
Received: April 12, 2022. Revised: June 28, 2022. 353

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.31

Multi-level Hyper-Heuristic for Combinatorial Optimization Problems

Ahmed Kafafy1* Asmaa Awaad2 Nancy El-Hefnawy3 Osama Abdel Raouf2

1Operations Research & DSS Dept., Faculty of Computers and Information, Menoufia University, Menoufia, Egypt

2Faculty of Artificial intelligence, Menoufia University, Menoufia, Egypt
3Faculty of Computers and Information, Tanta University, Tanta, Egypt

* Corresponding author’s Email: ahmedkafafy80@gmail.com

Abstract: Hyper-heuristics are considered as one of the most popular search methods which can solve NP-hard

problems. They aim to achieve level of generality of search techniques for solving a wide variety of problem domains.

Hyper-heuristic framework involves two levels, high-level, and low-level heuristics. The high-level heuristic is

responsible for selecting and applying an appropriate low-level heuristic to generate solutions and deciding whether to

accept or reject the new solution. Low-level heuristics are a set of problem-specific heuristics. In this paper, we propose

to improve the performance through adding a new level strategy to the hyper-heuristic framework. The highest-level

strategy adopts the roulette wheel selection mechanism to select the appropriate hyper-heuristic according to its

performance during the search process. The highest-level strategy selects the appropriate algorithm from a predefined

set of hyper-heuristic algorithms to improve the generated solution. The performance of the proposed approach has

been compared with one of the most recent methods as well as with other hyper-heuristics that used as components of

the proposed approach. The results have been carried on six of commonly used benchmark datasets. The results show

the effectiveness of the proposed framework. Hence it outperforms the other methods in five of the six benchmarks.

Keywords: Hyper-heuristic, Multilevel, Combinatorial Optimization problems.

1. Introduction

Optimization problems is involved in many real-

life situations, the goal of an optimization problem is

to find the efficient solution from all feasible

solutions. According to the decision variables domain,

Optimization problems can be classified as discrete

or continuous [1]. The combinatorial optimization

problems (COPs) are a type of discrete optimization

problems. Combinatorial Optimization Problems

(COPs) arise in many real applications such as

production planning, scheduling, routing, and

resource allocation…etc. [2]. COPs have very large

and often difficulty-constrained search space which

makes the solution process more complicated, costly

to solve, and their modelling becomes a very complex

task [3]. So, Many COPs can be classified as NP-hard

problems. Exact methods guarantee the optimality.

But they are limited to small scale problems and fail

to find the optimal solution for complex problems in

a reasonable time [2]. Thus, adopting heuristics to

solve these problems for good enough solutions

within a realistic amount of time is a viable

alternative. Meta-heuristics adopt some high-level

control strategies which guarantee obtaining good

enough solutions within an acceptable time. Many

research works discuss this issue before [2, 4, 5].

Many meta-heuristics are adopted to tackle

optimization problems. They include Genetic

Algorithms (GA), Simulated Annealing (SA), Tabu

Search (TS), Particle Swarm Optimization (PSO),

differential evolution (DE), and GRASP…etc [6].

Selecting the most appropriate technique to the

problem with determining its optimal structure and

parameters are big challenges [7]. Trials and error

arise as the most straightforward method to get the

most suitable meta-heuristic and to identify its

optimal structure and parameter values. The

manually designed and tuned strategies are proposed

for many meta-heuristics to obtain promising results

in certain problem instances, in other cases, these

Received: April 12, 2022. Revised: June 28, 2022. 354

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.31

strategies typically fail to be improved to tackle other

problems. There have been several attempts to build

automatic search methodologies that can achieve

good results through many problem domains and/or

instances. One of these methodologies reflects in

hyper-heuristics [8]. They are search techniques that

can generate solutions for a wide range of problem

domains instead of using specific technique to each

problem instance. Instead of working in the solution

space, hyper-heuristics work in the heuristic search

space [3]. The essential role played by hyper-

heuristics is increasing the level of generality in

building frameworks based on the strengths and

identifying the limitations of various heuristics. This

role is often achieved during the search process

through adopting an automatic manner to select

and/or generate heuristics [8]. The most popular

hyper-heuristic framework involves both high-level

strategies and low-level heuristics (LLHs). The high-

level strategy combines a selection mechanism and

move acceptance methods. The selection mechanism

elects a heuristic from a predefined set of LLHs. and

applies it to a current solution. Then, a move

acceptance is adopted to decide either accepting or

rejecting the new solution. In case of accepting the

new solution, the current solution is replaced by the

new one, then the search proceeds iteratively.

However, the selection mechanism is applied during

the stages of the search process [9, 10]. The LLHs

include a set of heuristics for a particular problem

domain. They are also considered as constructive or

perturbative. The effectiveness of a hyper-heuristic

framework is typically related to how the high-level

strategy is designed [11]. Moreover, the different

combinations of selection mechanism and move

acceptance affects the overall performance of a

hyper-heuristic [11, 12]. Based on this concept, this

research tends to develop a new multilevel hyper-

heuristic framework that guarantees high level of

generality to tackle many problem domains. In this

work, the proposed multi-level hyper-heuristics

framework consists of three levels. The highest layer

is responsible for selecting among a set of algorithms

to solve a wide range of problem domains instead of

using specific algorithm to each problem. In this layer,

a roulette wheel-based selection mechanism for

selection among algorithms is adopted. The multi-

level hyper-heuristics framework is proposed to

support automatically designing and selecting a

hyper-heuristic algorithm at different stages during

the search process. This leads to increasing the

generality and self-adaptation by adopting the

appropriate algorithm in the suitable stage in the

search process. Furthermore, a set of Benchmarks

involves six problem domains from the Hyper-

heuristic Flexible (HyFlex) [13] are used to evaluate

the performance of the proposed approach.

Experimental results indicate that the proposed multi-

level hyper-heuristics are efficient. The rest of the

paper is presented as follows: after introduction,

Section 2 covers a review on hyper- heuristics,

reviews the selection hyper-heuristics related to this

work and introduces different move acceptance. The

components of the proposed multi-level hyper-

heuristic framework is described in Section 3. Section

4 presents the experimental results. Finally,

Conclusions and points for father research are

presented in Section 5.

2. Related work

Based on heuristic space, hyper-heuristics are

categorized into two classes, Selection hyper-

heuristics and generation hyper-heuristics [8, 14]. A

generation hyper-heuristic combines the existing

heuristic elements to produce new LLHs. Whereas a

selection hyper-heuristic decides which LLH should

be adopted at any search stage. Selection hyper-

heuristics class comprises most of the current hyper-

heuristic literature [15]. The main role of this class is

to integrate the benefits of multiple LLHs through

adopting the most convenient heuristic in the suitable

stage of the search process. The LLH selection

mechanism and the move acceptance are both

components of a classical selection hyper-heuristic

[11]. Simple Random, Greedy, Random Permutation,

Tabu Search, Choice Function, Harmony Search, and

Reinforcement Learning are some of the available

LLH selection methods [16, 17]. While move

acceptance strategies involves All Moves, Only

Improvement, Simulated Annealing, and Late

Acceptance [16]. The current move acceptance and

LLH selection approaches are summarized in Table 1

and 2.

Many studies on multi-stage selection hyper-

heuristics are provided. The authors in [25] proposed

an iterated multi-stage hyper-heuristic. They

integrate a Dominance-based heuristic selection

technique with a Random Descent hyper-heuristic

and Naive Move Acceptance (DRD). In dominance-

based selection, a greedy approach is adopted to find

the suitable LLHs while considering the trade-off

between the change in the objective value and the

number of iterations required to obtain that result. In

the second stage, a random descent hyper-heuristic is

adopted to improve the quality of the solution on

hand using the suitable LLHs from the previous stage.

If the second stage becomes stagnant, the first stage

is repeated with a certain probability to obtain a new

subset of LLHs.

Received: April 12, 2022. Revised: June 28, 2022. 355

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.31

Table 1. Move acceptance methods

Move

acceptanc

e

Relate

d

works

Description

Only

Improvement
[18] accepts only improving solution

All Moves [19] accepts all solution

Metropoli

s

acceptanc

e

[20]

Accepted the improving

solutions, and accepted worst one

with probability

Simulated

Annealing
[21]

Aanother type of Metropolis

acceptance

Late

Acceptanc

e

[22],

[23]

Better or equal quality solutions

are accepted solutions as

compared to previous iterations'

solutions.

Naive

Acceptanc

e

[24]

Always accepted the improving

solutions, and accepted worst

solutions within 50% probability

Table 2. Low level heuristics selection methods

LLH selection methods Related works

Simple random [22], [17]

Random Gradient [17]

Random Permutation [17]
Greedy [17]

Choice function [19], [17]

Tabu search [4], [26]

Harmony search (HM) [27]

Ant-inspired algorithms [28] [29]

Reinforcement learning [30], [31]

Multi-Armed Bandit (MAB)

selection

[32], [33]

Monte Carlo Tree Search (MCTS) [34]

Hidden Markov Model selection [35]

The authors in [36] introduce the Robinhood

hyper-heuristic (RHH) which combines three hyper-

heuristics. In RHH, a heuristic selection mechanism

based on round-robin strategy as well as three

acceptance criteria are employed. In the selection

mechanism, the mutational and ruin and re-create

heuristics are applied followed by crossover and hill

climbing heuristics. Each LLH is assigned equal time.

For move acceptance criteria, RHH adopts only

improving, improving or equal, and adaptive

acceptance methods in which the good move is

always accepted, and bad moves are accepted with a

modified probability. A fixed amount of time is

allowed for each hyper-heuristic in RHH. RHH

provides competitive results and outperforms the

hyper-heuristics (HyFlex).

Kheiri etal [9] proposed a technique called a

Hyper-heuristic Search Strategies and Timetabling

(HySST) which involves two stages, diversification,

and intensification stage. Diversification stage

combines The Simple Random mutational operator

with Adaptive Threshold move acceptance. Whereas

intensifications stage combines Simple Random hill-

climbing operator with Accept All Moves. HySST

switches between the two stages form one stage to the

other if no improvement is achieved in a given stage

after a certain duration. A set of real-world instances

are used to test HySST which competed at the three

rounds of the (ITC 2011) competition. HySST

achieve the best solutions for three instances in round

1 and took the second place in rounds 2 and 3.

In [37], the authors developed a hyper-heuristics

framework called “An iterated multi-stage selection

hyper-heuristic” (MSHH). During the search, MSHH

adopts several hyper-heuristics at different stages. In

MSHH, the authors provide a multi-stage level to

control transition and manage information exchange

among multiple hyper-heuristics. The hyper-

heuristics selection mechanism involves two stages.

In the first stage, a greedy strategy is applied to

determine the scores of set of LLH. In the next stage,

the roulette wheel is applied to select one of these

heuristics according to the assigned scores at each

step. An adaptive threshold move acceptance method

is used in both stages. According to the

experimentation, MSHH outperforms five other

hyper-heuristics on HyFlex problem domains.

In [38], a dynamic heuristic set selection (DHSS)

is introduced. In this approach, a dominant technique

is utilized to pick the active heuristic set at several

points in the hyper-heuristic lifecycle. The DHSS

approach was evaluated on the benchmark set for the

CHeSC cross-domain hyper-heuristic challenge.

DHSS improves the performance of the best

performing hyper-heuristic for this challenge.

From the previous discussion, its noted that the

previous techniques suffer from a limited level of

generality. They also lack the ability to effectively

utilize the suitable heuristic and/or acceptance criteria

in different search situations according to the

problem domain. Thus, the need to develop a

selection mechanism to control this process and to

effectively utilize the suitable heuristic and/or the

acceptance criteria is so critical.

In this work, a new multi-level hyper heuristic

framework with three levels is developed. The new

level consists of a selection mechanism for hyper-

heuristics and acceptance criteria algorithm. The

hyper-heuristic selection mechanism combines three

hyper-heuristics algorithms. The advantage of the

proposed algorithm is to combine different hyper-

heuristics with different selection strategies and

different acceptance criteria. This leads to high level

of generality and reusability. The proposed

framework is explained in detail in the next section.

Received: April 12, 2022. Revised: June 28, 2022. 356

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.31

3. The proposed framework

In this section, the frameworks of both traditional

hyper-heuristic and the proposed multilevel hyper-

heuristic are discussed in detail in the following

subsections.

3.1 The traditional hyper-heuristic framework

In classical hyper-heuristics, the framework

involves two layers, the first layer contains high-level

heuristics, and the second layer contains Low-Level

Heuristics (LLHs) as depicted in Fig. 1 (2nd Layer &

3rd Layer respectively). The high-level heuristic

employs two components, heuristic selection strategy,

and move acceptance methods. Traditional hyper-

heuristic framework works as follows: The high-level

heuristic selects one LLH from a set of predefined

heuristics that are related to the problem. Then, the

selected LLH is applied to the current solution to get

a new one. After that, the acceptance criteria are

applied to accept or reject the new solution. In case

of acceptance, the new solution replaces the current

one and the iteration is repeated until stopping criteria

is met.

3.2 The proposed multi-level hyper-heuristic

framework

The proposed framework provides multi-level

hyper-heuristic algorithms to automatically select

hyper-heuristic algorithms and acceptance algorithm

criteria. It adds a new upper level called the highest-

level heuristic as shown in Fig. 1. This layer

comprises two components, algorithm selection and

acceptance criteria. The main idea is to divide the

search process to a set of consecutive learning periods

(LP), the performance of each algorithm in the

current LP affects its probability of selection in the

next LP, these probabilities are gradually adapted

Figure. 1 Multilevel hyper heuristic framework

during evolution. In the initial LP, each algorithms

have equal chance to be chosen i.e Algk has a

probability Pk=1/K where K is the number of

algorithms in the pool. The proposed framework

works as shown in Fig. 2. In each LP, it starts with

selecting one algorithm from a pool of algorithms.

The selected algorithm is applied to generate a new

solution. Then, the new solution is evaluated. The

algorithm selects a heuristic from LLHs and applies

the selected heuristic then applies the acceptance

criteria to the solution to accept or reject. The selected

algorithm is rewarded based on the amount of

improvement. Then, a new iteration starts. The

reward of each algorithm is assigned as Eq. (1).

𝑅𝑒𝑤𝑎𝑟𝑑𝑘,𝑙 = {
𝑆𝑢𝑐𝑘,𝑙 + 𝜖 𝑖𝑓 𝑆𝑢𝑐𝑘,𝑙 > 0

𝜖 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (1)

Where 𝑆𝑢𝑐𝑘,𝑙 measures the success of algorithm

k to generate accepted solutions at learning period l,

and 𝜖 is a small value used to avoid null success and

to keep a small chance to select the algorithms that

achieves no improvement in the further iterations. We

apply two methods for rewarding algorithm. The first

method is to reward based on the amount of

improvement achieved by the new solutions

(𝑆𝑢𝑐𝑘,𝑙 registers the improvement amount) as in Eq.

(2) below. The second one is based on if there is any

improvement achieved by the solution or not

(𝑆𝑢𝑐𝑘,𝑙 = acceptance rate) as in Eq. (3).

𝑆𝑢𝑐𝑘,𝑙 = ∑ 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑠𝑘,𝑙𝑘 ∀ 𝑘, 𝑙 (2)

𝑆𝑢𝑐𝑘,𝑙 =
𝐴𝑐𝑐𝑝𝑡𝑒𝑑𝑘,𝑙

𝐼𝑛𝑣𝑜𝑘𝑒𝑠𝑘,𝑙
 ∀ 𝑘, 𝑙 (3)

Where 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑠𝑘,𝑙 is the amount of

improvement achieved by Algorithm k, 𝐴𝑐𝑐𝑝𝑡𝑒𝑑𝑘,𝑙is

the number of accepted solutions generated by

Algorithm k, and 𝐼𝑛𝑣𝑜𝑘𝑒𝑠𝑘,𝑙 represents the number

of invokes of Algorithm k during the LP l. Based on

the adopted rewarding method, there are two variants

of the proposed approach, ML-HHA that uses

improvement amount and ML-HHN which adopts the

acceptance rate. At the end of each LP l, the

probability for each algorithm 𝑘 is adapted based on

the value of reward to be used in the next LP l+1 as

in Eq. (4).

𝑃𝑘,𝑙+1 = 𝑅𝑒𝑤𝑎𝑟𝑑𝑘,𝑙 ∑ 𝑅𝑒𝑤𝑎𝑟𝑑𝑗,𝑙∀𝑗⁄ (4)

The proposed framework allows using multiple

hyper-heuristic algorithms interchangeably.

Adopting many algorithms enables us to comprise

Received: April 12, 2022. Revised: June 28, 2022. 357

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.31

Figure. 2 Highest-level strategy

Algorithm 1:The proposed Multilevel-hyper-heuristic

Begin:

1. 𝑆𝑒𝑡𝐻𝐻 ← {𝐻𝐻1, … , 𝐻𝐻𝐾} //define the hyper-

heuristics

2. 𝑃𝐻𝐻𝑘
←

1

𝐾
 ∀𝑘 ∈ {1, . . . , 𝐾} //Assign equal Prob.

3. 𝐶𝑢𝑟𝑆𝑜𝑙 ← 𝐼𝑛𝑡𝑖𝑎𝑙𝑧𝑒𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 // Initial

solution

4. While Stopping Criteria not met do //Main Loop

5. 𝐅𝐨𝐫 each iteration i in LP l // Learning Period

6. 𝐴𝑙g𝑖 ← RoulletWheelSelction(𝑆𝑒𝑡𝐻𝐻 , 𝑃𝐻𝐻𝑘
)

7. NewSol ← 𝐴𝑝𝑝𝑙𝑦𝐴𝑙𝑔𝑜𝑟𝑖𝑡𝑚(𝐴𝑙g𝑖, 𝐶𝑢𝑟𝑆𝑜𝑙)

8. 𝐶𝑢𝑟𝑆𝑜𝑙 ← 𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝐶𝑟𝑒𝑡𝑒𝑟𝑖𝑎(𝑁𝑒𝑤𝑆𝑜𝑙)

9. 𝑅𝑒𝑤𝑎𝑟𝑑𝑠 ←
𝐴𝑠𝑠𝑖𝑔𝑛𝑅𝑒𝑤𝑎𝑟𝑑𝑠(𝐴𝑙g𝑖, 𝐶𝑢𝑟𝑆𝑜𝑙, 𝑁𝑒𝑤𝑆𝑜𝑙)

10. 𝐄𝐧𝐝𝐅𝐨𝐫

11. 𝐅𝐨𝐫 𝒆𝒂𝒄𝒉 𝑘 ∈ {1, . . . , 𝐾} 𝐝𝐨:
12. 𝑅𝑒𝑤𝑎𝑟𝑑𝑘 ←

𝑈𝑝𝑑𝑎𝑡𝑒𝑅𝑒𝑤𝑎𝑟𝑑𝑠(𝑅𝑒𝑤𝑎𝑟𝑑𝑠) // Eq.1

13. 𝑃𝐻𝐻𝑘
← 𝑈𝑝𝑑𝑎𝑡𝑒𝑃𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑒𝑠(𝑅𝑒𝑤𝑎𝑟𝑑𝑘)

// Eq.4

14. 𝐄𝐧𝐝𝐅𝐨𝐫

15. 𝐄𝐧𝐝𝐖𝐡𝐢𝐥𝐞

𝐄𝐧𝐝.

advantages of each, such as to get powerful of

different heuristic selection mechanism. Also, this

enables us to control different sets of LLHs

cooperatively and different acceptance criteria. The

new Layer permits the switch among available hyper-

heuristics to automatically control the selection of

hyper-heuristics at different stages during the search

process. This achieves high level of generality and

reusability of the proposed framework. This work

introduces a multi-level hyper-heuristic that utilizing

three interacting hyper-heuristic algorithms

interchanged and controlled by the highest-level as

provided in Fig. 2. The details of the proposed

approach are described in pseudocode presented in

Alg. (1). The algorithm starts with a predefined set of

hyper-heuristic algorithms with equal chance for

selection (lines 1-2). The main loop of the algorithm

is starts from line-4 to the end. At each LP, The

Algorithms are randomly selected and rewarded

according to its performance for some iteration (lines

5 to10). In lines 6 to 7, a hyper-heuristic 𝐴𝑙g𝑖 is

randomly selected by roulette wheel and applied to

generate a new solution 𝑁𝑒𝑤𝑆𝑜𝑙 . Then, the

acceptance criteria is applied and in line 8, the

selected algorithm 𝐴𝑙g𝑖that improves the solution or

just remain same solution is rewarded by assigning a

reward value (line 9) using one of the two methods

mentioned above in Eq.2 and Eq.3. At the end of each

learning period 𝑙, the total reward for each algorithm

𝐴𝑙g𝑘 is calculated for each 𝑘 ∈ {1, . . . , 𝐾} (lines 12).

According to the total reward for each 𝐴𝑙g𝑘 in the

pool, the probability of each algorithm 𝐴𝑙g𝑘 is

recalculated based on Eq. (4) (line 13). The whole

process is repeated, and the roulette wheel selection

randomly selects a hyper-heuristic algorithm based

on the new probability associated with each

algorithm.

As mentioned before, the proposed framework

involves three layers, the highest-level strategy, high-

level heuristic, and the Low-level heuristics. These

layers are addressed as follows:

3.2.1. Highest level strategy

Highest level strategy is the upper hand of the

proposed framework to control high-level heuristic

and low-level heuristic. This layer consists of two

component, algorithm selection and acceptance

criteria as shown in Fig. 1 (1st Layer). This level

enables to achieve better performance than the

previous hyper-heuristics framework and improve

the level of generality of the proposed framework.

3.2.1.1. Algorithm selection

In this phase, the proposed approach begins with

selecting one from a pool contains three algorithms.

These algorithms are “An Iterated Multi-stage

Selection Hyper-heuristic” (MSHH) [37],

“Robinhood hyper-heuristic” (RHH) [36] , and

“Hyper-heuristic Search Strategies & Timetabling”

(HYSST) [9]. The roulette-wheel based selection is

adopted as an algorithm selection mechanism.

Initially all algorithms have the same probabilities.

These probabilities decide which algorithm is

selected at each decision point. After that, the

selected algorithm is applied to find a new solution.

Then, the new solution is evaluated, and the

algorithm is rewarded based on the solution obtained.

After each LP, the probabilities are adapted according

to the reward for each algorithm during the learning

period as shown in Fig. 2.

HyperHeur.Alg2

HyperHeur.Algn

HyperHeur.Alg1

Selecting

Algorithm

Apply selected

Algorithm

Acceptance

criteria

Reward

Algorithm

Stopping

criteria?

Update

Probabilities Yes

Yes

No

No

Pool

Stop

…

Received: April 12, 2022. Revised: June 28, 2022. 358

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.31

3.2.1.2. Acceptance criteria

The role of the acceptance criterion is to decides

accepting or rejecting the solution generated by the

selected algorithm [11]. Acceptance criterion accepts

only the same or better solution. Here, two ways to

reward the algorithm are proposed when a new

solution is accepted. First way is to get amount of

improvement in the solution and reward algorithm

based on this amount. The other way is to get number

of times that algorithm improves the solution or keep

solution same. These values are used when credit

assignment is applied to calculate the probability of

each algorithm.

3.2.2. High level heuristic

The High-Level heuristic comprises two

components, the first component selects a LLH, and

a second one for move acceptance to decide whether

the solution obtained by the selected LLH should be

accepted or not. At each stage in the search process,

heuristic selection module selects LLH to be applied.

The proposed approach is capable of handling new

problem domains without any modifications.

3.2.3. Low level heuristic

Low-level heuristics are used to create new

solutions. LLHs are usually specified for a certain

problem domain and therefore they are problem

specific [39].

4. Experimental results

Here, the experimental design and results are

presented in the following subsections.

4.1 Experimental design & parameters

The performance of the proposed multilevel

hyper-heuristic is verified against some of previously

proposed hyper-heuristics such as An Iterated Multi-

stage Selection Hyper-heuristic(MSHH) [37],

Robinhood hyper-heuristic(RHH) [36] and Hyper-

heuristic Search Strategies & Timetabling (HYSST)

[9] which used as a pool components in the proposed

framework. Besides, the recently developed in [38],

A dynamic heuristic set selection (DHSS) is also used

in verification. The performance of the compared

hyper-heuristics is evaluated across six HyFlex

problem domains. These Problems are MAX-SAT,

Bin Packing (BP), Flow-shop (FSH), Personnel

Scheduling (PS), VRP, and TSP. Each of these

problem domains has five instances which are

labelled as inst1 to inst5. The proposed approach and

its competitors are run on the five instances for each

problem domain about 31 different independent runs.

The number of iterations in each learning Period (l) is

assigned to 10.

4.2 Computational results

As discussed above, the proposed approach has

two different variants according to the adopted

rewarding strategy. The first variant named MHHA

adopts the reward strategy based on the amount of

improvement achieved by the algorithm during the

learning period. Whereas the second variant named

MHHN adopts the reward strategy based on the

number of accepted solutions generated by the

algorithm at the learning period. These two proposed

variants have experimented with the recently

developed DHSS [38] and the hyper-heuristics

components included in the pool at the highest-level,

denoted as RHH, MSHH, and HYSST. Table 3 (SAT

row) and Fig. 3 show the average results of SAT

domain. On average, the proposed two variants

MHHA and MHHN outperform the others RHH,

MSHH, HYSST and DHSS and this performance is

statistically significant for all instances in SAT

domain.

For Bin Packing (BP) problem domain, the

average results are shown in Table 3 and Fig. 4. It is

so clear the superiority of our proposals MHHA

against their competitors DHSS, RHH, MSHH and

HYSST for all problem instants. The other variant

MHHN achieves the second best performance in

these instances. Except in instance 5, the competitor

MSHH achieves the second best performance.

In the Flow-shop (FSH) problem domain, Table 3

(FSH row) and Fig. 5 show the average results.

Although DHSS outperforms the others in all test

instances, the proposed variant MHHA still have the

second-best performance in inst3 and inst5 and the 3rd

best performance in the other instance. Also, it is

noted that MSHH achieves the second-best

performance in ints1, inst2 and inst4. In this case, it

Figure. 3 Average results of SAT problem for 5 instances

0.0E+0

2.0E+1

4.0E+1

6.0E+1

8.0E+1

inst1 inst2 inst3 inst4 inst5

A
v
g SAT

RHH MSHH HYSST DHSS MHHN MHHA

Received: April 12, 2022. Revised: June 28, 2022. 359

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.31

Figure. 4 Average results of Bin-Packing for 5 instances

Figure. 5 Average results of Flow Shop for 5 instances

Figure. 6 Results of personnel schedule for 5 instances

seems MSHH more appropriate for FSH domain.

Adopting the proposed MLHH gives the chance to

other algorithms to be applied in some stages of the

search process. Thus, it may deteriorate the

performance in this problem compared to the pure

MSHH. This meaning can be observed from Fig. 10

which indicates the performance of each component

in each learning period during the search.

On the Personnel Scheduling (PS) problem

domains, Table 3 (PS row) and Fig. 6 show the

average results obtained over 31 independent runs.

From the average results, it is so clear the superiority

of the proposed MHHA variant in all test instances

over the other competitors except in inst4 in which

the proposed MHHN has the best performance. Thus,

our proposals outperform all other competitors in this

Figure. 7 Average results of Flow Shop for 5 instances

Figure. 8 Average results of Flow Shop for 5 instances

problem domain. For VRP problem domain, Table 3

(VRP row) and Fig. 7 depicts the average results.

Here, the best performance is achieved by the

proposed MHHA variant on all test instances. the

other proposed MHHN provide the second-best

performance in all test instances except instance 3 in

which RHH achieves the second-best performance.

On TSP problem domain, the proposed two

variants MHHA and MHHN manage to provide the

best average results in three instances from inst3 to

inst5 and achieves the second-best performance in the

first two instances inst1 and inst2. However, DHSS

shows the best performance on average in Inst1 and

inst2 as viewed in Table 3 (TSP row) and Fig. 8.

Fig. 9 and 10 show the competition among the

three hyper-heuristics components RHH, MSHH and

HYSST included in the pool for SAT and FSH

domains respectively. They show the probability of

selection for each hyper-heuristics in deferent

learning periods. In Fig. 9, the cooperation among

three hyper-heuristics algorithms involved in

algorithm pool in highest level is shown. This allows

the proposed MHHA & MHHN to achieve the best

performance in SAT five instances. In some cases,

after a few trials one algorithm win the competition

with some difference in some other cases there is a

variety of success in competition.

Finally, Fig. 11 shows the box plots of the

0.0E+0

2.0E-2

4.0E-2

6.0E-2

8.0E-2

inst1 inst2 inst3 inst4 inst5

A
v
g BP

RHH MSHH HYSST DHSS MHHN MHHA

0.0E+0

2.0E+3

4.0E+3

6.0E+3

8.0E+3

1.0E+4

inst1 inst2 inst3 inst4 inst5

A
v
g FSH

RHH MSHH HYSST DHSS MHHN MHHA

1.0E+0

1.0E+2

1.0E+4

inst1 inst2 inst3 inst4 inst5

A
v
g

PS

RHH MSHH HYSST DHSS MHHN MHHA

1.0E+0

1.0E+2

1.0E+4

1.0E+6

inst1 inst2 inst3 inst4 inst5

A
v
g

VRP

RHH MSHH HYSST DHSS MHHN MHHA

1.0E+0

1.0E+2

1.0E+4

1.0E+6

inst1 inst2 inst3 inst4 inst5
A

v
g TSP

RHH MSHH HYSST DHSS MHHN MHHA

Received: April 12, 2022. Revised: June 28, 2022. 360

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.31

Figure. 9 Competition among three algorithms in SAT

Figure. 10 Competition among three algorithms in FSH

Table 3. Average and standard deviations Result of All test problems over 31 independent runs

M
H

H
A

 S
D

7
.4

0
E

+
0

0

2
.9

6
E

+
0

0

3
.3

5
E

+
0

0

4
.6

5
E

+
0

0

1
.1

2
E

+
0

1

1
.2

8
E

-0
3

5
.5

1
E

-0
4

9
.3

0
E

-0
4

2
.0

0
E

-0
4

1
.0

8
E

-0
3

1
.1

9
E

+
0

1

1
.4

3
E

+
0

1

7
.9

3
E

+
0

0

9
.5

8
E

+
0

0

8
.2

1
E

+
0

0

1
.0

9
E

+
0

3

1
.6

4
E

+
0

3

8
.7

6
E

+
0

0

8
.7

7
E

+
0

0

4
.9

8
E

+
0

0

4
.4

2
E

+
0

2

4
.2

2
E

+
0

2

1
.6

4
E

+
0

1

3
.7

2
E

+
0

2

3
.4

8
E

+
0

4

1
.1

5
E

+
0

3

1
.8

2
E

+
0

1

1
.2

1
E

+
0

2

4
.0

2
E

+
0

1

4
.2

5
E

+
0

2

A
V

G

2
.9

5
E

+
0

1

2
.2

9
E

+
0

1

1
.1

2
E

+
0

1

1
.1

3
E

+
0

1

2
.3

1
E

+
0

1

8
.3

5
E

-0
3

2
.2

4
E

-0
2

2
.4

3
E

-0
2

5
.4

5
E

-0
3

3
.9

4
E

-0
3

6
.3

4
E

+
0

3

6
.4

1
E

+
0

3

6
.3

8
E

+
0

3

6
.4

6
E

+
0

3

1
.0

5
E

+
0

4

3
.5

4
E

+
0

3

1
.2

8
E

+
0

3

3
.1

0
E

+
0

1

3
.6

7
E

+
0

1

2
.8

5
E

+
0

1

2
.0

7
E

+
0

4

1
.3

6
E

+
0

4

5
.3

4
E

+
0

3

1
.4

5
E

+
0

4

1
.6

1
E

+
0

5

1
.1

3
E

+
0

5

6
.9

9
E

+
0

3

4
.3

1
E

+
0

4

9
.1

7
E

+
0

3

5
.9

8
E

+
0

4

M
H

H
N

 S
D

4
.4

2
E

+
0

0

3
.3

7
E

+
0

0

3
.1

0
E

+
0

0

7
.2

4
E

+
0

0

1
.1

8
E

+
0

1

1
.6

6
E

-0
3

6
.5

3
E

-0
4

9
.6

4
E

-0
4

5
.7

0
E

-0
4

1
.8

0
E

-0
3

1
.5

8
E

+
0

1

1
.2

3
E

+
0

1

1
.2

9
E

+
0

1

1
.6

1
E

+
0

1

1
.2

9
E

+
0

1

9
.4

2
E

+
0

3

8
.9

7
E

+
0

2

8
.4

0
E

+
0

0

2
.3

8
E

+
0

1

6
.9

7
E

+
0

0

3
.9

9
E

+
0

2

4
.9

2
E

+
0

2

2
.1

9
E

+
0

1

4
.7

6
E

+
0

2

2
.3

8
E

+
0

4

1
.0

0
E

+
0

3

2
.7

8
E

+
0

1

1
.7

4
E

+
0

2

3
.3

2
E

+
0

1

3
.6

0
E

+
0

2

A
V

G

2
.9

9
E

+
0

1

2
.4

9
E

+
0

1

1
.2

4
E

+
0

1

1
.3

3
E

+
0

1

2
.8

2
E

+
0

1

8
.7

1
E

-0
3

2
.2

7
E

-0
2

2
.5

1
E

-0
2

5
.4

8
E

-0
3

4
.7

7
E

-0
3

6
.3

5
E

+
0

3

6
.4

2
E

+
0

3

6
.4

0
E

+
0

3

6
.4

8
E

+
0

3

1
.0

6
E

+
0

4

4
.9

6
E

+
0

3

1
.1

0
E

+
0

3

2
.8

9
E

+
0

1

4
.0

3
E

+
0

1

3
.3

7
E

+
0

1

2
.0

9
E

+
0

4

1
.3

7
E

+
0

4

5
.3

5
E

+
0

3

1
.4

6
E

+
0

4

1
.6

7
E

+
0

5

1
.1

3
E

+
0

5

7
.0

2
E

+
0

3

4
.3

4
E

+
0

4

9
.1

7
E

+
0

3

5
.9

8
E

+
0

4

D
H

S
S

 S
D

7
.1

5
E

+
0

0

7
.4

8
E

+
0

0

5
.0

6
E

+
0

0

5
.9

2
E

+
0

0

8
.0

8
E

+
0

0

3
.8

2
E

-0
3

2
.4

4
E

-0
3

1
.2

9
E

-0
3

1
.3

6
E

-0
3

8
.2

8
E

-0
4

1
.2

7
E

+
0

1

1
.0

2
E

+
0

1

1
.1

6
E

+
0

1

1
.0

7
E

+
0

1

1
.8

2
E

+
0

1

5
.0

2
E

+
0

3

8
.1

2
E

+
0

2

6
.4

7
E

+
0

0

8
.5

2
E

+
0

0

5
.5

0
E

+
0

0

8
.4

6
E

+
0

2

5
.8

7
E

+
0

2

6
.5

1
E

+
0

2

4
.6

5
E

+
0

2

3
.2

8
E

+
0

4

1
.1

5
E

+
0

3

2
.0

9
E

+
0

1

1
.4

7
E

+
0

2

2
.2

7
E

+
0

1

2
.3

7
E

+
0

2

A
V

G

6
.4

1
E

+
0

1

5
.8

3
E

+
0

1

3
.0

9
E

+
0

1

4
.4

2
E

+
0

1

6
.2

7
E

+
0

1

1
.8

6
E

-0
2

2
.7

1
E

-0
2

2
.6

8
E

-0
2

5
.9

1
E

-0
3

4
.0

3
E

-0
3

6
.2

8
E

+
0

3

6
.3

6
E

+
0

3

6
.3

6
E

+
0

3

6
.4

1
E

+
0

3

1
.0

5
E

+
0

4

4
.5

4
E

+
0

3

1
.4

8
E

+
0

3

3
.8

9
E

+
0

1

4
.4

0
E

+
0

1

4
.1

0
E

+
0

1

2
.2

0
E

+
0

4

1
.4

6
E

+
0

4

7
.0

8
E

+
0

3

1
.5

2
E

+
0

4

2
.2

7
E

+
0

5

1
.1

0
E

+
0

5

6
.8

5
E

+
0

3

4
.4

0
E

+
0

4

9
.2

6
E

+
0

3

6
.1

1
E

+
0

4

H
Y

S
S

T
 S
D

1
.0

0
E

+
0

1

8
.9

3
E

+
0

0

4
.1

8
E

+
0

0

1
.3

4
E

+
0

1

1
.2

4
E

+
0

1

7
.0

2
E

-0
3

2
.0

2
E

-0
3

1
.0

8
E

-0
2

1
.5

6
E

-0
3

1
.0

9
E

-0
3

1
.9

2
E

+
0

1

2
.0

2
E

+
0

1

1
.8

6
E

+
0

1

1
.9

5
E

+
0

1

6
.3

3
E

+
0

0

0
.0

0
E

+
0

0

0
.0

0
E

+
0

0

5
.0

6
E

+
0

0

6
.0

7
E

+
0

0

4
.6

2
E

+
0

0

5
.6

9
E

+
0

2

5
.3

4
E

+
0

2

4
.9

0
E

+
0

2

6
.6

4
E

+
0

2

7
.5

7
E

+
0

3

0
.0

0
E

+
0

0

0
.0

0
E

+
0

0

2
.2

2
E

-1
1

1
.8

5
E

-1
2

1
.4

8
E

-1
1

A
V

G

5
.8

5
E

+
0

1

5
.1

3
E

+
0

1

1
.1

6
E

+
0

1

2
.7

4
E

+
0

1

5
.7

8
E

+
0

1

7
.5

9
E

-0
2

2
.9

9
E

-0
2

4
.0

3
E

-0
2

2
.1

2
E

-0
2

2
.3

8
E

-0
2

6
.4

1
E

+
0

3

6
.4

8
E

+
0

3

6
.4

5
E

+
0

3

6
.5

4
E

+
0

3

1
.0

6
E

+
0

4

5
.5

5
E

+
0

4

2
.2

0
E

+
0

5

7
.6

6
E

+
0

1

6
.8

2
E

+
0

1

7
.9

1
E

+
0

1

2
.4

9
E

+
0

4

1
.4

3
E

+
0

4

6
.1

0
E

+
0

3

1
.6

1
E

+
0

4

3
.7

1
E

+
0

5

1
.3

2
E

+
0

5

8
.1

1
E

+
0

3

5
.3

9
E

+
0

4

1
.1

2
E

+
0

4

7
.2

4
E

+
0

4

M
S

H
H

 S
D

2
.0

5
E

+
0

0

2
.1

9
E

+
0

0

2
.2

3
E

+
0

0

5
.3

4
E

+
0

0

4
.0

4
E

+
0

0

2
.8

1
E

-0
3

1
.5

7
E

-0
3

1
.3

1
E

-0
3

5
.5

1
E

-0
4

2
.6

5
E

-1
8

1
.8

9
E

+
0

1

1
.7

6
E

+
0

1

2
.1

0
E

+
0

1

2
.8

0
E

+
0

1

1
.0

3
E

+
0

1

1
.5

7
E

+
0

4

1
.2

1
E

+
0

3

7
.5

6
E

+
0

0

4
.0

6
E

+
0

0

9
.9

8
E

+
0

0

4
.9

9
E

+
0

2

4
.8

7
E

+
0

2

4
.0

4
E

+
0

2

5
.3

5
E

+
0

2

2
.2

3
E

+
0

4

8
.7

8
E

+
0

2

1
.2

9
E

+
0

1

2
.2

3
E

+
0

2

2
.4

3
E

+
0

1

1
.2

6
E

+
0

2

A
V

G

3
.2

5
E

+
0

1

2
.7

3
E

+
0

1

1
.8

7
E

+
0

1

1
.8

0
E

+
0

1

5
.4

9
E

+
0

1

1
.5

0
E

-0
2

2
.5

5
E

-0
2

2
.6

4
E

-0
2

5
.6

5
E

-0
3

4
.0

0
E

-0
3

6
.3

2
E

+
0

3

6
.4

0
E

+
0

3

6
.3

9
E

+
0

3

6
.4

5
E

+
0

3

1
.0

6
E

+
0

4

1
.1

4
E

+
0

4

1
.9

0
E

+
0

3

5
.4

5
E

+
0

1

5
.7

4
E

+
0

1

5
.4

8
E

+
0

1

2
.2

1
E

+
0

4

1
.4

3
E

+
0

4

5
.6

6
E

+
0

3

1
.5

5
E

+
0

4

2
.2

9
E

+
0

5

1
.1

3
E

+
0

5

7
.0

7
E

+
0

3

4
.4

2
E

+
0

4

9
.2

3
E

+
0

3

6
.0

8
E

+
0

4

R
H

H
 S

D

4
.7

6
E

+
0

0

4
.2

5
E

+
0

0

3
.0

8
E

+
0

0

9
.7

3
E

+
0

0

1
.0

3
E

+
0

1

2
.0

6
E

-0
3

4
.7

3
E

-0
4

7
.6

8
E

-0
4

4
.9

5
E

-0
4

2
.6

5
E

-1
8

1
.5

8
E

+
0

1

1
.5

0
E

+
0

1

1
.6

6
E

+
0

1

1
.2

6
E

+
0

1

1
.4

6
E

+
0

1

2
.8

1
E

+
0

4

1
.3

0
E

+
0

3

4
.9

4
E

+
0

0

7
.4

3
E

+
0

0

4
.0

7
E

+
0

0

4
.9

7
E

+
0

2

5
.1

1
E

+
0

2

3
.5

7
E

+
0

1

5
.0

1
E

+
0

2

4
.5

0
E

+
0

3

1
.7

2
E

+
0

3

2
.5

0
E

+
0

1

1
.4

7
E

+
0

2

2
.2

7
E

+
0

1

2
.3

7
E

+
0

2

A
V

G

3
.9

8
E

+
0

1

3
.4

2
E

+
0

1

1
.8

9
E

+
0

1

2
.4

5
E

+
0

1

4
.1

2
E

+
0

1

9
.5

8
E

-0
3

2
.2

9
E

-0
2

2
.5

5
E

-0
2

5
.6

1
E

-0
3

4
.0

0
E

-0
3

6
.3

6
E

+
0

3

6
.4

3
E

+
0

3

6
.4

1
E

+
0

3

6
.4

9
E

+
0

3

1
.0

6
E

+
0

4

3
.2

1
E

+
0

4

1
.6

5
E

+
0

3

4
.6

2
E

+
0

1

5
.0

2
E

+
0

1

4
.4

7
E

+
0

1

2
.1

2
E

+
0

4

1
.4

0
E

+
0

4

5
.3

4
E

+
0

3

1
.4

8
E

+
0

4

2
.2

8
E

+
0

5

1
.1

8
E

+
0

5

7
.0

7
E

+
0

3

4
.4

0
E

+
0

4

9
.2

6
E

+
0

3

6
.1

1
E

+
0

4

D
o

m

in
st

1

in
st

2

in
st

3

in
st

4

in
st

5

in
st

1

in
st

2

in
st

3

in
st

4

in
st

5

in
st

1

in
st

2

in
st

3

in
st

4

in
st

5

in
st

1

in
st

2

in
st

3

in
st

4

in
st

5

in
st

1

in
st

2

in
st

3

in
st

4

in
st

5

in
st

1

in
st

2

in
st

3

in
st

4

in
st

5

S
A

T

B
P

F
S

H

P
S

V
R

P

T
S

P

0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7

p
ro

b
ab

lit
y

Learning Period

RHH

HySST

mshh 0

0.5

1

1.5

1 2 3 4 5 6 7

p
ro

b
ab

lit
y

Learning Period

RHH

HySST

mshh

Received: April 12, 2022. Revised: June 28, 2022. 361

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.31

Figure. 11 DSHH, MHHN, and MHHA boxplots for all test problems for 5 instances

normalized median of the objective values for the

proposed variants MHHN, MHHA, and the recently

developed DHSS competitor for each instance in

each problem domain. Each of these fingers provides

the shape of the distribution of the results of each

algorithm on each problem instances. It is observed

that MHHA outperforms DHSS overall and in SAT,

BP, PS, VRP, and last 3 instances in TSP problem

domains. However, it achieves the second-best

performance in FSH domain. In most HyFlex

problem domains, MHHA turns out to be a viable

general methodology which outperforms the other

hyper-heuristic approaches. This reflects the success

of the proposed framework in exploiting the suitable

heuristic and/or acceptance criteria in different search

points according to the problem domain. The poor

performance in FSH problem can be explained by the

bad performance of hyper-heuristic components used

Received: April 12, 2022. Revised: June 28, 2022. 362

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.31

compared with DHSS. Thus, involving other

components to improve the performance in this

problem domain is considered as future research.

5. Conclusion

Hyper-heuristic is a type of search technique that

automates to combine, and control set of heuristics in

order to solve a number of computationally hard

problems. A traditional hyper- heuristic framework

accomplishes this through two level. First, a high-

level heuristic consists of two main components, that

is (a heuristic selection mechanism and a move

acceptance strategy). Then, low level heuristics are a

set of problem specific heuristics. The design of the

high-level heuristic is crucial. Since, each problem

instance has a different landscape structure. This

paper presents a new hyper-heuristic framework

which adopts an additional level on top of the

tradition hyper-heuristic framework. The proposed

framework is a way to automatically design hyper-

heuristic models through intelligently selecting

suitable combinations of the highest-level heuristic

components (i.e. Algorithm selection and move

acceptance strategies) during the different stages of

the optimization process. It is more generalized,

reusable and helpful in releasing the complexity of

choosing a hyper-heuristic method for solving a

problem. Also, it is more independent to problem

through new level added. The proposed MHH

framework integrates a heuristic selection

mechanism with a set of hyper-heuristics as well as a

variety of acceptance criteria. At the top level, the

selection-based roulette wheel is adopted to select

one algorithm to be applied from three hyper-

heuristic algorithms. Six challenging problems from

the hyper-heuristic competition (CHeSC) test suite

are used to illustrate the generality of the proposed

framework. The experimental results show that the

proposed framework produces highly competitive

results against the competitors. This reflects the role

of the adopted reward strategies and the selection

mechanism. In future work, the combination of

different selection mechanisms is studied as well as

combinations of different reward methods to improve

the performance. Also, combining different heuristics

and different acceptance criteria provide more

generality.

Conflicts of Interest

The authors declare no conflict of interest.

Author Contributions

Conceptualization, Ahmed kafafy, Asmaa Awaad;

methodology, Ahmed Kafafy; software, Asmaa

Awaad; validation, Ahmed kafafy, Asmaa Awaad;

formal analysis, Ahmed Kafafy; investigation,

Ahmed Kafafy; resources, Ahmed kafafy, Asmaa

Awaad,Osama Abdelraouf; data curation, Ahmed

Kafafy; writing—original draft preparation, Asmaa

Awaad, Ahmed Kafafy; writing—review and editing,

Ahmed Kafafy; visualization, Ahmed Kafafy, Asmaa

Awaad; supervision, Ahmed Kafafy, Osama

Abdelraouf, Nancy Elhefnawy.

References

[1] J. K. Mandal, “Handbook of research on natural

computing for optimization problems”, IGI

Global, 2016.

[2] E. G. Talbi, “Metaheuristics: from design to

implementation”, John Wiley & Sons, Vol. 74,

2009.

[3] E. K. Burke, M. Gendreau, M. Hyde, G. Kendall,

G. Ochoa, E. Özcan, and R. Qu, “Hyper-

heuristics: A survey of the state of the art”,

Journal of the Operational Research Society,

Vol. 64, pp. 1695-1724, 2013.

[4] K. Z. Zamli, B. Y. Alkazemi, and G. Kendall, “A

tabu search hyper-heuristic strategy for t-way

test suite generation”, Applied Soft Computing,

Vol. 44, pp. 57-74, 2016.

[5] X. Cai, H. Qiu, L. Gao, C. Jiang, and X. Shao,

“An efficient surrogate-assisted particle swarm

optimization algorithm for high-dimensional

expensive problems”, Knowledge-Based

Systems, Vol. 184, p. 104901, 2019.

[6] X. S. Yang, “Nature-inspired metaheuristic

algorithms”, Luniver Press, 2010.

[7] N. R. Sabar, M. Ayob, G. Kendall, and R. Qu,

“Grammatical eVolution hyper-heuristic for

combinatorial optimization problems”, IEEE

Transactions on EVolutionary Computation,

Vol. 17, pp. 840-861, 2013.

[8] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E.

Özcan, and J. R. Woodward, “A classification of

hyper-heuristic approaches”, Handbook of

Metaheuristics, pp. 449-468, 2010.

[9] A. Kheiri, E. Özcan, and A. J. Parkes, “A

stochastic local search algorithm with adaptive

acceptance for high-school timetabling”, Annals

of Operations Research, Vol. 239, pp. 135-151,

2016.

[10] S. Asta, D. Karapetyan, A. Kheiri, E. Özcan, and

A. J. Parkes, “Combining Monte-Carlo and

hyper-heuristic methods for the multi-mode

resource-constrained multi-project scheduling

Received: April 12, 2022. Revised: June 28, 2022. 363

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.31

problem”, Information Sciences, Vol. 373, pp.

476-498, 2016.

[11] E. Özcan, B. Bilgin, and E. E. Korkmaz, “A

comprehensive analysis of hyper-heuristics”,

Intelligent Data Analysis, Vol. 12, pp. 3-23,

2008.

[12] B. Bilgin, E. Ozcan, and E. E. Korkmaz, “An

experimental study on hyper-heuristics and

exam scheduling”, Burke EK, Rudová H, eds.,

Practice and Theory of Automated Timetabling

VI, Vol. 3867 of Lecture Notes in Computer

Science, 394-412, 2007.

[13] G. Ochoa, M. Hyde, T. Curtois, J. A. V.

Rodriguez, J. Walker, M. Gendreau, G. Kendall,

B. McCollum, A. J. Parkes, S. Petrovic, and

others, “Hyflex: A benchmark framework for

cross-domain heuristic search”, In: Proc. of

European Conference on EVolutionary

Computation in Combinatorial Optimization,

2012.

[14] R. Qu and E. K. Burke, “Hybridizations within a

graph-based hyper-heuristic framework for

university timetabling problems”, Journal of the

Operational Research Society, Vol. 60, pp.

1273-1285, 2009.

[15] N. R. Sabar, M. Ayob, G. Kendall, and R. Qu,

“Automatic design of a hyper-heuristic

framework with gene expression programming

for combinatorial optimization problems”, IEEE

Transactions on EVolutionary Computation,

Vol. 19, pp. 309-325, 2014.

[16] S. S. Choong, L. P. Wong, and C. P. Lim,

“Automatic design of hyper-heuristic based on

reinforcement learning”, Information Sciences,

Vol. 436, pp. 89-107, 2018.

[17] P. Cowling, G. Kendall, and E. Soubeiga, “A

hyperheuristic approach to scheduling a sales

summit”, In: Proc. of the Practice and Theory of

Automated Timetabling, 2000.

[18] K. Chakhlevitch and P. Cowling,

“Hyperheuristics: recent developments”,

Adaptive and Multilevel Metaheuristics, pp. 3-

29, 2008.

[19] J. H. Drake, E. Özcan, and E. K. Burke, “A

modified choice function hyper-heuristic

controlling unary and binary operators”, 2015

IEEE Congress on EVolutionary Computation,

2015.

[20] S. Adriaensen, T. Brys, and A. Nowé, “Fair-

share ILS: a simple state-of-the-art iterated local

search hyperheuristic”, In: Proc. of the 2014

Annual Conference on Genetic and eVolutionary

Computation, 2014.

[21] M. Kalender, A. Kheiri, E. Özcan, and E. K.

Burke, “A greedy gradient-simulated annealing

selection hyper-heuristic”, Soft Computing, Vol.

17, pp. 2279-2292, 2013.

[22] W. G. Jackson, E. Özcan, and J. H. Drake, “Late

acceptance-based selection hyper-heuristics for

cross-domain heuristic search”, 2013 13th UK

Workshop on Computational Intelligence, 2013.

[23] W. G. Jackson, E. Özcan, and R. I. John, “Fuzzy

adaptive parameter control of a late acceptance

hyper-heuristic”, 2014 14th UK Workshop on

Computational Intelligence, 2014.

[24] E. Burke, T. Curtois, M. Hyde, G. Kendall, G.

Ochoa, S. Petrovic, J. A. V. Rodrı́guez, and M.

Gendreau, “Iterated local search vs. hyper-

heuristics: Towards general-purpose search

algorithms”, IEEE Congress on eVolutionary

Computation, 2010.

[25] S. S. Choong, L. P. Wong, and C. P. Lim, “An

artificial bee colony algorithm with a modified

choice function for the traveling salesman

problem”, Swarm and eVolutionary

Computation, Vol. 44, pp. 622-635, 2019.

[26] P. Dempster and J. H. Drake, “Two frameworks

for cross-domain heuristic and parameter

selection using harmony search”, Harmony

Search Algorithm, pp. 83-94, 2016.

[27] L. Chen, H. Zheng, D. Zheng, and D. Li, “An ant

colony optimization-based hyper-heuristic with

genetic programming approach for a hybrid flow

shop scheduling problem”, 2015 IEEE Congress

on EVolutionary Computation, 2015.

[28] E. Özcan, M. Misir, G. Ochoa, and E. K. Burke,

“A reinforcement learning: great-deluge hyper-

heuristic for examination timetabling”,

Modeling, Analysis, and Applications in

Metaheuristic Computing: Advancements and

Trends, IGI Global, pp. 34-55, 2012.

[29] I. Khamassi, “Ant-Q Hyper Heuristic Approach

applied to the Cross-domain Heuristic Search

Challenge problems”, 2011.

[30] L. D. Gaspero and T. Urli, “Evaluation of a

family of reinforcement learning cross-domain

optimization heuristics”, In: Proc. of

International Conference on Learning and

Intelligent Optimization, 2012.

[31] N. R. Sabar, M. Ayob, G. Kendall, and R. Qu,

“A dynamic multiarmed bandit-gene expression

programming hyper-heuristic for combinatorial

optimization problems”, IEEE Transactions on

Cybernetics, Vol. 45, pp. 217-228, 2014.

[32] A. S. Ferreira, “A cross-domain multi-armed

bandit hyper-heuristic”, 2016.

[33] A. S. Ferreira, R. A. Goncalves, and A. T. R.

Pozo, “A multi-armed bandit hyper-heuristic”,

2015 Brazilian Conference on Intelligent

Systems, 2015.

Received: April 12, 2022. Revised: June 28, 2022. 364

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.31

[34] A. Kheiri and E. Keedwell, “A sequence-based

selection hyper-heuristic utilising a hidden

Markov model”, In: Proc. of the 2015 Annual

Conference on Genetic and eVolutionary

Computation, 2015.

[35] E. Özcan and A. Kheiri, “A hyper-heuristic

based on random gradient, greedy and

dominance”, Computer and Information

Sciences II, pp. 557-563, 2011.

[36] A. Kheiri and E. Özcan, “A hyper-heuristic with

a round robin neighbourhood selection”, In:

Proc. of European Conference on eVolutionary

Computation in Combinatorial Optimization,

2013.

[37] A. Kheiri and E. Özcan, “An iterated multi-stage

selection hyper-heuristic”, European Journal of

Operational Research, Vol. 250, pp. 77-90,

2016.

[38] A. Hassan and N. Pillay, “Dynamic Heuristic Set

Selection for Cross-Domain Selection Hyper-

heuristics”, Theory and Practice of Natural

Computing, 2021.

[39] R. Q. N. Pillay, “Hyper Heuristics:Theory and

Applications, 1 ed.”, Springer Cham, 2018.

