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Abstract: The covid 19 has caused a strong health and economic crisis, where the business environment is turning 

into a great uncertainty and customer demand has become more and more fluctuating. As a result, demand forecasting 

as well as the task of predictive analysis, holds a great attention in the supply chain, in order to meet the needs of 

customers, avoid any out of stock, and at the same time avoid a waste of resources. In this paper, we propose a deep 

learning method based on long-term memory multilayer networks (LSTM) for demand forecasting. Using the grid 

search method, our method has the ability to automatically select the most optimal forecasting model, considering 

different combinations of LSTM hyperparameters of a time series. The proposed model has shown strength in 

capturing the existing nonlinear features in time series data compared to some known time series forecasting methods 

derived from statistical and machine learning approaches, using historical sales data of a Moroccan pharmaceutical 

manufacturing company. These methods include exponential smoothing (ETS), autoregressive integrated moving 

average (ARIMA), recurrent neural network (RNN). The evaluation of the proposed method and the comparison 

methods was performed using the root mean square error (RMSE) and Symmetric mean absolute percentage error 

(SMAPE). The comparison of the test results showed that the proposed method is the best performing with RMSE of 

4487.32 and SMAPE of 0.026 much better than those obtained by the other models. 

Keywords: Demand forecasting, Time series forecasting, Statistical methods, Deep learning, Long short term memory, 

Exponential smoothing, Autoregressive integrated moving average, Recurrent neural network. 

 

 
 

1. Introduction  

Research in the field of supply chain 

management has shown the impact of demand on the 

entire business process. Demand is considered one of 

the most important pieces of information to be shared 

among supply chain actors [1]. Demand forecasting 

is the basis for all planning activities in the supply 

chain [2]. Accurate demand forecasting is a key 

factor in an efficient supply chain that improves 

customer satisfaction while avoiding stock-outs [3–

5]. Traditional forecasting approaches have proven 

unable to accurately produce customer demand [9–

12]. Most of the time real world data are time series 

with non-linear characteristics. The most known 

statistical methods for time series, such as ARIMA  

(autoregressive integrated moving average), holt-

winters moving average, exponential smoothing, are 

classical linear models that are appropriate and 

satisfactory in many applications, since they can 

model data and make predictions on relatively large 

time spaces (year, month...), provided that the time 

series is totally linear [13]. In order to overcome the 

limitations of classical linear models, non-linear 

models have been developed such as the ARCH 

(autoregressive conditional heteroscedastic), 

GARCH (general autoregressive conditional 

heteroscedastic) [14], However, these models cannot 

provide good forecasts, as they are unable to model 
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all the non-linear components existing in the time 

series.  

Therefore, companies are looking for more 

advanced methods that allow them to be as close as 

possible to the customers' needs [15]. Machine 

learning techniques have proven to be powerful in the 

field of predictive analytics, particularly in the 

prediction of demand in the supply chain of various 

economic activities [12, 16–20].  

Recently, applications of ML techniques in the 

supply chain domain for time series forecasting have 

been shown to be effective in various industries, such 

as furniture demand [12], energy demand [21], the 

demand for electricity [22], the demand for cash at 

ATMs [23], the demand for tourism [6], natural gas 

demand [24], etc. 

Frequently used ML methods for time series 

forecasting are artificial neural networks(ANNs), 

support vector machines(SVMs), K-nearest 

neighbors (KNNs) and adaptive neuro-fuzzy 

inference system (ANFIS) [12]. 

Since, artificial neural networks (ANNs) are one 

of the nonparametric data-driven models [14], they 

are considered the most important of the nonlinear 

temporal models in the field of forecasting due to 

several properties, first they are less sensitive to 

model misspecification problems as most of the 

nonparametric methods, they are adaptive by nature, 

moreover they use only a linear number of parameters 

[25]. 

Recurrent neural networks (RNN) are a type of 

artificial neural network, they are designed to 

recognize sequential features and to predict the next 

most likely scenario.  They differ from traditional 

ANNs in that they use feedback loops in the form of 

a cycle allowing connections between nodes of an 

RNN and signals to move in different directions [26]. 

In the literature, RNN is considered the most widely 

used and best performing ML technique for demand 

forecasting [27] , RNNs are used in many areas of the 

supply chain, such as [28, 29] have shown the 

superiority of RNNs in forecasting spare parts, as 

well as for  [30], have shown the performance of 

RNNs in medium and long term predictions for 

electricity consumption, [24] compared RNNs to 

linear regression and extreme machine learning 

algorithms for forecasting natural gas demand as a 

function of other variables: past temperatures, time 

variables, which include markers for vacations and 

other casual events. The tests showed the superiority 

of RNN. However, research has shown that RNNs are 

not satisfactory in all cases in the supply chain [27], 

this is due to their short memory and the problem of 

the disappearance of the gradient, which leads to a 

difficulty of training [31].  

To overcome these limitations, the most popular 

solution is to use the Long Short-Term Memory 

(LSTM) method [32], this type of RNN can detect the 

most relevant information from the data and then split 

the time series signal between what is important in 

the short term, and what is in the long term [31, 33], 

which makes it capable of exploiting forecasts over 

long periods of time [12, 34, 35], and that the LSTM 

is able to produce long-term forecasts because of its 

dependence on the past [36].  

Although these applications give promising 

results of forecasts produced by LSTM, it is possible 

to produce better performing forecasts that are more 

suitable for the industrial environment.  

In this paper, we build the most robust LSTM 

model possible using the gridsearch technique, which 

is a method of searching all configurations of 

hyperparameters to produce the most accurate results 

for a model. There are many publications of LSTM 

applications, but to our knowledge, none of them 

specifically address the use of this model in 

pharmaceutical demand forecasting. We will show 

the results of the implementation of the multilayer 

LSTM model combined with the gridsearch method 

to forecast demand based on the sales history of a 

pharmaceutical product, in the Moroccan industrial 

context. The main contributions of this article are 

summarized as follows:  

1. Real data of sales of a pharmaceutical product 

since 2012 are considered as much as a time series. 

We first performed a statistical analysis to study the 

stationarity of our series.  

2. The methodology for developing the proposed 

forecasting method based on multi-layer LSTM 

combined with Gridsearch method is presented in 

steps and validated with the sales data of a 

pharmaceutical product. 

3. The effectiveness of the method has been 

compared with two statistical models namely ETS 

and ARIMA and with both single layer and 

multilayer RNN models and single layer LSTM 

model. 

4. The results suggest that recent research 

expectations are consistent with the prediction results 

obtained using the proposed method.   

The rest of this paper is organized as follows: in 

the second section, we present a review of related 

research, then in the third section we expose the 

methodology that we followed to build the proposed 

model. Then, the fourth section contains the steps 

followed to apply our proposed method on our dataset, 

as well as the methods used to perform the 

comparison of the results. Finally, we conclude with 

the analysis and comparison of the results between 
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the different methods and a suggestion for future 

research in the field of supply chain forecasting. 

2. Related work 

Machine learning has a significant impact on 

SCM operations [37], ML algorithms can provide 

more accurate demand forecasts, which can reduce 

order amplification or the bullwhip effect (BWE) and 

improve the efficiency of operations along the supply 

chain [11, 38, 39]. In addition, on the basis of our 

systemic review [40], The number of publications on 

ML applications in the field of demand forecasting 

has relatively increased in the last two years, which 

shows the importance given to the improvement of 

the supply chain through ML methods, and that 

neural network methods are the most used algorithms 

in this field, they represent 61% of the total 

applications studied. 

These findings were supported by other systemic 

reviews of research in the ML discipline in the 

context of the supply chain. [41] are among the first 

researchers who have carried out the systemic 

research of ML works in the discipline of supply 

chain, they have shown by analyzing 123 articles 

published in five large databases during the period 

between (1998/01/01) and (2018/12/31) that 87% of 

the applications were through supervised learning 

and that among the 10 ML algorithms that were found 

to be frequently used the methods of neural networks 

and its variants occupy 54% of the global total of 

applications. In the same way, [42] established a 

systemic study of 79 articles on ML applications in 

the field of supply chain and more precisely demand 

forecasting, published during the last ten years and 

coming from five databases. The authors concluded 

that neural network-based applications represent 54% 

of the studies reviewed, 65% of which were applied 

in the industrial sector. 

The fame of neural networks in the field of 

demand forecasting could be due to the excellent 

results of deep learning which has pushed more and 

more people to apply it in sales forecasting. The deep 

learning model is able to handle the complexity of 

non-linear data and automatically extract its features. 

For this reason, it is easier to obtain good 

prediction results at the first training even with 

arbitrary parameters. Several works have confirmed 

this result, such as in the article [10], where the 

authors applied the LSTM model to predict the 

demand for 5 products in the context of Industry 4.0. 

The performance of the LSTM model was compared 

to ML models: random forest (RF) and extreme 

gradient boosting (XGBoost) and statistical models: 

SARIMAX and triple exponential smoothing (ETS). 

All the models were applied with the standard 

parameter settings determined in their above 

mentioned libraries with some exceptions.  

For the evaluation of the forecasting models, the 

authors considered RMSE (root mean square 

deviation), to calculate the errors of the models, and 

the performance score to measure the deviation of the 

forecasting errors from the best model of each 

product. The experimental measurements showed 

that the lowest RMSE values were obtained with the 

ETS, XGBoost, LSTM and MLP models, but the 

highest performance score was obtained by the 

LSTM model, 81.9%. Regarding the effort of 

implementing the models in practice, ML methods 

proved to be particularly inexpensive compared to 

statistical methods that require very complex data 

preparation. Therefore, the proposed LSTM model 

can be most recommended for sales forecasting in the 

Industry 4.0 environment.  

Similarly, the authors applied the multi-layer 

LSTM model in the paper [43] for water demand 

prediction, using the water consumption history of 

the year 2017 and 2018 collected from 20 residential 

houses. The two models support vector regression 

and random forest were used for the comparison of 

the performance of the proposed model. Bayesian 

optimization and 10-fold cross validation were 

applied to find the minimum penalty of each model. 

To evaluate the performance of the models, the 

authors used RMSE, MAE and MAAPE. The 

measurements showed that the LSTM and SVR 

models had comparable MAE and RMSE values, 

however the MAAPE values reflect that the LSTM 

model is the best architecture with MAAPE= 0.69, 

compared to SVR which had MAAPE=0.92 and RF 

with a MAAPE=0.98 value.  

Although the predictions produced in the first 

training by the deep learning method with arbitrary 

parameters are more accurate in most of the time, one 

can further improve this performance by optimizing 

the chosen parameters, although they are quite 

difficult to parameterize. As an example in [44], the 

researchers point out that optimizing the weights of 

each node can increase the performance of the DL 

model, on this basis they have developed a deep RNN 

model based on LSTM optimized by the ADAM 

approach, in order to increase the accuracy of the 

forecasting of the demand for automotive spare parts.  

Monthly sales data for the last four years were used 

in this application. The proposed model was 

compared to the SBA, Croston, SES and TSB 

technique. The experiment showed that the optimized 

technique proved to have high forecasting accuracy 

with minimum errors MSE=30.167 and ME= 0.455 

compared to the other methods used. The application 
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of the proposed model on new car sales data, showed 

that it allows the reduction of both the stocking level 

and the backorders of spare parts.  

The contributions of the present work lie in the 

development of a new multilayer LSTM model based 

on the Gridsearch method. The proposed method has 

the ability to automatically configure by traversing 

several combinations of LSTM hyperparameters that 

allow increasing the accuracy of the model 

predictions for a given time series. The applications 

of ML methods and specifically deep learning in the 

field of pharmaceutical industry are very rare, to our 

knowledge, this is the first application of the LSTM 

method for future demand forecasting in this field 

using real data of the sales history since 2012 of the 

most demanded product of a Moroccan company 

working in the pharmaceutical industry. The 

performance of the proposed technique was validated 

by comparing it with the statistical methods of 

forecasting time series namely ETS and ARIMA. 

And with the monolayer RNN, multilayer RNN and 

monolayer LSTM methods. We show through the 

performance measures of each model that our results 

are consistent with recent research using the LSTM 

method.   

3. Methods used 

In this section we present the principles models 

used in this study. 

3.1 ARIMA 

The ARIMA model is a univariate model that 

seeks to describe a single variable as an 

autoregressive integrated moving average process.  

The equation presents the mathematical 

expression of the autoregressive part. 

 

               𝑥(𝑡) = ∑ 𝛼𝑖𝑥(𝑡 − 𝑖)
𝑝
𝑖=1                 (1) 

 

Where: 

t: The index represented by an integer, 

x(t): the estimated value,  

p: the number of autoregressive terms 

α: the polynomial related to the autoregressive 

operator of order p. 

Equation (2) presents the estimate of the next 

value of the time series that depends on the errors of 

the previous forecasts.   

 

                       𝑥(𝑡) = ∑ 𝛽𝑖𝜀(𝑡 − 𝑖)
𝑞
𝑖=1                    (2) 

 

Where: 

q is the number of moving average terms 

β is the moving average polynomial of order q 

ε: the difference between the actual and 

estimated values of x(t). 

 

The ARIMA model (p and q) is the combination 

of Eqs. (1) and (2) presented as follows in Eq. (3):  

 

           𝑥(𝑡) = ∑ 𝛼𝑖𝑥(𝑡 − 𝑖)∑ 𝛽𝜀(𝑡 − 𝑖)
𝑞
𝑖=1

𝑝
𝑖=1        (3) 

3.2 Exponential smoothing 

Exponential smoothing methods that allow 

forecasts to be made based on the observation of a 

time series. These methods are often used in industry, 

being relatively basic and simple to implement, 

especially when the number of forecasts to be made 

is large. 

Three types of exponential smoothing: 

Simple exponential smoothing: which allows to 

locally adjust a constant to the time series. 

 

• Double exponential smoothing: which adjusts a 

line. 

• Holt-Winters exponential smoothing: which 

studies more complex functions (polynomial, 

periodic...). 

 

The disadvantage of extended exponential smoothing 

is that the values chosen for ALPHA, BETA, and 

GAMMA greatly affect the accuracy, and finding the 

most accurate combination of three different 

smoothing constants, each of which can have a value 

between zero and one, may be a formidable task. 

3.3 Artificial neural networks 

Artificial neural networks are inspired by the 

design of the brain. It is a computational model that 

can be considered as formal models with equations 

and statements about the parts that are to be used. 

These models consist of a large number of basic 

computational neurons connected to each other in a 

complex communication network [53]. This is where 

a supervisor enters a teaching position and interacts 

with the learner, i.e., the network, and the 

environment. This is called supervised learning. 

As shown in Fig. 1 above, the ANN is a direct 

feed system and consists of an input layer, a hidden 

layer with 3 cells with activation functions in each 

cell, and an output layer with an activation function 

that determines the output of the cell. An activation 

function works like a transformer in the network, 

where it takes input values and transforms them into 

output. In the figure above, we see a sigmoid function,  
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Figure. 1 Artificial neural network architecture 

 

 
Figure. 2 Recurrent neural network architecture  

 

 
Figure. 3 LSTM network's architecture 

 

 

which is a special case of the logistic function used in 

logistic regression, to transform the outputs into 

binary outputs between 0 and 1. The hidden layer 

functions as a learning box and as a filter depending 

on the nature of the data and its structure. 

3.4 Recurrent neural networks 

RNN belong to the family of artificial neural 

networks with recurrent architecture. 

Recurrence is the use of previous outputs as new 

inputs so that they are recurrent, i.e., they appear one 

or more times in the calculation of new outputs. A 

simple RNN takes as input not only the current input, 

but also previous information, through recurrent 

connections. This gives importance to previous 

events, which means that t-2 and t-1 will influence 

the decisions made at time t, see Fig. 2. The basic 

RNN is known as a vanilla RNN or SIMPLE RNN. 

RNN are sequential models that process one or more 

sequential inputs of variables [54]. Their main 

meaning is that they can use all previous inputs for 

each output. so they are recurrent giving the notion of 

memory in the neural network [55]. 

3.5 Long short term memory 

LSTM networks are a special form of RNNs that 

can handle both long and short term dependencies. 

They were first introduced in 1997 by Hochreiter and 

Schmidhuber [56], and subsequent work has 

improved and promoted them. 

Traditional RNNs' structure theoretically allows 

for the control of long-term memory dependencies, 

but their impact in practice is limited [57]. As a result, 

RNNs' memory storage capacity is better suited to 

short-term sequences. The cell states and gate 

mechanism are added to the hidden layer based on 

traditional RNNs, so the gradient vanishing problem 

is largely addressed by its control gates. Furthermore, 

various control gates with distinct functions are 

employed to manage the past and present information 

whenever the historical message is transmitted to the 

neurons in the buried layer. 

Fig. 4, shows the description of a LSTM memory 

block follows that of [58, 59]. 

The specific steps of the LSTM algorithm are as 

follows: 

a. The memory cell reads the input as well as the 

prior hidden state, allowing long-term dynamic 

trends to be shown and redundant data to be 

removed. The following equation determines the 

forgetting gate: 

 

             𝑓𝑡 = 𝜎{𝑊𝑓 . (𝑥𝑡, ℎ𝑡−1) + 𝑏𝑓}             (4) 

 

b. The first part of the model's input gate defines 

how much current data should be retained in the 

cell state:    

 

                𝑖𝑡 = 𝜎{𝑊𝑖. (𝑥𝑡 , ℎ𝑡−1) + 𝑏𝑖}          (5) 

 

c. The second component entails constructing a 

new candidate vector to update the state, as 

shown in the equation below: 

 

                     𝐶̃𝑡 = 𝑡𝑎𝑛ℎ{𝑊𝐶 . (𝑥𝑡 , ℎ𝑡−1) + 𝑏𝐶}       (6) 

 

d. After that, the new state of the cell is constructed 

on the basis of the results of the last steps by 

designating the Hadamard product (by 

elements): 

 

                    𝐶̃𝑡 = 𝑡𝑎𝑛ℎ{𝑊𝐶 . (𝑥𝑡 , ℎ𝑡−1) + 𝑏𝐶}        (7) 
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Figure. 4 Flowchart of the proposed method 

 

 

e. Finally, the output gate is updated and the final 

output is decided based on the updated state and 

the state of the output gate: 

 

       𝑜𝑡 = 𝜎{𝑊𝑜. (𝑥𝑡 , ℎ𝑡−1) + 𝑏𝑜}              (8) 

 

           ℎ𝑡 = 𝑜𝑡⊗ tanh (𝐶𝑡−1)                  (9) 

 

In the above equations, the following notation is 

used: 

a. 𝑥𝑡 is the input vector at the current time step t. 

b. 𝑊𝐶,𝑊𝑓,𝑊𝑖,𝑊𝑜, are the weight matrices that are 

associated to the corresponding vectors. They 

can be decomposed into 

 

c.                

{
 

 
𝑊𝑓 = 𝑊𝑓𝑥 +𝑊𝑓ℎ′

𝑊𝑖 = 𝑊𝑖𝑥 +𝑊𝑖ℎ′

𝑊𝐶 = 𝑊𝐶𝑥 +𝑊𝐶ℎ′

𝑊𝑜 = 𝑊𝑜𝑥 +𝑊𝑜ℎ′

            (10) 

 

d. 𝑏𝑐, 𝑏𝑓, 𝑏𝑖,𝑏𝑜 are indicators of bias. 

e. 𝑓𝑡, 𝑜𝑡, 𝑖𝑡 , and are vectors of door of forgetting, 

door of entry and door of exit. 

f. 𝐶𝑡 and 𝐶̃𝑡  are vectors for cell states and 

candidate values. 

g. ℎ𝑡 is a vector for the output of the LSTM layer.  

h. 𝜎(. ) and 𝑡𝑎𝑛ℎ (. ) are the sigmoid function and 

the hyperbolic tangent function respectively. 

 

4. Proposed methodology  

Designing a machine learning model for time 

series forecasting can be a time-consuming procedure 

and require a structural construction approach. To 

choose the optimal time series forecasting model, we 

use modern deep learning algorithms. The proposed 

methodology for pharmaceutical time series demand 

forecasting is illustrated in the Fig.4 below which 

describes the steps of the proposed method. 

4.1 Data preprocessing  

The data we use for this study present the sales 

history of a pharmaceutical product from a Moroccan 

industrial company. The monthly time series we use 

starts from January 2012 to December 2020. Before 

embarking on the exploration part of a time series, it 

is important to edit the raw data and prepare it well. 

Cleaning and normalization are two main steps in 

pre-processing the data.   

4.1.1. Data cleaning 

If the time series contains outliers or missing 

values, they are replaced using one of the appropriate 

techniques. Outliers or accidental values, present 

observations that are extremely different from other 
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values of the same variable. These data are 

erroneously included, detecting these values saves 

money, time and ensures that our data is reliable 

without errors present.  

Our dataset does not contain missing values, but 

there are outliers due to the error of data entry. These 

values are the cause of a non-performing and/or far 

from optimal predictive model. From a semantic 

point of view, these detected values are not logical, 

so we have chosen to remove them.  

4.1.2. Data normalisation 

The goal of normalization is to keep the values of 

the source dataset in a common scale to facilitate the 

learning of the network, the data should take small 

values, most often between 0 and 1. To do this, we 

used scikit-learn MinMaxScaler method to perform 

this operation. 

Let a time series of length N be represented as 

{(S(ti), i= 1, 2…, N} 

The equation of the Min-Max Normalization is 

the following: 

 

𝑠(𝑡𝑖) =
𝑠(𝑡𝑖)−𝑚𝑖𝑛 (𝑠)

𝑚𝑎𝑥(𝑠)−𝑚𝑖𝑛 (𝑠)
                (11)  

 

Where 𝑠(𝑡𝑖) represents the normalized value and s 

the observed values in the set. 

Min and max are the minimum and maximum 

values of x. 

4.2 Modeling  

4.2.1. Data transformation for supervised learning 

Time series data is first molded into a set of 

instances with predetermined input and output 

properties. The instances are then separated into 

training and test sets. Construction of learning, 

testing and validation sets. 

4.2.2. Training, testing, and validation sets 

When working with a large data set, it's advisable 

to split it into three parts: a training set, a test set, and 

a validation set. 

4.2.3. Search for hyperparameters 

Finding the most optimal models is a time-

consuming process that leads to finding methods to 

find the best configuration where it achieves the best 

performance on the evaluation metrics chosen for the 

training and test sets. This makes sense, as it reduces 

the time spent on manual trial and error and instead 

creates a computationally efficient mechanism for 

receiving the optimal configurations. 

Hyperparameters are those parameters that are 

independent of the data and can be thought of as the 

buttons of a black box. They are used to control the 

model and are defined as the parameters that cannot 

be learned directly from the data [60].  

Grid search is a method that helps us find the 

hyperparameters of interest. It consists of searching 

all possible configurations to produce the most 

accurate results. However, grid search can be 

computationally demanding and sometimes requires 

a lot of time and computing resources. The larger the 

number of parameters tested by the grid search, the 

more demanding it becomes. In this paper, we will 

use the following hyperparameters for LSTM: 

 

▪ Batch size: number of training examples to pass 

in an epoch, this value will be set to 1. 

▪ Time-steps: the number of steps in time taken by 

the model where it memorizes the number of 

steps. 

▪ Optimizer: an algorithm to optimize the weights 

to reduce the mean square error. 

▪ Couche dense: A dense layer is the most 

frequently used layer. It is essentially a layer 

where each neuron receives input from all 

neurons in the previous layer - thus "densely 

connected". Dense layers improve overall 

accuracy and 5-10 units or nodes per layer is a 

good base. Thus, the shape of the final dense 

layer output will be affected by the number of 

neurons/units specified. 

▪ Dropout rate: single LSTM layer must be 

accompanied by an exclusion layer. By 

bypassing randomly selected neurons during 

training, this layer eliminates overfitting and 

reduces sensitivity to individual neuron weights. 

▪ Epoch: this hyperparameter defines the number 

of full iterations of the dataset to be run. 

Although theoretically this number can be set to 

an integer value between one and infinity, it 

should be increased until the validation accuracy 

starts to decrease even if the learning accuracy 

increases (and thus risk overfitting). 

4.3 Configuration of results  

To decide which model is best, we need to be able 

to evaluate their performance. To evaluate the 

performance of the proposed approach, has been 

compared with two statistical models namely ETS 

and ARIMA and with both single and multi-layer 

RNN models and single layer LSTM model. For the  
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Figure. 5 Graphic presentation of the time series 

 
Table 1. ADF test results 

 Value 

ADF -9.1759 

P-Value       2.3207e-15 

Critical values 1% -3.4314 

Critical values 5% -2.8620 

Critical values 10% -2.5670 

 
Table 2. List of hyperparameters used in grid search 

Hyperparameter Value 

Units 64 

Dropout_rate [0.0, 0.1, 0.2, 0.3, 0.4, 0.5] 

Activation [‘relu’, ‘tanh’, ‘sigmoid’, 

‘hard_sigmoid’] 

Batch_size [8, 16, 32, 48] 

Epochs [50, 100, 150, 200, 250] 

Optimizer [‘Adagrad’, ‘Adadelta’, ‘Adam’, 

‘Adamax’, ‘Nadam’] 

 

evaluation of all models, we use the performance 

measures RMSE and SMAPE [62]. SMAPE is 

defined by: 

 

       SMAPE = 
1

𝑛
 ∑

|𝑦𝑡̂   −   𝑦𝑡|

|𝑦𝑡̂| + |𝑦𝑡|

2

𝑛
𝑡=1                   (12) 

 

The RMSE is expressed as follows: 

 

RMSE= √
1

𝑛
∑ ( 𝑦𝑡 − 𝑦𝑡̂)

2𝑛
𝑡=1                 (13) 

 

Where 𝑦𝑡 is the value taken by the explained variable 

at time t, 𝑦𝑡̂  is the value of the explained variable 

calculated by the model and n is the observations 

number.  

5. Experiments  

5.1 Data description 

The data used is the monthly amount of product 

sales from 2012 to 2020 of a pharmaceutical 

company. 

Every industry, in general, relies on the 

management of available materials and products. 
Determining future demand for raw materials and 

goods is the greatest strategy to manage the 

appropriate amount of these materials and items. 

Companies must forecast future demand based 

on historical sales to attain this goal. The data utilized 

in this article is from a pharmaceutical company's 

sales. From January 2012 to December 2020, this 

data represents the monthly sales quantity for items. 

Predicting future demand with this information can 

assist the organization in improving its resource 

management strategies and efficiently planning raw 

material supply. Because the examined data spans a 

lengthy period of time, the resulting demand 

projection is likely to be accurate and cover the 

market's future demand behavior. 

5.2 Data preprocessing  

The most important phase in an ML project is the 

data preparation phase. In this step we have to do a 

thorough reading of our data, in order to understand 

the role, they play in the achievement of the 

prediction objective. The preparation of the data is a 

manual work, whose objective is to have at the end, a 

data set of good quality, appropriate to the modeling 

and to the realization of our objective. This step 

begins with the description of the data, the search for 

missing data, the elimination of useless data, the 

study of stationarity, the scaling of the data... etc. 

After the analysis of the data, we did not detect 

any missing values, or outliers, which shows the 

reliability of the sources of the collected data. 

5.2.1. Stationarity study 

The notion of stationarity is an important factor 

in the modeling of time series. We can say that a 

series is stationary if the structure of the process in 

question remains the same over time, that is, if its 

characteristics: variance, expectation, variance, and 

autocorrelation do not vary over time. When this 

condition is not met, the series is considered non-

stationary. Therefore, it is essential to be able to 

determine whether the series is stationary or not.  

To measure the degree of stationarity of our time 

series, we used one of the unit root tests, the 

augmented dickey fuller (ADF) test method [63], for 

which the series is stationary if the null hypothesis 

(H0) is rejected when the process of the series does 

not have a unit root.  

The values of the descriptive statistics of the 

series are presented in Table 2. As we can notice, the 

value of p is very low and lower than the value alpha  
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Table 3. The best resulted hyperparameters for LSTM 

model 

Hyperparameter Value 

Lag 10 

The number of hidden layers 2 

Epochs 100 

Batch size 2 

Number of neurons per layer 64 

Optimizer Adam 

 

 

= 0.05, therefore, we can reject the null hypothesis 

(H0) that the series presents a unit root, and retain that 

the series is low stationary. When the time series is 

stationary, the modelling process gets easier than in 

the opposite case, since we can predict the future 

based on past observations. 

5.2.2. Data normalization 

There are no missing values in the supplied time 

series. Furthermore, no noise reduction or data 

smoothing was applied to the series in order to 

preserve the properties of the real-world data. 

Because most forecasting techniques perform better 

with normalized data, we used the min-max 

normalization algorithm to normalize the data in this 

study. 

5.2.3. Generation of train, test, and valid samples 

Based on the selected offset size, the time series 

is transformed into a set of instances in input-output 

format. For an offset size of 10. Next, the created 

instances are divided into a training set and a test set. 

a. Training data contains monthly sales volume 

covering the period from January 2012 to July 

2017. 

b. Test data, similar to the training set, covers the 

period from August 2017 to March 2019. 

c. Validation data, covering the period April 2019 

to December 2020 

5.3 Generation of a list containing combinations of 

hyperparameters 

Table 3, represents a list of determined values, 

for each hyperparameter, which will be used later in 

the configuration and training of each model. 

5.4 Training model  

From our literature review, we deduce that there 

is no one model that is superior to the others for time 

series forecasting, and that the performance of the 

model depends on the nature of the data, the context 

of application as well as the forecast horizon. For this 

reason, to show the efficiency of our proposed model, 

we apply other statistical and ML models, namely 

ARIMA, ETS, single and multilayer RNN and single 

layer LSTM. In order to obtain the best possible 

performance, it is important to note that we 

performed a search for the most optimal 

hyperparameters for each method used using the grid 

search method. 

The hyperparameters of our constructed method 

are described in Table 3, while the other models are 

presented in Table 4. 

An LSTM network is constructed and trained for 

each combination of hyper parameters. As an 

optimizer, the Adam algorithm [65] was utilized. In 

addition, for all developed LSTM networks, we used 

the mean square error (MSE) as the loss function. was 

used as an optimizer. 

6. Results discussion 

To prove the effectiveness of the proposed 

method for forecasting the demand of a 

pharmaceutical product, several comparison methods, 

including the statistical methods ARIMA and ETS 

and the methods RNN monolayer, RNN multilayer, 

LSTM monolayer and our proposed model LSTM 

multilayer. Knowing that we have applied the 

Gridsearch method for all the models used in this 

work in order to select automatically the adequate 

hyperparameters, which allows us to increase the 

efficiency of each model.  

The results section will be organized as follows: 

First, we report the SMAPE and RMSE values 

calculated for each model. Then, we show the 

prediction performances through the presentation of 

the real and projected monthly data produced by each 

model. Finally, we compare the results on the 

prediction performance of each predictor ARIMA, 

ETS, single layer RNN, multilayer RNN, single layer 

LSTM to our proposed model LSTM multilayer. 

6.1 Performance results 

The comparison values of model performance 

measures for demand forecasting are presented in 

Table 4 respectively. By comparing the results of the 

RMSE and SMAPE error index values, we can 

conclude that the traditional forecasting approaches 

used for comparison, namely ARIMA and 

exponential smoothing have the largest error values 

compared to the ML methods. This shows that the 

time series data used in this case study have nonlinear 

characteristics that both ARIMA and ETS are unable 

to capture. It can also be seen that the proposed model 
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Table 4. The best parameters of the obtained models 

Model The best parameters 

RNN Lag: 10 

The number of hidden layers: 1, 2 

Epochs :50 

Batch size:2 

Number of units in the hidden layer (n): 64 

Optimizer : Adam 

LSTM Lag: 10 

The number of hidden layers: 1 

Epochs :100 

Batch size: 2 

Number of units in the hidden layer (n): 64 

Optimizer : Adam 

ETS Trend: Additive  

Seasonality: Additive  

Length of one seasonal period (s):20 

ARIMA Length of one seasonal period (s): 20 

Order and seasonal Order: The best 

parameters obtained using the Auto-

ARIMA function. 

 
Table 5. Performance test results 

Method RMSE SMAPE 

ARIMA 13534 0.12 

ETS 16653 - 

RNN MONO 10925 0.068 

RNN MULTI 5722.32 0.028 

LSTM MONO 4707.78 0.027 

LSTM MULTI 4487.32 0.026 

 
 
LSTM multilayer has less error, by examining the 

values of RMSE and SMAPE compared to LSTM 

monolayer and RNN monolayer and multilayer. 

This shows that it is the best model to produce the 

best forecasting results. 

6.2 Comparison forecasting 

The results of the RMSE and SMAPE error 

evaluations for each model used in these studies, 

presented in Table 5, show that the ARIMA and ETS 

statistical methods have the highest error numbers 

compared to the ML methods. Several recent 

researches in the field of demand forecasting have 

confirmed the superiority of ML methods over 

statistical approaches such as [12, 48, 49, 52].  

In this section, in order to show the computational 

efficiency of forecasting by our proposed method, we 

plot the actual and projected demand forecasts by the 

deep learning models developed using Gridsearch 

method, namely single-layer RNN, multilayer RNN, 

single-layer LSTM and multilayer LSTM. 

 

 

▪ RNNs monolayer  

RNN seems to be a more appropriate method for 

time series forecasting. However, it suffers from the 

problem of the disappearance and explosion of the 

gradient. Applied to our data, it obtained less accurate 

performances in terms of forecasting with a very high 

RMSE and MAPE error rate of 10925 and 0.068, 

respectively, compared to the single and multi-layer 

LSTM model.  

▪ RNN multilayer 

As shown in Table 5, the multilayer RNN model 

was able to produce predictions with 48% lower 

errors for RMSE and 59% lower errors for SMAPE 

than those produced by the single-layer RNN model. 

These results show that the deeper the layers, the 

better the model performs. However, we observe that 

the number of errors is still larger than for the 

multilayer LSTM model. 

▪ Monolayer LSTM:  

The values of RMSE and SMAPE for the single 

layer LSTM are relatively lower by 17% and 3% than 

that of multilayer RNN respectively, for this reason, 

the single layer LSTM method was able to produce 

predictions closer to the actual values compared to 

the multilayer RNN model, as shown in Fig. 9. 

▪ LSTM multilayer: 

The graphical presentation of the predictions 

produced by the multilayer LSTM model developed 

using the Gridsearch method fully overlaps with the 

real values. This result shows that this model 

performs better than the single layer LSTM, then the 

errors presented by the multilayer LSTM are less than 

5% for the RMSE index and 4% for the SMAPE 

compared to the single layer LSTM. 

 

 

Figure. 6 Monthly demand forecast using mono-layer 

RNN 
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Figure.7 monthly demand forecast using multi-layer RNN 
 

 
Figure.8 Monthly demand forecast using LSTM 

monolayer 

 

 
Figure.9 Monthly demand forecast using LSTM Multi-

Layer 

7. Contribution 

This work presents the experimental application 

of ML methods for demand forecasting of the 

product with the highest turnover of a Moroccan 

company working in the pharmaceutical industry. 

Recent research on the application of ML techniques 

in the field of SCM has shown that the LSTM 

method produces good results in demand forecasting 

even with standard parameters predetermined in 

their above mentioned library [10, 43]. In practice, 

the increase in forecasting accuracy further improves 

the efficiency of SCM processes, therefore, the 

objective of this paper was to propose a new and 

improved LSTM model using the Gridsearch 

method that can automatically select the most 

suitable hyperparameters for the nature of the 

application's time series. The proposed method 

shows clear performance compared to statistical, 

single and multilayer RNN and single layer LSTM 

approaches. 

8. Conclusion 

The objective of this work was to build an 

LSTM model capable of producing the best possible 

forecasts, using real data from the sales history of a 

pharmaceutical product of a Moroccan company. We 

used the grid search method to select the best 

combinations of model hyperparameters and to better 

capture the characteristics of the time series.  

In order to demonstrate the superiority of the 

constructed model, we applied the Gridsearch 

method on all the methods used for comparison in 

this study namely two statistical models: ARIMA and 

exponential smoothing and the ML models: the 

multilayer RNN model and the monolayer LSTM. 

We used the RMSE and SMAPE error calculation 

indices to evaluate the performance of each model. 

The results show that the proposed multilayer LSTM 

with Gridsearch method has the lowest error 

measures: RMSE= 4487.32 and SMAPE= 0.026, 

compared to the traditional approaches and the 

multilayer RNN and monolayer LSTM models. This 

proves that the fitted LSTM model is capable of 

producing more accurate and efficient predictions. In 

our future work, we can apply the constructed model 

for demand forecasting in another SCM domain, and 

we can also improve the accuracy of the proposed 

model by constructing a hybrid LSTM model with 

another ML or statistical method. 
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