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Abstract: Many studies have been carried out to segmentation brain tumors on 3D Magnetic Resonance Imaging 

(MRI) images with 3D or 2D approaches. The 3D approach pays attention to the interrelationships between slices in a 

3D image. However, this requires high resources, while the 2D approach requires lower resources but ignores the voxel 

relationship in 3D space. The 2.5D approach seeks to combine the lightness of the 2D approach and the voxel 

interconnection of the 3D approach. This article proposes SDA-UNet2.5D, a shallow UNet 2.5D architecture that pays 

attention to the interconnectedness of 3D images by involving five slices to get one slice of segmentation prediction 

results. The architecture is trained using the Brain Tumor Segmentation (BraTS) 2018, 2019, and 2020 datasets. 

Compared to other architectures, this proposed architecture has a high segmentation speed with 4.05-4.24 seconds to 

segment one patient data. Online validation resulted in superior average dice performance of 75.70, 88.82, 77.33 for 

the BraTS 2018, 71.29, 88.00, 76.55 for the BraTS 2019, and 70.80, 87.95, 75.89 for the BraTS 2020 validation 

datasets in the areas of Enhanced Tumor (ET), Whole Tumor (WT), and Tumor Core (TC). 

Keywords: Shallow unet 2.5d, Atrous convolution, Attention mechanisms, Brain tumor segmentation, 2.5D approach. 

 

 

1. Introduction 

Automatic brain tumor segmentation is one way 

to obtain information on the tumor part in the brain 

for further medical action by utilizing computer 

computing. This method is taken to avoid manual 

segmentation, which needs experts, is time-

consuming, and is error-prone. Automatic 

segmentation is faster, produces consistent results 

compared to when an expert processes it at a different 

time or with another person. 

One of the brain tumor datasets that have been 

labelled for deep learning-based learning is the Brain 

Tumor Segmentation 2018 Challenge datasets [1, 2]. 

The dataset was provided along with the challenge 

that was held in 2018. The dataset consists of the 

training data and the validation data. Each dataset 

contains four modalities of 3D image data from MRI 

scans with different retrieval protocols (T1, T2, T1ce, 

and Flair) with a size of 240 × 240 × 155 . The 

training data is equipped with ground truth for 

training purposes, while the validation data is not 

equipped with ground truth. The validation data 

segmentation results can only be validated using the 

online validation tool at https://ipp.cbica.upenn.edu. 

The BraTS dataset is growing rapidly with challenges 

in the following years. The latest available datasets 

besides BraTS 2018 are BraTS 2019, BraTS 2020, 

and BraTS 2021, with an increasing number of data 

[3-5]. 

The automatic segmentation process for 3D 

images has been carried out in many studies with 

some different approaches. The 2D processing 

approach is used in [6] by breaking the 3D image into 

several slices and normalizing the pixel values in  the 

interval 0-255, manipulating the least significant bit 

(LSB) and the most significant bit (MSB) of the 

image. This processing approach is fast because it 
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processes 2D images but ignores the 

interrelationships between slices of 3D images so that 

the performance is not optimal. Another approach is 

taken by Hu et al. [7] which processes 2D slices of 

each of the three axes: axial, coronal, and sagittal and 

recombine each of the outputs into one. This 

approach yields good performance, but the training 

will be performed three times, and the inference 

process for each slice on each axis also be performed 

three times. Rezaei et al. [8] use 3D approach by 

using two 3D UNet arranged sequentially. Because 

this 3D approach requires a large memory capacity, 

the 3D image is broken into 64 × 64 × 64 size. 

This paper proposes an architecture that focuses 

on segmenting brain tumors from 3D images with a 

2.5D approach while keeping the interrelationships 

between slices in 3D images and small memory 

requirements. By processing some slices of the four 

existing modalities via a 3d to 2d converter block, 3D 

images can be processed with some 2D convolution 

blocks that take advantage of atrous convolution and 

attention gate, resulting in better segmentation 

performance. This 2D convolution block makes the 

size of the processed image pieces can be more 

expansive, expected to improve the segmentation 

performance. In summary, the contributions in this 

paper are given as follows: 

1. We designed the Shallow dilated with attention 

UNet2.5D architecture with block modifications 

that utilize atrous convolutions and attention 

mechanism to do brain tumor segmentation 

2. We proposed a Multi Dilated Residual with 

Attention Mechanism block that replace block 

processing in transfer section in the UNet 

architecture. Dilated factors used in the block 

contains sequence of 1,2,4, and 8. 

3. We proposed d-dilated residual block, a residual 

block with d factor/parameter of dilated used in 

atrous convolution. 

Furthermore, this paper is organized into the 

following sections: Related Study is described in 

Section 2. Section 3 contains the material and 

proposed method used in this study. Section 4 

presents the results achieved with their analysis and a 

comparison of performance with the four current 

methods. Section 5 contains conclusions and future 

works. 

2. Related works 

Deep Convolutional Neural Networks (DCNNs) 

have been widely used in medical image 

segmentation. UNet [9] is one of the deep learning 

architectures used to perform this automatic 

segmentation. This architecture consists of 3 main 

parts: the contracting section, the transfer section, and 

the expanding section. What distinguishes this 

architecture from other FCN architectures is a skip 

connection section that connects the contracting 

section with the corresponding expanding section. 

Subsequent researchers developed this UNet 

architecture with several modifications. UNet 

development with replacement of block contents is 

done at [10-13]. The replacements include residual 

block [11, 13, 14], two-path residual blocks and 

applying variations in the use of these blocks in the 

contracting and expanding sections [10], and dilated 

convolution [12, 15]. In addition, the skip connection 

section has also been modified with an attention gate 

at [13]. 

A residual block is a way to connect the first part 

of a block with the last part of the block. This method 

is used to avoid vanishing gradients in the deeper 

blocks of the deep convolutional neural network. 

Therefore the architecture can be structured more 

deeply without losing the gradient [16]. The 

placement of the activation function in the residual 

block that produces the best performance is strategic 

pre-activation compared to other placement 

variations [17]. 

One of the essential factors in the convolution 

process is the size of the receptive field used. The 

receptive field is the size of the area in the input 

section that is used to form the output feature [18]. 

The larger the size of the receptive field used, the 

more information that can be used to form the output 

feature, and the smaller the input information that is 

not used to form the output feature [19]. However, the 

larger the receptive field, the larger the number of 

DCNN architecture parameters. One way to increase 

the size of the receptive field without increasing the 

number of parameters is to use atrous convolution. 

The use of atrous convolution has succeeded in 

increasing performance as reported in [12, 15, 20]. 

Small objects in the image to be segmented 

usually fail to be segmented. One method to 

minimize the possibility of missing segmentation is 

to apply attention. Attention is a way of focusing 

processing on only the important parts during training. 

Thus, it can reduce processing on the parts that are 

not relevant. Attention was used in [21-23] and 

reported good results. 

Regarding detecting brain tumors, many studies 

have been carried out to detect their presence. 

Tjahyaningtijas et al. [24] proposed the en-CNN 

architecture, which is a modification of VGG16 to 

detect the presence of tumors using the BraTS 2018 

dataset. This architecture uses a 2D approach by 

taking slices of the available modalities and reducing 

their size into 224 × 224 × 1 to be processed by the 
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en-CNN architecture. The output of the en-CNN 

architecture is a binary class in the form of high-grade 

glioma and low-grade glioma. Furthermore, Rao et al. 

[25] proposed an approach to segmentation of the 

presence of tumors as a whole before classifying 

tumors using the Hybrid Kernel-based Fuzzy C-

Means-Convolutional Neural Network (KFCM-

CNN) method using the T1-Weighted Contrast 

Enhanced MRI dataset. The entire tumor area was 

first segmented by KFCM followed by feature 

extraction to obtain input features for CNN. The final 

output of this method is in the form of three tumor 

classes consisting of meningioma, glioma, and 

pituitary. These two approaches focus more on tumor 

classification. The first approach does not segment 

the tumor area first, while the second approach 

segments the entire tumor area as an input to the 

classification architecture using CNN. 

In processing brain tumor segmentation with 

datasets from BraTS, Benson et al. [26] use a 2D 

approach by stacking several convolution layers and 

utilizing bit processing for 2D image management. 

Tuan et al. [6] also adopt a 2D UNet architecture 

approach by implementing two kernel sizes, 3 × 3 

and 5 × 5. Furthermore, Lorenzo et al. [14] replaced 

the plain convolution in 2D UNet with residual 

blocks and used two consecutive UNet models to 

process tumor segmentation. The first UNet was used 

to segment the entire tumor area, and the second 

UNet was used to segment it into three predefined 

classes. Kotowski et al. [27] uses the same approach 

by detecting all tumor areas followed by multiclass 

classification of pixels that have been detected as 

tumors. This 2D processing approach for 3D images 

has the advantage of using minimal GPU memory 

footprint but eliminating voxel connectivity 

information in 3D space. 

The adoption of 3D processing was carried out by 

Bhalerao et al. [28] by modifying the UNet 2D 

architecture from [9] into 3D architecture and 

replacing its processing block to residual block with 

two convolutions. Another approach is taken by 

Ahmad et al. [29] by replacing UNet3D blocks with 

residual dense blocks to minimize the number of 

parameters and add atrous-spatial pyramid pooling 

blocks at each level of the expanding part of UNet to 

capture a multilevel contextual feature map. 

Kotowski et al. [30] apply a 3D approach by 

cascading two UNet architectures, one for the 

detection of whole tumors and the other for 

performing multiclass classification according to the 

components of tumor formation. Rezaei et al. [31] 

modified UNet 3D and used it as a generator in the 

GAN architecture used for tumor segmentation. 

Furthermore, Rezaei et al. [8] used two 3D UNet 

architectures as generators in developing the GAN 

architecture for tumor segmentation. Agravat et al. 

[32] developed the FCNN 3D encoder-decoder 

architecture to perform tumor segmentation. The 

application of UNet 3D with several levels of 

downsampling has given better results. However, 

several levels of downsampling have reduced the 

precision of spatial/position information from the 

tumor. In addition, the use of the 3D approach also 

requires greater resources than the 2D approach. 

The 2.5D processing approach is intended to 

overcome the absence of voxel interconnection in the 

2D approach while minimizing the need for high 

processing devices in the 3D approach. Zhao et al. 

[33] replaces its UNet3D processing block by 

applying three 2D convolutions to replace one 3D 

convolution. Each 2D convolution is used to process 

the map features of each of the axial, sagittal, and 

coronal axes. Hu et al. [7] uses a 2.5D approach by 

processing 3D medical images from each of the axial, 

coronal, and sagittal axes, improving the quality of 

the segmentation with CRF and combining the results 

from each axis to get the final segmentation. 

Indraswari et al. [34] also uses a three-axis projection 

approach to segment the entire tumor area without 

dividing it in detail into each tumor component. The 

approach of combining each of these axes results in 

good segmentation performance but requires training 

and inference as many as three axes are used. Image 

processing is also performed three times from each 

axis before being combined into one final 

segmentation result. 

The selection of the final segmentation layer kind, 

the image crop size used, and the post-processing 

segmentation layer significantly affects architectural 

inference speed. A fully connected layer in the final 

segmentation layer increases the number of 

architectural parameters trained compared to using a 

convolution layer. A small image crop size will 

require more processing iterations than a more 

significant one. Furthermore, an additional complex 

post-processing layer will increase the time required 

for single data inference. Pereira et al. [35] proposed 

a CNN architecture that uses a 2D approach with 

patch-based processing of 33 × 33 to produce a one-

pixel segmentation output with five probability 

values for each class (normal tissue, necrosis, edema, 

non-enhancing, and tumor enhancing). The final 

three layers of the proposed architecture are fully 

connected layers with the last layer output using the 

softmax activation function. On the other hand, 

Havaei et al. [36] proposes the InputCascadeCNN 

architecture, which combines two TwoPathCNNs 

with patch sizes of 33 × 33  and 65 × 65 . 

TwoPathCNN contains two processing paths a local 
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path (with a 7 × 7 kernel size) and a global path (with 

a 13 × 13 kernel size). The final output is processed 

using a convolution layer that produces five class 

probability values for each segmented voxel target. 

Hu et al. [7] developed InputCascadeCNN and 

applied it to three axes, axial, sagittal, and coronal, 

improving the segmentation results with Conditional 

Random Fields (CRF) and combining the outputs of 

each axis with a voting strategy. Furthermore, Zhao 

et al. [37] uses a 2.5D approach using a Fully 

Convolutional Neural Network (FCNN) architecture 

connected to a CRF, formulated as a Recurrent 

Neural Network (CRF-RNN). The FCNN developed 

is similar to [36] but only uses three of the four MRI 

image modalities and processes from three axes and 

combines the final output using a voting strategy. 

Chen et al. [38] developed the DeepMedic 

architecture by combining features maps from 

several previous convolution layers to enrich the 

features that have been studied to be incorporated into 

the multi-layer perceptron architecture as a post-

processing method to produce the final segmentation 

output. This architecture uses a 3D approach with a 

crop size of 25 × 25 × 25 . The use of fully 

connected layers in [35], the small crop size in [7, 35-

38], and the additional use of complex post-

processing such as in [37, 38] cause each architecture 

to require significant inference time for processing a 

single patient data. 

Increasing the receptive field area using atrous 

convolution and attention mechanism in tumor 

segmentation has given promising results. Awasthi et 

al. [39] apply attention gate to skip connection in 

UNet 2D and perform segmentation for each target 

using one independent model. In addition to 

implementing an attention gate in the skip connection 

section, Xu et al. [40] also adds supervision in the 

segmentation layer in the expanding layer. Savadikar 

et al. [41] used a 2D probabilistic UNet and the 

application of an attention mechanism on the skip 

connection section. Guo et al. [42] applied a 

combination of two patch sizes and two types of 

attention (spatial attention and attention channel) and 

mixed them on UNet 3D to form four independent 

models for segmenting tumors. Meanwhile, Yan et al. 

[43] implements a Squeeze-and-Excitation block 

(SEB) in each residual block in the 3D encoder-

decoder architecture, which is used to improve 

segmentation performance. The SEB is also used by 

Zhao et al. [33] to improve the segmentation 

performance of their model. The use of atrous 

convolution and attention mechanisms separately or 

together has improved the performance of tumor 

segmentation models. The combination of using 

atrous convolution and attention mechanism in one 

architecture is expected to improve model 

segmentation performance further.  

This article proposes the Shallow Dilated with 

Attention Unet2.5D architecture to overcome the 

previous problems. This architecture is designed with 

a 2.5D approach to maintaining the relationship 

between voxels in 3D space, consists of one level of 

downsampling, utilizes the power of atrous 

convolution and attention mechanisms, and uses 

simple but powerful post-processing. The 2.5D 

approach is made by taking five slices of a 3D image 

and converting them into a 2D feature map that can 

be processed with 2D convolution, which is faster, 

lighter, and requires less GPU RAM compared to 3D 

convolution. The 3D to 2D converter block used 

differs from the 2.5D processing of other 

architectures, which incorporate the processing of 

slices from three axes. Utilization of one level of 

downsampling is intended to minimize the shift in 

spatial/position information from the tumor due to the 

pooling process. Atrous convolution is intended to 

expand the receptive area without using a large kernel 

size. Furthermore, the use of the attention mechanism 

is intended to strengthen features related to 

segmentation targets, especially for small objects. 

Combining the atrous convolution arrangement and 

attention mechanism in a block significantly affects 

the segmentation performance. Finally, simple post-

processing is intended to simplify the conversion 

process of the final processing results to the 

reconstruction of the segmentation target.  

3. Material and method 

3.1 Dataset 

The datasets used in this study are BraTS 2018, 

BraTS 2019, and BraTS 2020 datasets. Each dataset 

consists of a training and validation dataset. The 

BraTS 2018 training dataset contains 285 patient data, 

with four modalities (T1, T2, T1ce, Flair, and one 

label). In comparison, the BraTS 2018 validation 

dataset contains 66 patient data with four modalities 

without any ground truth. The BraTS 2019 training 

dataset contains 335 patient data with four modalities 

and labels, while the corresponding validation dataset 

contains 125 patients with four modalities without 

segmentation labels. Furthermore, The BraTS 2020 

training dataset consisted of 369 patient data with 

four modalities and segmentation labels, while the 

validation dataset contained 125 data without 

segmentation labels. 

For local training and validation purposes, the 

training dataset is divided into two parts with a 

composition of 80:20—80% for training, and 20%  
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Table 1. Maximum volume of BraTS 2018 image 

cropped 

Dataset Maximum volume size 

Training Data 154 × 187 × 149 

Validation Data 164 × 190 × 147 

 
Table 2. Range of voxel intensity values of BraTS 2018 

dataset 

Dataset Modality Minimum 

Value 

Maximum 

Value 

Training 

Data 

T1 0.0 32767.0 

T2 0.0 32767.0 

T1ce 0.0 32767.0 

Flair 0.0 32767.0 

Validation 

Data 

T1 0.0 32767.0 

T2 0.0 32767.0 

T1ce 0.0 32767.0 

Flair -36.1 32767.0 

 

for local validation data. The 5-Fold Cross Validation 

strategy was used to stabilize the training results. 

For online validation purposes, the validation 

dataset is processed using the trained model. The 

processing results are stored in medical file format 

(.nii.gz) to follow the prerequisites determined by the 

online validation tool. 

3.2 Pre-processing 

The pre-processing carried out on the data 

consists of two things. The first is cropping the image 

in order to get a volume that contains only the brain. 

From direct checking on the BraTS 2018 dataset, the 

maximum volume obtained is listed in Table 1. 

This cropping results in reduced memory 

requirements during training and inference models. 

Starting location of the cropping is still carried out to 

reconstruct the original size ( 

240 × 240 × 155) for online validation. 

The voxel value of the MRI image does not 

follow the general standard for images with gray 

values in the range 0-255. From directly checking the 

voxel values for each modality in the BraTS 2018 

dataset listed in Table 2. 

By taking into account these varying values, these 

values are normalized first using Eq. (1) 

 

𝐶𝑛𝑜𝑟𝑚 =
𝐶𝑜𝑟𝑖𝑔−μ

σ+ϵ
                           (1) 

 

With 𝐶𝑜𝑟𝑖𝑔  and 𝐶𝑛𝑜𝑟𝑚  representing the original 

and the normalized image, μ and σ are the mean and 

standard deviation values of the voxels in the 

normalized area, and ϵ  is the small numbers to 

prevent division by zero. This normalization applied 

to each modality and nonzero voxels only. 

3.3 Data separation 

For training purposes, the training data divided 

into two major parts, 80% for training and 20% for 

validation. Data with High-grade Glioma (HGG) and 

Low-grade Glioma (LGG) category. LGG data from 

direct examination sometimes does not contain the 

ET area. To get the best training model, all LGG 

category data are included in the training. And in 

order to obtain a more stable training model against 

variations in the initial weight of the model, the 5-

Fold strategy was used. 

3.4 Proposed architecture 

The proposed architecture is the development of 

the UNet [9] network with some modifications. The 

original UNet network was used to process 2D 

medical images, while currently being faced is 3D 

medical images with several modalities.This 

architecture uses multiple dilated convolution and 

attention blocks to improve the performance of the 

model. Visualization of this architecture as shown in 

the Fig. 1. 

This architectural form still follows the UNet 

network pattern but with only one level of 

downsampling. This architecture also utilizes the 

power of atrous convolution to enlarge the receptive 

fields and add attention mechanisms to focus on 

features relevant to target segmentation. Therefore, 

this architecture is called Shallow Dilated with 

Attention UNet 2.5D (SDA-UNet2.5D). 

The input is a 3D medical image with size 

4 × 5 × 196 × 196 . To be processed with 2D 

processing, a 3D to 2D converter block is used. This 

converter block gets a 3D image input and produces 

a 2D output with a size of 16 × 196 × 196. Details 

of this block can be seen in Fig. 2. In the 3Dto2D 

converter, we take five slices of each modality 

convoluted into eight channels of size 8 × 5 × 196 ×
196. Using these five slices is a 2.5D approximation 

compared to using all slices in the 3D approximation 

or only one slice in the 2D approximation. The 

obtained feature map is then processed with two paths, 

the first path is a convolution with a kernel size of 

5 × 5 × 5 , and the second path contains two 

convolution sequences with a kernel size of 3 × 3 × 3. 

The use of these two processing lines is intended to 

capture information from areas with different kernel 

sizes to enrich each other’s output. The output of each 

path is combined to get a feature map of size 

16 × 1 × 196 × 196, which is then reshaped to size 

16 × 196 × 196. The feature map of this converter 

becomes the input for the next encoder block. 
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Figure. 1 Shallow dilated with attention UNet 2.5D - SDA-UNet2.5D 

 

 

 
Figure. 3 Encoder block 

 

The 2D Encoder block consists of a regularizer 

and a residual block. The regularizer block is a 

convolution block with a kernel size of 3 × 3 × 3, 

eight filters, and followed by a dropout layer with a 

rate of 0.2 to prevent overfitting, as suggested by [44]. 

The selection of rate values for this dropout varies. 

The value 0.1 is used in [45], 0.5 is used in [46, 47] 

and [48] finds a rate value of 0.1 from the 0.1-0.5 

interval which is the best for their model. 

Furthermore, the residual block is a ResNet block 

with a pre-activation strategy. ResNet itself has been 

proven to be able to accelerate convergence in image 

recognition as was done in [16]. Meanwhile, 

alternative activation was investigated in [17] and 

found that the pre-activation strategy was able to give 

better results compared to other strategies. This 

encoder block is structured by adopting these studies. 

Details of this encoder block can be seen in the Fig. 

3. 

The first convolution in residual block is used to 

equalize the number of filters with the output of the 

second convolution, using the kernel size 1 × 1 . 

Before proceeding to the subsequent convolution 

with kernel size 3 × 3 , the feature maps are 

normalized with GroupNormalization [49] and 

activated using ReLU. The first convolution feature 

is added with the second convolution feature to 

produce block’s output. 

The encoder block’s output is passed as a skip 

connection to the corresponding layer in the  
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Figure. 4 d-Dilated residual unit 

 

 
Figure. 5 F-A-Attention mechanisms block 

 

 
Figure. 6 2D decoder block 

 
Table 3. SDA-UNet2.5D architecture’s size 

Metrics Amount 

Total Params 167,959 

Trainable Params 167,959 

Non-trainable Params 0 

FLOPS 4.53 G 

 

expanding section. In addition, this output is 

downsampled using convolution with stride 2 × 2 , 

kernel size 3 × 3, and the number of filters is doubled 

for further processing in the following block. 

As a transfer/bottleneck layer, a multi-dilated 

residual block with attention mechanism is employed 

as shown in Fig. 1. This multi-dilated residual block 

with an attention mechanism consists of three 

sequences of four dilated residual blocks with 

different dilation factors (d-DRU) followed by an 

attention mechanism with different filter sizes (F-A-

AM). Details of the components that make up d-DRU 

and F-A-AM as shown in Fig. 4 and 5. 

D-DRU consists of some operations starting from 

GroupNormalization, ReLU, and Conv2D as shown 

in the Fig. 4. After ReLU, the feature maps are 

padded using a dilation-valued factor used. After 

convolution, the feature map will have equal size 

with the initial feature to be concatenated at the end 

of the unit. 

The F-A-Attention Mechanism is intended to add 

more focus to a small object area. Enhanced tumor or 

Necrotic objects from the data generally occupy a 

small area compared to the Edema area. The diagram 

of the Attention Unit is as depicted in the Fig. 5. At 

the end of this attention block, the sigmoid activation 

result of the last convolution is multiplied by the 

initial input. The resulting features are passed to the 

next block.  

The block followed is an upsampling block that 

doubles the feature size by using upsampling. The 

upsampled features are combined with the skip 

features of the encoder block to produce features with 

a size of 120 × 196 × 196, which is the input for the 

decoder block. 

The decoder block, which is the last block in this 

architecture, is used to process the previous feature 

maps into segmentation classes being targeted. In this 

case, the goal of segmentation is three classes, ET, 

TC, and WT. The visual details of this decoder block 

are shown in the Fig. 6. 

The size of this architecture is light when viewed 

from the number of parameters and the number of 

floating-point operations per second (FLOPs) [50] as 

stated in Table 3. 

3.5 Post-processing 

The output of this model is three one-hot vectors 

with dimensions 3 × 196 × 196  representing ET, 

TC, and WT areas. In order to be validated using the 

online validation tool, this output must be 

reconstructed back into a 3D image of size 

240 × 240 × 155.  

One slice of prediction results from processing 

five input slices from 4 modalities that are compiled 

together. To get the prediction results from the image 

as a whole, all the slices must be processed.  

The output transformation of the model results in 

the form of three one-hot vectors with indexes 0 (ET), 

1 (TC), and 2 (WT) to one slice of results is carried 

out with the following procedure: 
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1. Duplicate the WT vector to the output vector 

with values > 0.5 changed to 2, and others 

changed to 0. 

2. Based on the value in the TC vector, change 

the value in the output vector to 1 if the 

element in the TC vector is > 0.5. 

3. Based on the value in the ET vector, change 

the value in the output vector to 4 if the 

element in the ET vector is > 0.5. 

The result of the slice transformation is 

reconstructed back to size 240 × 240 × 155 based 

on the cropping location. 

3.6 Loss function 

The dice loss function is used in training and 

calculated as one minus the dice score. Dice score 

itself is a function that calculates the intersection 

between the segmentation results and the existing 

ground truth. The equation for calculating this dice-

score can be seen in Eq. (2), where x represents the 

area, Y and P represent ground truth and prediction 

results in one-hot vector form, and ϵ contains small 

value to avoid dividing by zero. 

Because the final output of this architecture is 

three segmentation classes, it is necessary to find a 

way to combine them into one value. The ET class 

score with the smallest area average is given a weight 

of 0.34, while the TC and WT areas are each given a 

weight of 0.33. Therefore, the loss function becomes 

like in Eq. (3). 

 

𝑑𝑖𝑐𝑒𝑥 =
2×(𝑌𝑥×𝑃𝑥)+ϵ

|𝑌𝑥|+|𝑃𝑥|+ϵ
                     (2) 

 

𝐿𝑓𝑢𝑛𝑐 = 1 − (0.34 × 𝑑𝑖𝑐𝑒𝐸𝑇 + 0.33 × 𝑑𝑖𝑐𝑒𝑇𝐶 +

0.33 × 𝑑𝑖𝑐𝑒𝑊𝑇)                       (3) 

 

Where 𝑑𝑖𝑐𝑒𝐸𝑇, 𝑑𝑖𝑐𝑒𝑊𝑇, and 𝑑𝑖𝑐𝑒𝑇𝐶  are the dice 

score of each segmented area as shown in the Eq. (2). 

3.7 Performance metrics 

Segmentation is performed to identify three areas 

in the image (ET, TC, and WT areas). This 

measurement is calculated using the Dice Score. The 

equation to calculate the measurement can be seen in 

the Eq. (4).  

 

𝑑𝑖𝑐𝑒(𝑃, 𝑇) =
2×𝑇𝑃+𝜖

2𝑇𝑃+𝐹𝑃+𝐹𝑁+𝜖
× 100%          (4) 

 

With P and T representing the prediction and 

target results, TP and TN represent the number of 

correctly classified object or background voxels. FN 

and FP represent the number of incorrectly classified 

background or object voxels. 𝜖 is a small number to 

avoid dividing by zero. 

4. Results and discussions 

4.1 Experiment settings 

The architecture implementation is done by using 

the Keras/TensorFlow 2.5 package. The hardware 

used is 64GB of RAM with an Nvidia RTX 2080i 

11GB GPU. The batch size used is 8 with one slice 

per data.  

The 3D resolution size used for each data is 

196 × 196 × 196; therefore, if the slice size of the 

3D image is less than that size, some blank slices will 

be added. Five slices of the four modalities will be 

taken with the position of the ground truth slice in the 

middle. Furthermore, for ground truth slices at 

indexes 0 and 1, two/one blank slices will be added 

to each modality previously, respectively. Likewise, 

two/one blank slices will be added to each modality 

afterward for ground truth slices at the last two 

indexes.  

Some augmentation techniques were applied to 

the training data to increase data variations and 

increase the model’s generalizability during training. 

Augmentation used includes rotation, taking slices 

based on different axes, replacing one of the 

modalities with a gaussian distribution, and mirroring. 

The rotation technique is performed on 3D 

images with variations in angles of −15∘, 0∘, and 15∘. 
This rotation is performed relative to a randomly 

selected axis and angle. After the rotation process, 

several slices and their ground truth were taken to be 

used in training. 

The epoch used is 900. The optimizer used is 

Adam with a learning rate of 1e-4, and the loss 

function used is diceloss with the formulation as 

mentioned in the Eq. (3). 

4.2 Results analysis 

The time spent on training and local validation in 

each fold for 900 epochs as stated in Table 4. The 

table shows that the average time required per fold is 

24,545.6 seconds for BraTS 2018 dataset, 28,500.6 

seconds for BraTS 2019 dataset, and 31,163.8 

seconds for BraTS 2020 dataset. Meanwhile, running 

the segmentation process on the validation dataset 

takes an average of 60, 121, and 118.6 seconds per 

fold for 66 cases in BraTS 2018, 125 cases in BraTS 

2019, and 125 cases in BraTS 2020 validation dataset, 

respectively. Furthermore, using the ensemble from 

five models, the segmentation time average per case 

is 4.05, 4.24, and 4.17 seconds in BraTS 2018, BraTS  
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Table 4. Model training, validation, and inference time 

Fold BraTS 2018 BraTS 2019 BraTS 2020 

Training 

285 cases 

(s) 

Inference 

66 cases 

(s) 

Training 

336 cases 

(s) 

Inference 

125 cases 

(s) 

Training 

369 cases 

(s) 

Inference 

125 cases 

(s) 

1 24,619 60 28,509 127 31,351 125 

2 24,525 60 28,534 119 31,369 117 

3 24,515 60 28,513 119 31,345 117 

4 24,517 60 28,437 120 30,636 117 

5 24,552 60 28,510 120 31,118 117 

Average 24,545.6 60 28,500.6 121 31,163.8 118.6 

Ensemble 5 

models 

- 267 - 530 - 521 

 

 

Table 5. Segmentation time on one patient data 

Methods Segmentation 

time (seconds) 

#params 

Pereira et al. 

[35] 

480 2,118K 

Havaei et al. 

[36] 

180 802K 

Zhao et al. [37] 120-240 - 

Hu et al. [7] 90-180 - 

Chen et al.[38] 186.93 100K 

SDA-

UNet2.5D 

4.05-4.24 168K 

 

2019, and BraTS 2020 validation dataset. This 

performance can be achieved with the model’s size, 

which only has 167,959 trained parameters with a 

FLOPs size of 4.53 GFlops. 

Comparing the segmentation speed with a 

number of the latest methods, the segmentation speed 

of this architecture provides the best performance as 

shown in Table 5. The DF MLDeepMedic [38] 

architecture has fewer parameters than the proposed 

architecture, but the segmentation speed is still below 

the proposed architecture. This is possible because 

DF MLDeepMedic uses additional postprocessing by 

using the multi-layer perceptron (MLP) and small 

image size pieces. In contrast, this proposed 

architecture uses simple postprocessing by directly 

converting the final output into individual tumor parts 

and compiling them into one output. In addition, 

using a small chunk size (25 × 25 × 25 ) in DF 

MLDeepMedic causes more processing steps to be 

done when compared to using a larger chunk as used 

by the proposed architecture (5 × 196 × 196). The 

use of small image size pieces is also carried out in 

[7, 35-37], which causes iterative processing to 

process the complete image so that each architecture 

requires a longer inference time than the proposed 

architecture. Using a fully connected layer in [35] and  

 

 
Figure. 7 Segmentation results on the 80th slice: (a) flair 

image on the 80th slice, (b) image with ground truth 

boundary, (c) image with prediction boundary, and (d) 

overlapping boundary of ground truth and prediction 

 

additional postprocessing in [37] causes the inference 

time to be longer than the proposed architecture.  

Visual analysis of the segmentation results using 

the fold 1 model as shown in Fig. 7. The image is 

Flair’s modality at the 80th slice. The first row is a 

visualization for the WT area, the second row for the 

TC area, and the third row for the ET area.  

There is a curve in ground truth in the WT area 

that is slightly recognizable by the prediction results. 

Likewise, ET areas with complex ground truth areas 

can still be recognized in predictions but with a more 

general area shape. However, for the TC area, the 

prediction results and ground truth intersect well. 

As seen in the fourth column, the overlap between 

the segmentation result area and ground truth is 

mainly in the middle. Meanwhile, there is a 

discrepancy between the prediction area and the 

ground truth in the edge area. There are parts of the 

segmentation results that are more protruding than 

the ground truth, and there is also the area of the 

segmentation results that is smaller than the ground 

truth. 
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With the 5-fold cross-validation training strategy, 

five different trained weights were produced. Each of 

these weights is used to segment the validation 

dataset. In addition, the ensembling of 5 model 

weights to segment the validation dataset using the 

averaging method was also carried out. The results of 

each segmentation are sent to an online validation 

tool to check for accuracy. Table 6 to 8 shows the 

performance of each model and the combination of 

the five models on each validation datasets. 

In the BraTS 2018 validation dataset, the 

performance of the proposed architecture is superior, 

with the dice performance for the ensemble model 

reaching 75.70, 77.33, and 88.82 for the ET, TC, and 

WT areas. The variation in the performance of each 

5-fold training model is also not too high. 

Furthermore, combining five models of each fold 

increase the average performance of the dice. The 

number of data validated online is 66 patient data. 

The time required to perform inference is 267 

seconds for the ensemble model, so the average time 

required per patient data is 4.05 seconds. 

In the BraTS 2019 validation dataset, the 

proposed architecture also provides good dice 

average performance. The model used is a model that 

was trained from the beginning for each fold, so it 

does not use the model from the previous training. 

The resulting performance is still good, although 

slightly decreased compared to the architectural 

performance in the BraTS 2018 validation dataset. 

This variation is acceptable given the variations in the 

dataset that may occur and the training data used. As 

previously mentioned, the 2019 BraTS validation 

dataset consists of 125 patient data with 336 training 

data.  

For architectural performance in the BraTS 2020 

validation dataset, the average dice for each area also 

gives good results. Although it decreased compared 

to the performance in the previous validation dataset, 

the architectural performance was still good in this 

BraTS 2020 dataset. 

To determine the quality of the architecture, we 

also compare the performance of the proposed 

architecture with several current architectures for 

each validation dataset. Architectural performance 

comparison across the BraTS 2018 validation dataset 

as shown in Table 9. 

The average dice performance of the proposed 

architecture in the BraTS 2018 validation dataset 

outperformed all comparison architectures in all 

areas. The 2D processing approach for 3D MRI 

images such as that of Tuan et al. [6] and Benson et 

al. [26] has lower performance than the proposed 

architecture using the 2.5D approach. Tuan et al. [6],  
 

Table 6. Segmentation performance on BraTS 2018 

Validation dataset 

Fold Mean Dice (%) 

 ET WT TC 

1 72.83 87.53 76.55 

2 74.36 87.55 76.25 

3 71.29 85.15 75.19 

4 71.49 87.05 75.21 

5 72.95 87.48 73.13 

Ensemble 75.70 88.82 77.33 

 
Table 7. Segmentation performance on BraTS 2019 

Validation dataset 

Fold Mean Dice (%) 

 ET WT TC 

1 69.61 85.32 75.39 

2 68.68 85.40 74.58 

3 69.84 86.29 75.24 

4 66.79 86.57 74.08 

5 69.34 87.10 75.09 

Ensemble 71.29 88.00 76.55 

 
Table 8. Segmentation performance on BraTS 2020 

Validation dataset 

Fold Mean Dice (%) 

 ET WT TC 

1 66.76 85.97 74.08 

2 69.95 86.90 74.05 

3 68.95 85.59 73.64 

4 66.42 85.50 74.58 

5 68.09 86.48 74.69 

Ensemble 70.80 87.95 75.89 

 

which uses two types of kernel sizes ( 3 × 3 and 

5 × 5 ), still performs lower performance than the 

proposed architecture that utilizes atrous convolution 

to expand the receptive area. Likewise, the approach 

was taken by Hu et al. [7] which combines the 2D 

approach of three axes also has lower performance. 

The proposed architecture is still superior to The 

GAN architectural approach with 3D processing 

carried out by Rezaei et al. [31]. Only in the TC 

section, the proposed architecture is lower than the 

architecture in Rezaei et al. [8] but has higher 

performance in ET and WT areas. These results show 

that using the 2.5D approach with atrous convolution 

in the proposed architecture can outperform the 

comparison architecture that uses 2D processing and 

3D processing approaches by utilizing GAN for the 

3D MRI images. 

In the BraTS 2019 validation dataset as seen in 

Table. 10, the average performance of the proposed 

architecture dice also outperforms all other 

comparison architectures. The proposed architecture 

outperforms the architecture in [27] and [14] which 

use a 2D approach. The proposed architecture also  
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Table 9. Dice performance comparation on the BraTS 

2018 validation dataset 

Arch. Mean Dice (%) 

 ET WT TC 

Tuan et al.[6] 68.25 81.87 69.99 

Rezaei et al.[8] 63 84 79 

Rezaei et al. [31] 61 81 64 

Benson et al. [26] 66 82 72 

Hu et al.[7] 71.78 88.24 74.81 

SDA-UNET2.5D 75.70 88.82 77.33 

 
Table 10. Dice performance comparation on the BraTS 

2019 validation dataset 

Arch. Mean Dice (%) 

 ET WT TC 

Guo et al. [42] 67.7 87.2 72.8 

Lorenzo et al.[14] 66.34 89.04 75.11 

Ahmad et al. [29] 62.30 85.18 75.76 

Kotowski et al.[27] 68.4 83.8 73.5 

Bhalerao et al. [28] 66.68 85.27 70.91 

Yan et al.[43] 66 86 73 

SDA-UNET2.5D 71.29 88.00 76.55 

 
Table 11. Dice performance comparation on the BraTS 

2020 validation dataset 

Arch. Mean Dice (%) 

 ET WT TC 

Awasthi et al.[39] 57 73 61 

Savadikar et al.[41] 68.89 81.90 71.68 

Zhao et al.[33] 67.1 86.2 62.3 

Agravat et al.[32] 68.6 87.6 72.5 

Kotowski et al.[30] 68.53 87.12 74.53 

Xu et al. [40] 67.36 86.08 70.42 

SDA-UNET2.5D 70.80 87.95 75.89 

 

outperforms the dice performance of architectures 

using a 3D approach such as in [28, 29]. The 

proposed architecture also outperforms the 

architecture in [42] which uses the attention 

mechanism, and [43], which uses SEB in the 

architecture. The use of Multi-dilated block and 

attention mechanism in the proposed architecture 

provides dice performance that outperforms the use 

of atrous convolution in [29], variation of attention 

mechanism in [42], and SEB block in [43]. 

The combined use of several atrous convolutions 

with different dilatation factors and attention 

mechanisms in one block makes the proposed 

architecture outperform the comparison architecture 

that uses the attention mechanism in the skip 

connection section in [39] as shown in Table 11. The 

proposed architecture also outperforms the 

architecture in [41], which uses probabilistic UNet by 

applying an attention mechanism to the skip 

connection. The performance of the architecture in 

[40] which adds deep supervision in the decoder 

section, and the architecture in [33] that uses the SEB 

block also has a lower average dice performance than 

the proposed architecture. 

5. Conclusion and future works 

We have proposed the Shallow Dilated with 

Attention-UNet2.5D architecture, which is a 

development of the UNet architecture with a 2.5D 

approach, consists of only one level of downsampling, 

and contains a Multi Dilated Residual with Attention 

Mechanism block in the transfer section. The 

architecture was tested using the BraTS 2018, BraTS 

2019, and BraTS 2020 datasets and yielded superior 

performance over the current benchmark 

architectures. The advantages of this architecture are 

supported by one level of downsampling in UNet, the 

use of atrous convolutions with different dilatation 

factors, and attentional mechanisms in the Multi-

dilated residual Attention mechanism block. Atrous 

convolutions increase the receptive area, attentional 

mechanisms amplify the relevant features added, and 

residual pathways prevent the architecture from 

being vanishing gradient even though these blocks 

are arranged in many layers. The proposed 

architecture also has a superior inference speed than 

other comparison architectures, with an average 

inference speed of 4.05 - 4.24 seconds per patient 

data. 

One concern from this proposed architecture is 

the results of validation across three datasets. 

Although the online validation results show superior 

results, the dice segmentation performance decreased 

along with the dataset used from the BraTS 2018 

validation dataset, BraTS 2019, and BraTS 2020. For 

example, the average performance of the ET dice area 

for the ensemble model resulted in 75.70 in the BraTS 

2018 validation dataset, decreased to 71.29 in the 

BraTS 2019 validation dataset, and finally decreased 

to 70.80 for the BraTS 2020 validation dataset. The 

training data for each dataset is 286, 336, and 369 

patient data for BraTS 2018, BraTS 2019, and BraTS 

2020. In comparison, the number of validation data 

includes 66, 125, and 125 for BraTS 2018, BraTS 

2019, and BraTS 2020, respectively. This declining 

performance needs further study. 
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