source

code, comparing code to binary has severe

limitations, such involves code cloning based on

functions, instructions, and code similarity analysis.

The main issue is that each CPU architecture creates

its own binary code.

𝑆(𝑋, 𝑌) =
1

𝑛
∑ (𝑛

𝑖=1
𝑥𝑖−𝑋𝑛

∅𝑥
) (

𝑦𝑖−𝑌𝑛

∅𝑥
) (6)

If X axis is (xi, xn) and Y axis (yi, yn)

Where ∅𝐺 = √∑ (𝑛
𝑖=1

𝐺𝑖−𝐺𝑛

𝑛
)2 (7)

A number of multi-platform research have been

conducted to address this issue, depending on

whether a weak code pattern is explored with an

intermediary language or a weak code similarity

inquiry is compared with an object, different

analysis approaches are used. Because the

executable file generated is unique, various studies

have been conducted to develop a multi-platform

environment for pattern similarity analysis.

4. Experimental result

4.1 Root causes

Table 1 summarizes the main findings from deep

learning applications. Some of the issues they

observed aren't found in deep learning libraries or

are unusual. They discover problems like improper

model parameters and structure inefficiency in

TensorFlow applications, for example. Crashing

accounts for 92% of TensorFlow difficulties, with

performance bugs accounting for the remaining 8%.

When we compare TensorFlow flaws to the

distribution, we find that they are more diverse.

4.2 Identifying crucial root issues that can be

improved or eliminated

The distributions of MRs by defect type were

evaluated as a preparatory step in determining

dominating contributions, with the result that type

algorithm and type functionality flaws vastly

outweighed all other defect kinds in Table 1. A close

look into MRs with the defect types 'algorithm' and

'functionality.' The discovery phase has been related

to the MRs for the defect types "algorithm" or

"functionality" and the defect class

"implementation":

The data demonstrates that more than 60% of

faults are discovered late in the process, after

systems development and system testing, for all

defect classifications. The fact that the average is

60% suggests that the remainder 40% of all MRs are

typically diagnosed early show in Fig. 5 and Table 2.

Received: June 15, 2022. Revised: July 22, 2022. 88

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.09

Table 1. They display the results for all examined MRs as

well as subgroups of MRs classed as "algorithm" or

"functionality" flaws

Defect

type

SW

planni

ng

(perce

nt)

Integrati

on of

software

(percent)

Integrati

on of

systems

(percent)

System

evaluati

on

(percent

)

All MRs 15 27 39 14

Algorithm 2 32 78 13

Functional

ity

17 25 49 18

All other

MRs

35 22 36 8

Figure. 5 The results are given for all MRs examined, as

well as "algorithm" or "functionality" defects in subsets

of MRs

Table 2. displays the percentage of components with

faults of less than N

Defect

type

Architec

ture

High-

level

plann

ing

Design

and

specifica

tion of

compon

ents

(percent

)

Implement

ation of

component

s (percent)

All MRs 5 7 29 38

Algorith

m

1 1 47 49

Function

ality

3 12 23 45

Because the average is 60%, the remainder 40%

of all MRs are usually detected early. The

connections between numerous root causes were

studied to this purpose. There is no unusual behavior

associated with the phase when the problem was

introduced. Algorithm flaws appear during the

design, specification, and implementation phases,

and they deviate greatly from the standard defect

detection distribution. Functional defects arise at

about the same rate as the average.

Figure. 6 Software process compliance metric

Table 3. The number of faulty versions developed for

each amount of defects, the size of the testing procedure,

and the number of test runs for each are all depicted in

this diagram

 Gzip Replace Space Total

1 faults 21 33 37 98

2 faults 179 179 179 539

3 faults 419 419 419 1257

4 faults 540 540 540 1620

5 faults 540 540 540 1620

6 faults 540 540 540 1620

7 faults 540 540 540 1620

Figure. 7 For each quantity of mistakes, test suite size,

and test executions, the number of incorrect versions

created is shown

4.3 Interference with fault-location

The ability of a fault to obstruct the location of

another problem. The presence of a defect causes

the fault-localization approach to be inefficient in

locating another problem, which we define as fault-

localization interference. While small amounts of

ineffectiveness may be overlooked by developers,

Fault localization interference refers to any decrease

in fault-localization efficacy induced by the

presence of another defect. In the example in Fig. 6,

if either bug1 or bug2 had been deleted, the other

would have been better located (as indicated by the

Received: June 15, 2022. Revised: July 22, 2022. 89

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.09

results after eliminating the test case failures that

they generated, respectively). As a result, each issue

caused fault localization interference for the other in

this scenario.

Failure clustering is a technique for

troubleshooting numerous errors at the same time,

while previous research implies that failure

clustering can reduce interference, the addition of

another automated technique adds to the

computational and operational costs. Previous

studies focused on the localizability of certain

individual flaws; However, developers are

frequently unaware of the number or nature of issues

that lead to failures show in Fig. 7. In such cases, the

ability to locate any problem could aid in an

iterative debugging process that results in a fault-

free program show in Table 3.

5. Conclusion

While empirical research has been carried out to

properly appreciate deep learning concerns, it has

generally focused on defects in its applications,

leaving the source of errors within a deep library

largely unexplained. They investigate 202

TensorFlow vulnerabilities in order to have a better

understanding of them. Our findings suggest that (1)

the causes are more essential than the symptoms;

and the causes are more important than the

symptoms. (2) There are several similarities

between regular software defects and TensorFlow

bugs; (3) Inconsistent defects are widespread in

other supporting components in contrast; API

implementations with inadequate data formatting

(dimension and type) are prone to problems. They

hope to explore flaws in other deep-learning

libraries in the future in order to obtain a deeper

understanding of deep-learning framework issues, as

well as develop automated ways for detecting

defects in deep-learning libraries. Furthermore, they

investigate repair patterns by focusing on source

files while ignoring configuration files. Read issue

reports and their solutions to learn more about deep

learning issues. The runtime behaviors of some bugs

are not hidden and are difficult to discover via static

analysis. In the future, they plan to use dynamic

analysis to investigate the runtime behavior of deep

learning difficulties. In our upcoming research, we

want to look at how many software modules actually

have defects by including more projects that were

created using various programming languages as

well as industry-sponsored projects. Additionally,

rather than estimating it from the module level, we

are more interested in estimating the amount of

flaws.

Conflicts of Interest

Authors do not have any conflicts.

Author Contributions

The Paper conceptualization, methodology,

software, validation, formal analysis, investigation,

resources, data curation, writing—original draft

preparation, writing—review and editing have been

done by 1st author. The visualization, supervision

have been done by 2nd author. The project

administration has been done by 3rd author.

Acknowledgments

The Author with a deep sense of gratitude would

thank the supervisor for his guidance and constant

support rendered during this research.

References

[1] A. Makhshari and A. Mesbah, “IoT Bugs and

Development Challenges”, In: Proc. of the

2021 IEEE/ACM 43rd International

Conference on Software Engineering, pp. 460-

472, 2021.

[2] L. Jia, H. Zhong, X. Wang, L. Huang, and X.

Lu, “The Symptoms, Causes, And Repairs of

Bugs Inside a Deep Learning Library”, Journal

of Systems and Software, Vol. 177, p. 110935,

2021.

[3] C. M. Roelofs, M. A. Lutz, S. Faulstich, and S.

Vogt, “Autoencoder-Based Anomaly Root

Cause Analysis for Wind Turbines”, Energy

and AI, Vol. 4, p. 100065, 2021.

[4] M. Wardat, W. Le, and H. Rajan,

“DeepLocalize: Fault Localization for Deep

Neural Networks”, In: Proc. of the 2021

IEEE/ACM 43rd International Conference on

Software Engineering, pp. 251-262, 2021.

[5] Z. Chen, H. Yao, Y. Lou, Y. Cao, Y. Liu, H.

Wang, and X. Liu, “An Empirical Study on

Deployment Faults of Deep Learning Based

Mobile Applications”, In: Proc. of the 2021

IEEE/ACM 43rd International Conference on

Software Engineering, pp. 674-685, 2021.

[6] S. O. Slim, M. M. Elfattah, A. Atia, and M. S.

M. Mostafa, “IoT System based on Parameter

Optimization of Deep Learning using Genetic

Algorithm”, International Journal of Intelligent

Engineering and Systems, Vol. 14, No. 2, pp.

220-235, 2021, doi:

10.22266/ijies2021.0430.20.

[7] R. R. Althar and D. Samanta, “The Realist

Approach for Evaluation of Computational

Intelligence in Software Engineering”,

Received: June 15, 2022. Revised: July 22, 2022. 90

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.09

Innovations in Systems and Software

Engineering, Vol. 17, No. 1, pp. 17-27, 2021.

[8] E. Soremekun, L. Kirschner, M. Böhme, and A.

Zeller, “Locating Faults with Program Slicing:

An Empirical Analysis”, Empirical Software

Engineering, Vol. 26, No. 3, pp. 1-45, 2021.

[9] A. Romano, Z. Song, S. Grandhi, W. Yang, and

W. Wang, “An Empirical Analysis of Ui-Based

Flaky Tests”, In: Proc. of the 2021 IEEE/ACM

43rd International Conference on Software

Engineering, pp. 1585-1597, 2021.

[10] Z. Xu, T. Zhang, J. Keung, M. Yan, X. Luo, X.

Zhang, and Y. Tang, “Feature Selection and

Embedding Based Cross Project Framework for

Identifying Crashing Fault Residence”,

Information and Software Technology, Vol. 131,

p. 106452, 2021.

[11] T. Yuan, G. Li, J. Lu, C. Liu, L. Li, and J. Xue,

“GoBench: A Benchmark Suite of Real-World

Go Concurrency Bugs”, In: Proc. of the 2021

IEEE/ACM International Symposium on Code

Generation and Optimization, pp. 187-199,

2021.

[12] X. Lei, P. Sandborn, R. Bakhshi, A. K. Pour,

and N. Goudarzi, “PHM Based Predictive

Maintenance Optimization for Offshore Wind

Farms”, In: Proc. of the 2015 IEEE Conference

on Prognostics and Health Management, pp. 1-

8, 2015.

[13] A. Stetco, F. Dinmohammadi, X. Zhao, V.

Robu, D. Flynn, M. Barnes, and G. Nenadic,

“Machine Learning Methods for Wind Turbine

Condition Monitoring: A Review”, Renewable

Energy, Vol. 133, pp. 620-635, 2019.

[14] G. Helbing and M. Ritter, “Deep Learning for

Fault Detection in Wind Turbines”, Renewable

and Sustainable Energy Reviews, Vol. 98, pp.

189-198, 2018.

[15] R. Chalapathy and S. Chawla, “Deep Learning

for Anomaly Detection: A Survey”, arXiv

Preprint arXiv:1901.03407, 2019.

[16] M. Jeevanantham and J. Jones, “Extension of

Deep Learning Based Feature Envy Detection

for Misplaced Fields and Methods”,

International Journal of Intelligent Engineering

and Systems, Vol. 15, No. 1, pp. 563-574, 2022,

doi: 10.22266/ijies2022.0228.51.

[17] M. A. Lutz, S. Vogt, V. Berkhout, S. Faulstich,

S. Dienst, U. Steinmetz, and A. Ortega,

“Evaluation of Anomaly Detection of an

Autoencoder Based on Maintenace Information

and SCADA-Data”, Energies, Vol. 13, No. 5, p.

1063, 2020.

[18] N. Renström, P. Bangalore, and E. Highcock,

“System-Wide Anomaly Detection in Wind

Turbines using Deep Autoencoders”,

Renewable Energy, Vol. 157, pp. 647-659,

2020.

[19] M. Aurisicchio, R. Bracewell, and B. L. Hooey,

“Rationale Mapping and Functional Modelling

Enhanced Root Cause Analysis”, Safety

Science, Vol. 85, pp. 241-257, 2016.

[20] D. Ballabio, F. Grisoni, and R. Todeschini,

“Multivariate Comparison of Classification

Performance Measures”, Chemometrics and

Intelligent Laboratory Systems, Vol. 174, pp.

33-44, 2018.

[21] B. Boehmke and B. Greenwell, Hands-on

Machine Learning with R, 1st Ed., Chapman

and Hall/CRC, 2019.

[22] B. Brown, M. Chui, and J. Manyika, “Are You

Ready for the Era of Big Data”, McKinsey

Quarterly, Vol. 4, No. 1, pp. 24-35, 2011.

[23] Y. H. Chang, C. H. Yeh, and Y. W. Chang, “A

New Method Selection Approach for Fuzzy

Group Multicriteria Decision Making”, Applied

Soft Computing, Vol. 13, No. 4, pp. 2179-2187,

2013.

[24] H. Suryotrisongko and Y. Musashi, “Hybrid

Quantum Deep Learning and Variational

Quantum Classifier-Based Model for Botnet

DGA Attack Detection”, International Journal

of Intelligent Engineering and Systems, Vol. 15,

No. 3, pp. 215-224, 2022, doi:

10.22266/ijies2022.0630.18.

