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ABSTRACT 

Hyperspectral imaging (HSI) classification has recently become a field of interest in the remote sensing 

(RS) community. However, such data contain multidimensional dynamic features that make it difficult 

for precise identification. Also, it covers structurally nonlinear affinity within the gathered spectral bands 

and the related materials. To systematically facilitate the HSI categorization, we propose  

a spectral-spatial classification of HSI data using a 3D-2D convolutional neural network and inception 

network to extract and learn the in-depth spectral-spatial feature vectors. We first applied the principal 

component analysis (PCA) on the entire HSI image to reduce the original space dimensionality. Second, 

the exploitation of the spatial hyperspectral input features contiguous information by 2-D CNN. Besides, 

we used 3-D CNN without relying on any preprocessing to extract deep spectral-spatial fused features 

efficiently. The learned spectral-spatial characteristics are concatenated and fed to the inception network 

layer for joint spectral-spatial learning. Furthermore, we learned and achieved the correct classification 

with a softmax regression classifier. Finally, we evaluated our model performance on different training 

set sizes of two hyperspectral remote sensing data sets (HSRSI), namely Botswana (BT) and Kennedy 

Space Center (KSC), and compared the experimental results with deep learning-based and  

state-of-the-art (SOTA) classification methods. The experiment results show that our model provides 

competitive classification results with state-of-the-art techniques, demonstrating the considerable 

potential for HSRSI classification. 
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1. INTRODUCTION 

Hyperspectral remote sensing image (HSRSI) holds very vital information about the land 

objects, i.e., the spatial and spectral information (Tang et al., 2020), which contributes toward 

efficient and accurate image processing. Also, HSRSI classification (Tong et al., 2014) is vital 

for its interpretation and processing. Hyperspectral sensors acquire hundreds of information 

from consecutive land material segments, with a supply of rich spectral information and 

improved capability to discriminate unevenly distributed land-use materials (Bing, 2011). The 

HSRSIs contains hundreds of adjacent channels with rich spectral-spatial signatures, making it 

possible to discriminate earth objects. Thus, it has contributed to its wide use in crop analysis, 

urban administration, and environmental management. Some traditional HSRSI classification 

approaches have been used to classify and distinguish these images, but nearly all are founded 

both on the handcraft features (Yanshan Li et al., 2019; Wang et al., 2019) and traditional 

classifiers (Melgani & Bruzzone, 2004). 

Because neighbor intensities are closely correlated at such a high spatial resolution, a 

spectral signature involves a wealth of redundant data. Often, problems such as the curse of 

dimensionality and class imbalance occur in the HSRSI data set. Dimensionality reduction 

(DR) is a fundamental pre-processing step to complement an HSRSI data set classification 

process, which has received much attention lately. Several studies, for example (Datta et al., 

2018; Koumoutsou et al., 2021; Rodarmel & Shan, 2002), deployed the well-known 

technique, i.e., the PCA, to fix the problems mentioned above.  

In past years, scholars mined spatial features from raw HSRSI data cube by cropping the 

spectral resolution through the deployment of some DR techniques, for instance, principal 

component analysis (PCA), and reducing spatial regions of k k  pixel-based regions. The 

authors such as (Haut et al., 2019) trained a CNN2-D with a single principal component (PC), 

at the same time (C. Li et al., 2015) applied three PCs in the training of the CNN2-D in 

addition to post-processing of the unearthed spatial information with sparse coding (SC) (Song 

et al., 2014) to produce more typical spatial representations of sparse dictionaries for 

categorization. For instance, the simple process involves providing an approach having 3-D 

contiguous domains of 
channelsk k n   where 

channelsn  can represent a definite count of PCs. 

Hereof, some techniques make an initial DR crop the redundancy and correlation of spectral 

channels. Motivated by the stated advantage in our proposed model, we applied PCA to 

surmount the problems caused by the high dimensionality covered in the HSIRS images. 

In recent years, deep learning (DL) methods have experienced tremendous advancement 

for the study of HSRSI data. The extracted features through the convolutional neural network 

(CNN) possess more excellent semantic representation and stronger robustness than handcraft 

features. CNN has also been deployed to the categorization of HSRSI. For example, (Hu et al., 

2015) presented a 1-D-CNN-based method for the extraction of in-depth feature vectors of 

HSRSI in spectral measurement. (Ying Li et al., 2017) employed 3-D CNNs to extract the 

complete fusion of spectral-spatial features from the original 3D cube image data 

concurrently. However, due to the CNN structure's simplistic stacking and the lack of an 

effective feature aggregation method to deepen network information transmission, it could not 

effectively deduce deep features. The ability of CNN to express features improves as its depth 

grows. As a result, the residual network was used to deepen the network using a feature 

aggregation method. (Zhong et al., 2018) proposed using a 3-D CNN to deploy a supervised 

spatial-spectral residual Network (SSRN) and generate spatial and spectral residual modules to 
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derive spatial-spectral properties constantly. This approach, however, only takes as input a 

single-scale neighborhood block. In terms of overall classification accuracy, single-scale 

features perform poorly. 

Moreover, to classify the HSI images (Zhang et al., 2019), presented a method known as a 

multi-scale dense Network (MSDN). The authors applied various dimension information in 

the proposed framework design and fused dimensional features throughout the framework.  

In the process of obtaining the necessary feature vectors, the framework implemented the 

discriminating and imbalanced of two dimensions. The framework deployed the rebuilding of 

extraction of abstract features and multi-scale fusion for the classifying of HSI data. It had 

better performance concerning the representation of HSI images. Also, it improved the speed 

of the training of the framework and its accuracy, which specifically enhanced the 

convergence speed. Even though there was an added feature network layer on the dimension, 

which condensed the deep framework in feature extraction, which is attributable to the 

threshold response of complexity, the precision improvement was not any longer robust after 

the complexity got to a particular level. (Roy et al., 2019) combined a CNN3-D with  

a CNN2-D, where they applied CNN3-D basically to extract spatial-spectral features and 

subsequently distinguished by the CNN2-D. However, the proposed method faces the problem 

of overfitting. Hence, it is an open challenge to achieve higher interpretation accuracies when 

processing such increased spectral-spatial measurement imagery. 

To this end, we, therefore, propose a spectral-spatial classification of hyperspectral data 

using 3D-2D convolutional neural network and inception network, which contributes to the 

correct classification of two publicly available HSRSI data sets, i.e., BT and KSC. The 

inclusion of the 3D-inception network immediately after the 3D convolutional filters for 

discriminative spatial feature learning is the key difference between our proposed model and 

spatial-spectral approaches. Furthermore, the following are the key contributions of our 

proposed model: 

1) First, we adopted the principal component analysis (PCA) for dimensional reduction of 

spectral channels that are very much correlated while preserving the desirable information 

2) We fused the ordered spectral-spatial related features extracted for CNN2-D and  

CNN3-D with our model to exploit spatial features. To train the CNN2-D and CNN3-D pixels, 

we convolved the input data from the CNN-2D and CNN-3D with 2D kernels and 3D kernels, 

respectively. 

3) We incorporated the inception network layer in our model to decrease the complexity of 

the model compared to training the layers separately. 

4) We further introduced a softmax regression classifier for the correct classification of 

HSRSI images. 

The study demonstrates that this model can improve the classification accuracy of HSRSI 

and offer new scientific ideas and references for related research. 

The remaining part of the paper takes the following structure; the related work is reviewed 

in part 2, our proposed methodology is discussed in part 3. The experimental setup, dataset, 

compared SOTA methods, and parameter setting takes part 4; in part 5, we discuss the 

experimental results. Finally, we give a conclusion of the study in part 6. 
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2. RELATED WORK 

Lately, HSRSI classification technology based on DL has become a hot research area (Zhu  

et al., 2017). When likened with artificially constructed features, the DL methods 

spontaneously extract deep feature vectors of small details to those of essential facts and 

translates imageries into feature vectors that are simple to identify and classify. For instance, 

the deep brief network (DBN) (Chen et al., 2015) method apply unsupervised approaches to 

mine extensive feature vectors in a layer-based training mode. In achieving the objective, 

flattening the 1-D training sample set must be performed to fit the required standard size as the 

model inputs, which often suffer a loss of the spatial details of the raw image. The CNN2D 

was introduced by (Zhao & Du, 2016) to extract spatial contents from the representation of the 

reduced dimensions via PCA and mines spectral information deploying their proposed method 

and lastly, fused with spatial/spectral information to enhance the HSI classification precision. 

Nevertheless, the 2-D CNN method by (Makantasis et al., 2015) mines spatial/spectral feature 

vectors solely but needs convoluted pre-processing. 

Spatial-spectral learning can be accomplished by 2D-CNN frameworks presenting 

spectral-spatial handcrafted information. For example, (He et al., 2019) trained the 2D-CNN 

method under the concept of covariance matrices (CM), which encodes the spatial-spectral 

features of various measurements, i.e., regions of twenty principal components (PCs), 

attaining multi-scale covariance maps. (Yue et al., 2015) designed a 2D-CNN framework to 

study the spectral-spatial contents by blending the spectral contextual as maps of three distinct 

features and combining them to the spatial patches (downsized three PCs through PCA). 

Additionally, a manifold of approaches combines the 2D-CNN with other methods to extract 

the spatial-spectral features solely. Although the aforementioned methods were used in the 

image classification task, they have limitations in their application due to only 2D-CNN 

approaches. 

The discriminating spatial dimension of HSRSIs facilitates in supplying a diversity of 

features of low-levels indicating detailed spatial information. On the other hand, the spectral 

contents offer essential and distinct details to exhibit the characteristics of land-use materials 

(Du et al., 2016). Making excellent use of rich spectral-spatial contents, therefore, facilitates 

the improvement of the HSRSI classification accuracy. (Ying Li et al., 2017) proposed 3-D 

CNN's approach to obtaining a complete blending of spectral-spatial features concurrently 

from the raw 3-D data cube. However, their proposed method could not efficiently extract 

extensive information attributable to the stacked CNN layer and its simplicity. Besides, the 

limitation of an active feature combination approach increases the depth of the network, which 

enables it to transmit information. The CNN potentiality feature expression grows as the 

layers increase the depth. As a result, the current DL techniques have enhanced the 

classification of HSRSI images, for instance, stacking 2D-CNN and 3D-CNN with a dense 

layer network. 

Nevertheless, the best learning process can have a steady and length improvement, but 

discriminate and meaningful features mostly get lost or even dissipate in the course of depth 

transfer. Besides, for the 1D CNN and 2D CNN methods, there is a frequent implementation 

of the 3-D-CNN method in classifying spatial-spectral feature vectors. The 3-D filters with a 

size of ( ) ( ) ( ) ( )k k k kf f f z    can automatically perform the extraction of complex  

spatial-spectral features, where the extracting f  represents an output feature dimensions. 
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The process of analyzing and classifying HSI is complicated and involves diverse 

representations; these CNN3D frameworks have specific limitations. Therefore, it is important 

to engage both CNN2-D and CNN3-D architectures to study HSRSI images from the 

perspective of structural features. In addition, we fused the inception network layer in our 

model to decrease the complexity of the model compared to training CNN-2D and CNN-3D 

separately. The inception network layer has not been utilized in the study of HSRSI images for 

the previous works. 

3. METHOD 

In this part, we describe our proposed model, which we illustrate in Figure 1. We subjected the 

deep extracted 3D spectral-spatial features to the principal component analysis (PCA) 

technique for dimensionality reduction and removal of redundant features. Next, our model 

jointly employed the spectral/spatial HSRSI information. The hyperspectral tensor, which 

takes three-dimensional cubes, i.e., S S L  , where S S  is the width and height of the 

spatial dimensions and L  is the spectral dimension represents our HSRSI input image, which 

expressed as 
W H CI  R       (1) 

where I  denotes the raw HSRS input image, the W  and H  is the width and height of the 

spatial features and C  denotes the spectral channels in the image. 

3.1 Dimensionality Reduction 

PCA is an unsupervised linear transformation method that embeds data into a reduced linear 

subspace. It aims to discover a linear transformation T  that augments the covariance matrix 

( )Cov Y  mathematically. The p  primary eigenvectors, or principal components (PCs) of the 

covariance matrix with mean ( 0) =  data, produce this linear transformation. It augments 

( )Cov Y  relative to T  conditionally that 1T = . In brief, PCA seeks to identify the regions of 

apex variance in high-dimensionality data and transform these pixels into a new subclass with 

comparable or lesser dimensionalities. The orthogonal axes (PCs) of the new subclass can be 

selected as the directions with the largest variance. 

Due to the redundancy and the intra/inter-class similarities, we adopted the PCA as a 

classic dimensionality reduction technique which we directly applied to the extracted feature 

vectors of the HSRSI input image, and it takes the form of equation (2). 

W H TP  R       (2) 

The batch sizes are set as 25×25×13 and 25×25×15 for BT and KSC data sets, 

respectively, with 13 and  
15 most informative bands selected by PCA strategy. 
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Figure 1. The 2D-3D convolutional neural network and inception network proposed architecture 

To learn the spatial-spectral features, we convoluted a 3-D kernel with the 3-D-data. In our 

proposed architecture for HSRSI data, through employing the 3-D kernel over a manifold of 

neighborhood channels in the input layer, the feature maps of the convolution layer are 

produced; this apprehends the spectral features. The expression in the 3-D convolution, the 
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where   is the activation function, 
,i jb  is the bias parameter for the 

thj  feature map of the 

thi  layer, 1ld −  is the number of feature map in 1thl −  layer, 2 1 +  is the width of kernel, 

2 1 +  is the height of kernel, 2 1 +  is the depth of kernel along spectral resolution, and 
,i jw  

is the value of weight parameter for the 
thj  feature map of the thi  layer. 

We trained the bias b  and the kernel weight w  parameters using supervised strategies 

with the aid of a gradient descent optimization technique. The 3-D-CNN kernel finally derives 

the feature vector depictions of spectral-spatial contents concurrently from HSRSI data, but at 

the cost of increased computational complexity. To further learn more abstract level spatial 

representation, we apply CNN2-D on top of the CNN3-D. 

By convolving the input image from the CNN3-D with the 2D kernels, we learned the 

spatial feature. We achieved the convolutions by calculating the sum of the dot product 

between input data and kernel filter of the spatial resolutions, which only present all the 

feature maps of earlier network layers resulting in 2-D discriminative feature maps. The kernel 

filter is stride over the input data to cover the full spatial region. The convolved features are 

passed through the activation function to insert the non-linearity in the model. In 2-D 

convolution, the activation value at spatial position ( , )x y  in the 
thj  feature map of the thi  

layer is denoted as 
( , )

( , )

x y

i jv  and can be generated using equation (4). 
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where   denotes the activation function, 
,i jb  denotes the bias parameter for the 

thj  feature 

map of the thi  layer. The 1ld −  represents the value of feature map in the 1thl −  network layer, 
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and 
,i jw  represents the depth of kernel filter for the 

thj  feature map of the thi  network layer. 

2   1 +  represents the width of kernel filter, 2 1 +  is the height of kernel filter, and 
,i jw  

represents the value of weight parameter for the 
thj  feature map of the thi  network layer. 

To avoid the overfitting problem and fast-track the model’s convergence speed and 

enhance the accuracy, we selected a rectified linear unit (ReLU) (Maas et al., 2013) as the 

nonlinear activation function. Hence, defined as 

( ) max(0, )f x x=       (5) 

We randomly initialized all the model’s weights and trained them through  

Back-propagation (BP) algorithm with the gradient drop algorithm, i.e., the adaptive moment 

estimation (Adam) optimizer, by applying the softmax loss. We trained our proposed 

framework for 100 epochs without data augmentation and batch normalization (BN). The 

softmax regression layer, which is used to predict the conditional probability distribution of 

each class for correct classification of the data set, is expressed as 
( )

( )

1

( , )
ix i

jx j

W b

k W b

i

i e
P y W b

x e

+

+

=

= =


     (6) 

where W  and b  denotes the weights and bias of the softmax regression layer classifier, 

respectively. 

4. EXPERIMENTS 

4.1 Dataset 

In evaluating the performance of our proposed model, this study analyzes two classic HSRSI 

data set, namely the Botswana (BT) and Kennedy Space Center (KSC) data set (Hyperspectral 

Remote Sensing Scenes - Grupo de Inteligencia Computacional (GIC), n.d.). We divided all 

sampled data into two set sizes, i.e., the train/test size sets. We adopted a ratio of 1:9 and 3:7, 

i.e., 10/30% for training set size and 90/70% for testing set size. During the validation process, 

we selected the network with the highest classification accuracy and retained the 

corresponding weight parameters—this attributed to the early stopping generalization 

technique that we applied in our model. Finally, we employed the test set to evaluate the 

classification capability of the trained model. We quantitatively carried a random of ten trains 

and determined the average and standard deviation of the multiple sets of overall accuracy 

(OA), mean accuracy (AA), and kappa coefficient (k), which we picked as overall accuracy. 

The classification accuracy of the best performance for the validation set was thus, saved 

during the training process.  

Moreover, we compared our proposed model with the SOTA methods, namely the  

3D-CNN (Ying Li et al., 2017), SSRN (Zhong et al., 2018), HybridSN (Roy et al., 2019), and 

MSDN (Zhang et al., 2019), respectively, to show the performance of our model on the two 

HSRSI data sets. Table 3 and Table 4 report per class accuracy classification result of the 

methods with their respective OA, k, and AA. The classification maps of our model are as 

shown in Figure 2 and Figure 3. 
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4.1.1 The Botswana (BT) Data Set 

NASA in the year 2001-2004, through the EO-1 satellite, gathered BS data in sequence 
structure. The BS data set has 242 bands, covering a wavelength/spectrum range of 400-2500 
nm and 30 m—spatial resolution over a 7.7 km strip. The personnel discarded the lousy  
inter-detector miscalibration effects, detectors, and recurrent abnormalities from the data set 
after preprocessing the BT data. They also removed noisy, disordered, and imperfect bands 
that cover water absorption features (10-55, 82-97, 102-119, 134-164, & 187-220) and thus 
remained with 145 bands. The data set consists of 14 classes considered for our experiments. 
The total number of classification samples is 3248. 

4.1.2 The Kennedy Space Center (KSC) Data Set 

The dataset was captured by NASA scientists using the Airborne Visible/Infrared Imaging 
Spectrometer (AVIRIS) instrument in the year 1996. AVIRIS captures data with 400-2500 nm 
center wavelengths in—224 bands of 10nm width and 18 m-spatial resolution. Discarding the 
low SNR bands and water absorption from the dataset, the KSC personnel used 176 bands and 
13 classes for their study. We used all 13 classes for classification, representing diverse land 
cover types in nature settings. The selection of our training data solely depends on the land 
cover. The total number of classification samples is 5211. 

4.2 Parameter Setting 

The proposed model via the gradient of the back-propagation (BP) loss function updated the 
parameters of the 3-D convolution in the architecture. We adopted Adam optimizer as the 
gradient descent algorithm in our model to optimize the loss function. For both KSC and BT 
data set, the learning rate is very crucial. First, learning rates (lrs) regulate each training 
iteration's learning step. Inappropriate lr settings, in particular, will result in delayed 
convergence or divergence. As a result, we applied the grid search strategy and executed each 
experiment for 100 epochs to determine the best lr for each data set from (0.01, 0.003, 0.001, 
0.1). We simulated our experiments on a MacBook Pro laptop computer with Intel Core i5, 2.3 
GHz, the Intel Iris Plus Graphics 640 1536 MB, and the memory of 8 GB 2133 MHz LPDDR3 
as the hardware, and all experiments executed on GPU-Google Colab ltd platform. 

5. EXPERIMENTAL RESULTS AND DISCUSSIONS 

5.1 The Effectiveness of Spatialized Inputs 

We evaluated our suggested model using input cubes of various spatial sizes to assess the 
impact of the spatialized input. Because our model learns distinguishing spatial aspects of 
input data, the results in Table 1 and Table 2 illustrates that the proposed model performs well 
for various spatial sizes if these sizes are equal to 25 × 25. The classification accuracy in both 
data sets improves as the spatial size of the input cubes increases. This shows how essential 
spatial size is for the model's efficiency. We set the spatial size of input HSI data to 25 × 25 to 
make a fair comparison between various classification SOTA methods because large input 
sizes contribute to higher classification accuracy. 
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Table 1. The classification accuracy (OA%) of different spatialized input sizes for BT data set 

Class.No 11×11×13 13×13×13 15×15×13 17×17×13 25×25×13 

1 100 100 99.47 100 100 

2 100 100 100 100 100 

3 100 100 100 100 100 

4 100 100 100 100 100 

5 99.47 97.87 100 100 99.94 

6 98.54 100 98.40 98.40 100 

7 100 100 100 100 100 

8 100 100 100 100 100 

9 100 100 100 100 100 

10 100 100 100 100 100 

11 100 100 100 100 98.40 

12 100 100 100 100 100 

13 100 100 100 100 100 

14 100 100 100 100 100 

OA (%) 99.85 99.86 99.82 99.87 99.87 

Kappa × 100 99.83 99.85 99.81 99.86 99.89 

AA 99.85 99.88 99.85 99.87 99.86 

 

Table 2. The classification accuracy (OA%) of different spatialized input sizes for KSC data set 

Class.No 11×11×15 13×13×15 15×15×15 17×17×15 25×25×15 

1 97.75 97.37 98.69 97.75 97.73 

2 75.29 86.47 95.29 98.24 98.89 

3 75.42 84.92 97.77 93.30 100 

4 44.32 59.66 87.50 87.50 98.98 

5 79.65 83.19 94.69 95.58 100 

6 32.50 55.63 91.88 84.38 100 

7 91.89 72.97 95.95 83.78 100 

8 86.76 97.02 98.34 98.34 100 

9 85.16 48.90 84.62 73.63 100 

10 86.22 93.64 97.53 100 100 

11 99.32 100 100 100 100 

12 98.86 97.16 98.30 93.18 100 

13 100 100 100 100 99.62 

OA (%) 81.06 87.17 96.24 94.08 99.48 

Kappa × 100 85.54 85.67 95.82 93.40 99.48 

AA (%) 81.01 82.84 95.43 92.74 99.42 

 

5.2 BT Data Set Performance Results 

Further, we used the BT data set to demonstrate the performance of the 3D-CNN, SSRN, 

MSDN, HybridSN, and our proposed model. It comprises 14 classes with a total of 3248 

samples. We applied a dropout rate of 55% to prevent the method’s overfitting due to the 

limitation of labeled samplings, which produced a high performance. Table 3 lists the 

accuracy classification performance. On individual classes, we can see that our proposed 

model significantly improved on the classification of classes such as Floodplain Grasses  
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1 = 99.94%, Reeds 1 = 98.40%, Riparian =100%, and Water =100% compared to the baseline 

methods. Our model’s overall accuracy (OA) outperformed the other SOTA methods, i.e.,  

3D-CNN, SSRN, MSDN, and HybridSN. The apparent predicted reference in Figure 2 

illustrates the BT data set. 

Table 3. Per class performance of our proposed method comparing to other SOTA methods,  

i.e., 3D-CNN, SSRN, MSDN, and HybridSN methods on 30% training set size of BT data set 

Class.No Class Label 
Train/Test 

Samples 

3D-

CNN 
SSRN MSDN HybridSN Proposed 

C1 
Acacia 

grasslands 
92/92 95.29 100 100 100 100 

C2 
Acacia 

shrublands 
74/74 99.80 100 100 100 100 

C3 
Acacia 

woodlands 
94/94 99.57 100 99.45 100 100 

C4 Exposed soils 29/67 97.58 99.84 100 96.97 100 

C5 
Floodplain 

Grasses 1 
75/176 99.04 99.29 99.45 99.86 99.94 

C6 Firescar 2 78/181 97.94 100 100 100 100 

C7 
Floodplain 

Grasses 2 
65/151 93.68 100 100 100 100 

C8 Hippo grass 30/71 98.61 99.39 100 100 100 

C9 Island interior 61/142 99.62 100 100 100 100 

C10 Mixed mopane 80/188 99.84 100 100 100 100 

C11 Reeds 1 81/188 94.98 95.72 96.76 94.68 98.40 

C12 Riparian 81/188 87.31 99.16 92.89 99.47 100 

C13 Short mopane 54/127 94.99 99.69 100 100 100 

C14 Water 81/189 95.34 98.76 97.35 98.90 100 
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Figure 2. The Botswana (BT) hyperspectral remote sensing data set, a) the false-color composite,  

b) the ground truth label and c) the predicted reference 

5.3 KSC Data Set Performance Results 

The KSC dataset had a smaller number of classes (i.e., 13 classes) but comparatively broad 

feature sampling resolutions. From Table 4, we can observe that the proposed model’s overall 

accuracy performance excels compared to 3D-CNN, SSRN, HybridSN, and the MSDN 

models. We can also see that our model was superior in individual classes with higher 

accuracy, such as Cabbage-palm/oak-hammock (98.89%), Spartina-marsh (98.98%),  

Willow-swamp (100%), Hardwood-swamp (100%), and Oak/broadleaf-hammock (100%). 

Figure 3 represents the false-color composite, ground-truth label, and the predicted reference 

of our proposed model, respectively. 

Table 4. Per class performance of our proposed method comparing to other SOTA methods,  

i.e., 3D-CNN, SSRN, MSDN, and HybridSN methods on 30% training set size of KSC data set 

Class. 
No 

Class label 
Train/Test 
Samples 

3D-
CNN 

SSRN MSDN HybridSN Proposed 

C1 
Cabbage-palm/oak-

hammock 
76/176 97.81 99.84 100 95.46 97.73 

C2 
Cabbage-palm-

hammock 
77/179 87.21 98.68 98.41 97.21 98.89 

C3 Slash-pine 48/113 95.24 94.76 99.10 100 100 
C4 Spartina-marsh 156/364 63.87 95.05 96.67 98.35 98.98 
C5 Water 278/649 80.69 87.50 100 100 100 
C6 Willow-swamp 73/170 87.92 97.34 99.89 98.82 100 
C7 Cattail-marsh 121/283 92.63 100 100 96.11 100 
C8 Graminoid-marsh 129/302 97.68 100 100 99.34 100 
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C9 Hardwood-swamp 32/74 96.79 99.97 99.75 94.6 100 
C10 Mud-flats 151/352 94.23 99.99 99.71 95.17 100 

C11 
Oak/broadleaf-

hammock 
69/160 98.41 99.96 96.99 95.63 100 

C12 Salt-marsh 126/293 95.36 98.76 100 100 100 
C13 Scurb 228/533 96.29 100 100 99.44 99.62 

 

 

Figure 3. The Kennedy Space Center (KSC) hyperspectral remote sensing data set, a) the false-color 

composite, b) the ground truth label and c) the predicted reference 

Figures 4 and 5 depict our model’s accuracy and loss convergence graphs on 100 epochs 

for the two data sets we analyzed. With the accuracy convergence of our model in Figure 4, 

we can see that the model converged quickly at approximately 55 epochs of the BT dataset. 

Also, we can see that the accuracy convergence in Figure 5, i.e., the KSC dataset, our model 

converged faster at approximately 60 epochs. This is attributable to the introduction of the 

early-stopping regularization technique in addition to the inception network layer within our 

framework. 

 

Figure 4. The convergence graphs for model accuracy and loss for 100 epochs on BT hyperspectral 

remote sensing data set 
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Figure 5. The convergence graphs for model accuracy and loss for 100 epochs on KSC hyperspectral 

remote sensing data set 

On 10% and 30% training sets, we had the best classification performance in most classes, 

with the best classification results in terms of OA, AA, and  ×  (see Table 5 and Table 6). 

This is due to the inclusion of an inception network layer in our model, which allowed for 

more efficient computation by stacking 3D and 2D features for learning. 

Table 5. The performance results for BT data set on 10% and 30% training set size 

Train set Metrics 3D-CNN SSRN MSDN HybridSN Proposed 

10% 

OA (%) 97.81 98.40 98.86 99.35 99.59 

AA (%) 97.72 98.65 98.80 99.27 99.50 

 ×  97.62 98.26 98.84 99.30 99.56 

30% 

OA (%) 95.56 98.01 98.77 99.43 99.87 

AA (%) 96.54 98.57 98.96 99.36 99.89 

 ×  95.06 97.89 98.66 99.38 99.86 

Table 6. The performance results for KSC data set on 10% and 30% training set size 

Train set Metrics 3D-CNN SSRN MSDN HybridSN Proposed 

10% 

OA (%) 87.08 89.61 88.90 88.70 91.71 

AA (%) 85.09 89.33 87.56 86.49 90.32 

 ×  86.74 89.56 88.47 87.40 90.76 

30% 

OA (%) 93.63 97.87 99.45 98.22 99.48 

AA (%) 91.09 97.14 99.42 97.71 99.48 

 ×  92.92 97.74 99.39 98.02 99.42 

The overall performance of both the BT and KSC data sets is depicted in Figure 6  

(i.e., 10% training set). From the Figure, we can see that even when the training data is only 

10%, our model maintains a high classification accuracy compared to other SOTA approaches. 

Further, in Figure 7 on 30%, it can also be seen that our proposed model’s performance is 

excellent compared to the other SOTA methods. 
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Figure 6. The overall performance on 10% of our proposed vs SOTA methods. a) The overall 

performance of the BT data set and b) The overall performance of the KSC data set 

 

Figure 7. The overall performance on 30% of our proposed vs SOTA methods. a) The overall 

performance of the BT data set and b) The overall performance of the KSC data set 

Table 7 lists the computation time in seconds for our proposed model with other SOTA 

methods. Regarding the computational complexity of our proposed model to the baseline 

methods, ours performed significantly good attributed to the use of inception network in our 

model. Furthermore, it contributed to decreasing the model's complexity compared to training 

CNN-2D and CNN-3D separately. 
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Table 7. The comparison of computation time (s) results 
 

BS Data Set KSC Data Set 

Methods Training time (s) Testing time (s) Training time (s) Testing time (s) 

MSDN 5595.2 25.49 11111.42 51.4 

SSRN 4209.1 23.82 10764.3 48.8 

HybridSN 4213.8 22.36 10521.4 46.5 

Ours 4020.23 18.73 908.69 38.7 

6. CONCLUSION 

This work presented a spectral-spatial classification of hyperspectral data using a 3D-2D 

convolutional neural network and inception network. The proposed framework, which 

includes PCA and successive 3D-2D spectral-spatial convolutional layers with an inception 

network layer, has addressed the decreasing accuracy issue. The results of the experiments 

showed that our proposed model consistently produced the best classification accuracy for 

both types of HSRSI data sets, namely Botswana (BT) and Kennedy Space Center (KSC), 

demonstrating its significant superiority over the other SOTA approaches. It is important to 

note that this model has produced reliable classification results with both small and large 

numbers of unequal training data. Furthermore, the inception network layer reduced 

processing complexity and increased classification accuracy. Finally, our proposed model may 

easily be applied to different remote-sensing applications because of its consistent structural 

design and deep feature learning capabilities. 
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