
IADIS International Journal on Computer Science and Information Systems 

Vol. 16, No. 2, pp. 1-14 

ISSN: 1646-3692 

1 

REVEALING BAND AND CIRCUMPLEX 

PATTERNS IN REORDERABLE MATRICES USING 

POLAR SORT AND FAST MULTIDIMENSIONAL 

PROJECTIONS 

Celmar Guimarães da Silva 

School of Technology, University of Campinas. Limeira, São Paulo, Brazil 

ABSTRACT 

Analysts may use matrix-based visualizations (such as heatmaps) to reveal patterns of a dataset with the 

help of reordering algorithms that permute matrix rows and columns properly. One of these algorithms is 

Polar Sort, a pattern-focused reordering method that uses a multidimensional projection technique – 

Classical MDS – to reveal Band and Circumplex patterns in reorderable matrices. Despite its good 

reordering results regarding the mentioned patterns, Polar sort is not scalable due to Classical MDS’ 

asymptotic time complexity (O(n³) for an input matrix with size n × n). In this paper, we propose a new 

version of this algorithm, in which we replace Classical MDS with FastMap, a method with asymptotic 

time complexity O(n). The new algorithm (Polar Sort with Fastmap, or PSF for short) permutes rows and 

columns according to their bidimensional projections and uses a barycenter-based ordering identical to 

Polar Sort’s approach. The results of an experiment indicate that PSF maintained the output quality of 

Polar Sort regarding minimal span loss function, Moore stress, and circular correlation when reordering 

synthetic matrices. Besides, PSF’s asymptotic time complexity is O(n log n). This complexity is coherent 

with our experiment results, which point out that PSF had lower execution time than other compared 

methods. We also show some examples in which real-world matrices reordered by PSF revealed patterns 

similar to Band and Circumplex. 
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1. INTRODUCTION 

A common concern of many visualization researchers is about where to place visual items on 

the screen. E.g. graph-layout algorithms put nodes in positions that reveal characteristics such 

as intrinsic layers and hierarchies, cycles or tree structures; treemap visualizations have many 
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distinct ways to subdivide regions and dispose child nodes of each parent node. In this paper, 

our concern is about the ordering of rows and columns of a matrix visualization (a.k.a. tabular 

visualization), such as a heatmap or a Table Lens. 

Matrix visualizations are based on the concept of reorderable matrix, i.e. a matrix whose 

rows and columns can be reordered without information loss. Since it was proposed by Bertin 

(2010) in 1967 in his first edition of the book “Semiology of Graphics”, many researchers have 

been proposing innovative reordering algorithms that try to reveal patterns that are easy to be 

visually perceived. 

A relevant set of matrix reordering algorithms is called pattern-focused algorithms (Silva, 

2020). They receive as input a matrix that hides a known pattern due to inappropriate 

permutations, and reorder the matrix to make that pattern evident. One of these algorithms – 

Polar Sort – is based on multidimensional projections of rows (and columns) in 2 dimensions 

(Silva, 2019), and such projections are used as a source for the new row (and column) order. 

Nevertheless, Polar Sort uses Classical MDS (Torgerson, 1952), a projection method with 

asymptotic time complexity O(n³), which makes it harder to scale.  

To enhance Polar Sort, we searched for multidimensional projection algorithms that could 

replace Classical MDS, aiming to reduce Polar Sort’s time complexity and to maintain or 

improve the method’s output quality. In this paper, we found that FastMap is an ideal candidate 

for this replacement. Therefore, our hypothesis was that replacing Classical MDS by FastMap 

inside Polar Sort would improve Polar Sort’s execution time and would not deteriorate the 

quality of its output. In our experiments, the new Polar Sort with FastMap (PSF) was able to 

reveal Band and Circumplex patterns in matrices with quality similar to that of the original Polar 

Sort, but with improved execution time as expected. 

The remainder of this paper is organized as follows. A theoretical background about 

reorderable matrices is presented at Section 2. Section 3 shows a brief bibliographic review 

about reordering algorithms; it highlights pattern-focused reordering algorithms, and mainly 

Polar Sort. It also discusses multidimensional projects in general, and FastMap in details. 

Section 4 presents PSF and a test methodology of this new proposal. Section 5 discusses the 

results of our evaluation procedures. Last but not least, Section 6 ends this paper and presents 

future work. 

2. THEORETICAL BACKGROUND 

This section presents some core concepts about matrix reordering. A reorderable matrix is a 

matrix whose columns (and rows) can be permuted without information loss.  

The state-of-the-art literature for reorderable matrices points out nine matrix patterns. Half of 

them are based on adjacency matrices of graphs (Behrisch et al., 2016): Bands, Block-diagonal, 

Off-diagonal blocks, and Line/star. They represent graph organizations and situations such as 

meshes, paths, clusters, bipartite graphs, and hubs. The remainder patterns, called canonical 

data patterns (Wilkinson, 2005), are based on multidimensional datasets presented as heatmaps: 

Equi-correlation (Equi, for short), Simplex, Block, Band and Circumplex.  

In this paper, we have a special interest in Band and Circumplex patterns. The Band pattern 

is defined in such a way that its higher values are closer to the main diagonal, and there is a 

monotonical decreasing of values from this diagonal to the top-right and bottom-left corners of 

the matrix. More formally, Wilkinson (2005) defines a Band pattern as a matrix Xn×p whose cell 
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values are xi,j = e-t² +ui,j , where t = (j / p – i / n) / b, 1 ≤ i ≤ n, and 1 ≤ j ≤ p. The parameter  

b defines not only the bandwidth, but also the sharpness of the band. When b is close to 0.2, the 

pattern presents a thin, well-defined band. On the other hand, when b has values close to 1, the 

pattern shows a large band whose boundaries are smoothed. Figure 1(a-e) exemplifies these 

variations. In these matrices, the correlations among near columns (or rows) are high and the 

correlations among distant columns (or rows) are low; these correlations can be positive or 

negative. It is worth noting that ui,j is a random error that we implemented as a salt-and-pepper 

error. Band patterns appear in some similarity matrices, i.e., matrices whose cells indicate a 

similarity measure between all pairs of elements of a set. 

A Circumplex pattern is similar to a Band one, but considering its matrix as a torus with an 

endless band. Its formal definition is almost the same from Band pattern, but using  

t = cos(Π ( j / p – i / n)). As an example of this pattern, a Circumplex correlation matrix is a 

symmetric matrix with correlation of pairs of variables, and the set of correlations define a 

circular correlation structure. Figure 1(f) exemplifies this pattern. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 1. Patterns in matrices with size 100 × 100 and noise ratio 0.2. The matrices (a) to (e) have Band 

patterns with the following bandwidth values: (a) 0.1; (b) 0.2; (c) 0.5; (d) 0.7; (e) 1.0. The matrix (f) 

presents a Circumplex pattern. Red, white and blue stands for high, average and low values, respectively 

Regarding matrix nomenclature, a matrix that shows a pattern P in some permutation of its 

rows and columns is called a pre-P matrix. As far as we know, Wilkinson (2005) was the first 

to use this terminology. In our paper, we focus on pre-Band and pre-Circumplex matrices, given 

that Polar Sort is able to find a permutation of these matrices such that they reveal their Band 

and Circumplex patterns. 

The current matrix reordering literature presents some evaluation functions to assess the 

quality of a reordered matrix. We highlight Moore stress, minimal span and circular correlation. 

Moore stress (Niermann, 2005) is a measure of local differences of cells. The stress of a cell 

is defined as the sum of the differences between a cell and each of its 8 neighbors. The stress of 

a matrix is the sum of the stresses of all its cells. In other words, given a matrix Mn×m, we can 

define Moore stress as follows: 𝑀𝑜𝑜𝑟𝑒_𝑠𝑡𝑟𝑒𝑠𝑠(𝑀) =  ∑ ∑ 𝑐𝑒𝑙𝑙_𝑠𝑡𝑟𝑒𝑠𝑠(𝑀, 𝑖, 𝑗)𝑚−1
𝑗=0

𝑛−1
𝑖=0 , where 

𝑐𝑒𝑙𝑙_𝑠𝑡𝑟𝑒𝑠𝑠(𝑀, 𝑖, 𝑗) = ∑ ∑ |𝑀(𝑖, 𝑗) − 𝑀(𝑝, 𝑞)|
min (𝑗+1,𝑚−1)
𝑞=max (𝑗−1,0)

min (𝑖+1,𝑛−1)
𝑝=𝑚𝑎𝑥(𝑖−1,0) . 

Minimal span (Wu et al., 2008) is a measure of how different all pairs of neighbor rows  

(or columns) of a matrix are. The difference of a pair of neighbor rows (or columns) may be 

calculated using a distance function such as Euclidean distance. The sum of these differences is 

the minimal span loss function (MSLF). In other words, we can define minimal span as follows: 

𝑀𝑖𝑛𝑖𝑚𝑎𝑙_𝑠𝑝𝑎𝑛𝑟𝑜𝑤𝑠(𝑀) = ∑ 𝑑𝑟𝑜𝑤𝑠(𝑀, 𝑖, 𝑖 + 1)𝑛−2
𝑖=0 , and 𝑀𝑖𝑛𝑖𝑚𝑎𝑙_𝑠𝑝𝑎𝑛𝑐𝑜𝑙𝑢𝑚𝑛𝑠(𝑀) =

∑ 𝑑𝑐𝑜𝑙𝑢𝑚𝑛𝑠(𝑀, 𝑗, 𝑗 + 1)𝑚−2
𝑗=0 . In this work, drows and dcolumns are the Euclidean distances of rows 

and of columns, respectively. They are defined as follows: 𝑑𝑟𝑜𝑤𝑠(𝑀, 𝑝, 𝑞) =

√∑ (𝑀(𝑝, 𝑗) − 𝑀(𝑞, 𝑗))2𝑗=𝑚−1
𝑗=0

2
, and 𝑑𝑐𝑜𝑙𝑢𝑚𝑛𝑠(𝑀, 𝑝, 𝑞) = √∑ (𝑀(𝑖, 𝑝) − 𝑀(𝑖, 𝑞))2𝑖=𝑛−1

𝑖=0

2
. 
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Correlations between the original order of the matrix rows (or columns) and their order in 

the reordered matrix can also be used to measure the quality of the reordering (Wilkinson, 2005). 

One possible correlation measure to use is Spearman correlation (a.k.a. Spearman’s Rank 

Correlation Coefficient). It is a measure that compares two lists of ranks (Heumann et al., 2016). 

Consider two lists of values – 𝑃 = [𝑝1, 𝑝2, … , 𝑝𝑛] and 𝑄 = [𝑞1, 𝑞2, … , 𝑞𝑛] – and a function 𝑟(𝑥𝑖) 

that represents the rank of xi among the ordered values of the list X. Spearman correlation is 

defined as follows: 𝑅(𝑃, 𝑄) = 1 −
6 ∑ 𝑑𝑖

2𝑛
𝑖=1

𝑛(𝑛2−1)
, where 𝑑𝑖 = 𝑅(𝑝𝑖) − 𝑅(𝑞𝑖). R(P,Q) can return 

values from -1 to +1. The closer R is to +1 (or -1), the stronger the positive (or negative) 

correlation between P and Q.  

Therefore, if we consider P as the original order of rows of a given matrix M  

(i.e., 𝑃 = [0,1,2, … , 𝑛 − 1]) and Q as the order of the same rows in a reordered version M’ of 

M, then Spearman correlation can be used to assess how similar the row orders of M’ and M are. 

The same reasoning is valid for matrix columns. 

However, when comparing a reordered pre-Circumplex matrix and its original circumplex 

pattern, it is recommended to use circular correlation (Rocha et al., 2017) instead of Spearman 

correlation to consider all shifted permutations of this matrix. Circular correlation can be defined 

as the highest possible absolute Spearman correlation between rows (or columns) of a matrix A 

and their respective ordering in all possible shifted versions of rows (or columns) of a matrix B. 

(Silva, 2020).  

3. RELATED WORK 

Since the creation of the concept of reorderable matrices by Bertin, a multitude of matrix 

reordering algorithms was developed (Behrisch et al., 2016; Liiv, 2010). Silva (2020) pointed 

out a particular class of this type of algorithms, called pattern-focused matrix reordering 

methods. These methods focus on revealing a set of one or more patterns in a reorderable matrix 

when these patterns are hidden in the input matrix due to inappropriate permutations of its rows 

or columns. Table 1 summarizes the current set of pattern-focused methods (to the best of our 

knowledge). In this table, n is the size of a n × n matrix, and k is a configuration parameter of 

the Block pattern. 

In this table, we can observe that three algorithms deal with Circumplex pattern (Polar Sort, 

Hybrid Sort, and Circumplex Sort), and two deal with Band pattern (Polar Sort and Hybrid Sort). 

Hybrid Sort uses a matrix classifier to classify an input matrix as a pre-Band, pre-Circumplex, 

pre-Equi, pre-Simplex, or pre-Block matrix. According to this classification, the method uses 

FVS (Silva et al., 2017) to reorder pre-Simplex or pre-Equi matrices, Polar Sort to reorder  

pre-Band or pre-Circumplex matrices, and Block Reordering (Santos et al., 2016) to reorder 

pre-Block matrices. It is worth noting that Polar Sort produced results with better quality than 

those produced by Circumplex Sort when reordering pre-Circumplex matrices (Silva, 2019); 

this fact justifies the use of Polar Sort (and not Circumplex Sort) within Hybrid Sort, despite the 

lower time complexity of Circumplex Sort.  
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Table 1. Pattern-focused reordering methods 

Method Expected input matrices Patterns revealed in 

the output 

Asymptotic time 

complexity  

Circumplex Sort 

(Rocha et al., 2017) 
Pre-Circumplex Circumplex O(n²) 

FVS (Silva et al., 

2017) 
Pre-Simplex or pre-Equi Simplex or Equi O(n²) 

Block Reordering 

(Santos et al., 2016) 
Pre-Block Block O(kn²) 

Polar Sort (Silva, 

2019) 
Pre-Band or pre-Circumplex Band or Circumplex O(n³) 

Hybrid Sort (Silva, 

2020) 

Pre-Band, pre-Simplex, pre-

Equi, pre-Circumplex or pre-

Block 

Band, Simplex, Equi, 

Circumplex or Block 
O(n³) 

 

We can classify Polar Sort as a dimensional reduction algorithm – one of a set of seven 

classes of matrix reordering algorithms surveyed by Behrisch et al. (2016). This class of 

algorithms reorders rows (or columns) of a m × n matrix according to multidimensional 

projections of these rows (or columns). (All the following statements about rows are also applied 

to columns, replacing m by n and vice-versa as needed). A row may be considered a 

multidimensional point in n. Some dimensional projection methods project these 

m n-dimensional rows in k, k<<n. Usually k=1 or k=2. When k=1, the rows are projected into 

a line, and their relative order may be replicated as the order of the rows in the matrix. Wilkinson 

(2005) used k=1 with interactive MDS and SVD. When k=2, the rows are projected into a plane. 

In the particular case of Band and Circumplex matrices, this projection has the format of an arc 

or a circle, respectively, when they are projected by Classical MDS (Silva, 2019).  

Polar Sort uses k=2 and Classical MDS (Torgerson, 1952) to create such arcs or circles. 

After that, it calculates the barycenter of the arc or circle, and uses it as the center of a polar 

coordinate system. The rows are ordered according to the angle of their respective points in this 

coordinate system, starting close to the biggest gap between neighbor points. 

Polar Sort’s main concern is its O(n³) asymptotic time complexity, derived from the time 

complexity O(n³) of the Classical MDS method for projecting a set of n input objects. The lack 

of scalability of this projection method motivated the search for a suitable and scalable 

multidimensional projection method to replace Classical MDS inside Polar Sort. A recent 

survey about multidimensional projection methods from Nonato and Aupetit (2019) pointed out 

the existence of 27 “core methods” and a variety of variants of them. Classical MDS has one of 

the worst time complexities according to this survey. The fastest dimensional projection method 

presented by Nonato and Aupetit is FastMap (Faloutsos & Lin, 1995). Its asymptotic time 

complexity is O(nk), where n is the number of d-dimensional objects considered for the 

projection, and k is the dimensionality of the “target space”, i. e., the projection space. Nonato 

and Aupetit (2019) indicate that this time complexity is O(n), considering k as a constant. 

In a given iteration r, 1 ≤ r ≤ k, FastMap calculates the rth coordinate of the n objects in the 

projection space. Consider that the input of this iteration has α-dimensional objects, where  

α = k + 1 - r. At the start of an iteration, the algorithm heuristically selects two objects (called 

“pivot objects”, Oa and Ob) whose distance is maximal in the dataset, and considers the line  

p that intersects them. Each of the n objects is projected on p. Given an object Oi and its 

projection Oi’, the distance between Oa and Oi’ defines the coordinate of this object in the  
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rth dimension of the projected space. All the objects are projected on a hyperplane H that is 

perpendicular to p. Given that H is a hyperplane inside an α-dimensional space, H has α-1 

dimensions. The next iteration of the method starts using the (α-1)-dimensional objects 

projected on H as the input objects to be projected on a (k-1)-dimensional space. After the  

k iterations, all n objects have k coordinates, one for each dimension of the projection space. 

Figure 2 exemplifies one iteration of FastMap for four 3D points (Oa, Ob, O1, and O2). Oa 

and Ob are the pivot objects in this case. O1’ and O2’ are projections of O1 and O2 on the line p, 

respectively. P1 and P2 are the projections of O1 and O2 on H, respectively. In this case, the 

projections of Ob and Oa on H coincide at Oa.  

 

 

Figure 2. Example of one iteration of FastMap whose input was a set of four 3D objects (Oa, Ob, O1, 

and O2). The blue dashed line segments are perpendicular to the line p. The red dashed line segments 

and p are perpendicular to the hyperplane H (which, in this case, is a plane). (We painted the red and 

green triangles only as a visual aid for readers) 

4. METHODOLOGY 

Aiming to reduce Polar Sort’s asymptotic time complexity, we proposed the following 

methodology: 

1) Search for a multidimensional projection method with low time complexity. 

2) Find an implementation of the selected method. 

3) Create a new version of the Polar Sort method, replacing Classical MDS by the method 

found in Step 1. 

4) Test the ability of the new version of Polar Sort to reveal Band and Circumplex patterns in 

pre-Band and pre-Circumplex input matrices, respectively, and compare this method with 

the original Polar Sort and other related reordering methods. 

According to the literature review, we chose FastMap (Faloutsos & Lin, 1995) as the fastest 

multidimensional projection algorithm among the ones reported by Nonato and Aupetit (2019). 

It has the lowest asymptotic time complexity among the surveyed algorithms: O(kn). In our 

case, we want to project points (which represent rows or columns) on a plane, therefore k=2.  

In other words, we can consider this complexity as O(n).  
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The Projection Explorer tool (Paulovich et al., 2007) provides a Java implementation of 

FastMap. We adopted it, and inserted Projection Explorer as a library of the Java-based tool 

Matrix Reordering Analyzer (MRA) (Silva et al., 2014), which was used to run our evaluation 

procedures. 

The new version of the Polar Sort method with FastMap (PSF for short) was created based 

on the original Polar Sort, in with we replaced Classical MDS by FastMap. Therefore, the PSF 

method does the following steps to reorder an n × n input matrix M:  

• Step 1. Project the rows of M in ², using FastMap (O(n)). 

• Step 2. Convert the Cartesian coordinate system into a new polar coordinate system 

whose center is the barycenter of the projected points (O(n)). 

• Step 3. Sort the points by their angular coordinates (O(n log n)). Find the pair of adjacent 

points with maximum angular distance between them (O(n)). The ordered list of points 

must start with one point of this pair. 

• Step 4. Replicate this order for the matrix rows (O(n)). 

• Step 5. Repeat steps 1 to 4 for columns instead of rows (O(n log n)). 

Therefore, the asymptotic time complexity of PSF is O(n log n), which is a good 

improvement when compared to the O(n³) from its predecessor. 

We executed an evaluation experiment through MRA to discover how PSF performance can 

be compared to other similar algorithms when reordering pre-Band and pre-Circumplex 

synthetic matrices. Our experiment compared four algorithms to PSF: Classical MDS (with 

k=1), SVD (with k=1), FastMap (with k=1), and Polar Sort; in this case, k is the dimensionality 

of the target space of the multidimensional projections. The first three algorithms are 

multidimensional projection algorithms used to reorder rows and columns of the input matrices. 

We defined k=1 for both Classical MDS and SVD as used by Wilkinson (2005). We inserted 

FastMap as a direct concurrent of Classical MDS and SVD, in equal projection configurations 

(i.e., k=1). Polar Sort and PSF, by definition, use k=2 for their multidimensional projection 

algorithms – Classical MDS and FastMap, respectively. The experiment settings are as follows: 

• Patterns to be tested: Band (with bandwidth b=0.1, 0.2, 0.5, and 1.0), and 

Circumplex; 

• Matrix sizes: 250 × 250, 500 × 500, 750 × 750, and 1000 × 1000; 

• Noise levels (i.e., the proportion of cells whose content is replaced by random 

values): 0.01, 0.05, 0.1, 0.3, and 0.5; 

• Functions for assessing the output matrices: minimal span loss lunction and Moore 

stress, for pre-Band matrices; circular correlation for pre-Circumplex matrices. 

For each combination of pattern, matrix size and noise level, we created 50 matrices, which 

were randomly permuted. After permutation, they were reordered by the selected reordering 

algorithms and assessed by evaluation functions. 

We also selected real-world examples of matrices to be reordered with PSF, aiming to 

illustrate its utility. The next section shows these examples and the results of our experiments. 

5. RESULTS AND DISCUSSION 

Figure 3 summarizes the main results related to our experiment about synthetic data. We 

selected 6 charts that represent the overall dataset of results, due to space limitations. We also 
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omitted results related to column reordering due to their similarity to the results of row 

reordering. In the figure, “Cl.MDS” stands for Classical MDS. 

Regarding the results about pre-Band matrices (Figure 3(a-d)), we did the following 

observations: 

a) The Moore stress chart at Figure 3(a) shows that the average stress tends to be lower 

for Polar Sort and PSF results for b=0.1 (we also noted the same for b=0.2). For b=0.5 

(Figure 3(b)), the average stresses of each tested algorithm are very similar each other 

when considering the same noise level. These results are independent of the matrix 

size. 

b) It is possible to perceive the same pattern from (a) in the minimum span charts (whose 

representative charts are Figure 3(c) and Figure 3(d)). Besides, we noted in the overall 

results that SVD, Polar Sort and PSF have very similar minimum span measures. 

c) The execution time chart (Figure 3(e)) highlights the performance of FastMap and PSF, 

which was an expected result due to the low time complexity discussed before. For 

matrices with size 1000 × 1000, FastMap and PSF spent approximately 3 seconds, 

while their competitors spent hundreds of seconds. For matrices with size 250 × 250 

(not shown in Figure 3), the execution time of FastMap and PSF is in the order of 

hundredths of a second, while the time spent by their competitors is in the order of 

seconds. 

The previous comments enable us to state that PSF tends to be the best choice that combines 

the criteria of quality and better execution time to unveil a Band pattern in a pre-Band matrix, 

when compared to the other tested algorithms. 

We also highlight the following results related to pre-Circumplex matrices (Figure 3(f-h)): 

a) In the circular correlation charts (represented by Figure 3(f)), Polar Sort and PSF have 

average correlations close to 1 (which is the desired value). The average values of the 

concurrent algorithms are near 0.5, and they also have a big standard deviation. This 

entire situation happens regardless the noise level and the matrix size.  

b) The execution time charts for pre-Circumplex matrices (Figure 3(g,h)), similarly to 

those from pre-Band matrices, indicate that FastMap and PSF were the fastest 

algorithms among the tested ones. As an example, their execution times were in the 

order of seconds or hundredths of seconds, respectively, for matrices with size 1000 × 

1000 (Figure 3(g)) and 250 × 250 (Figure 3(h)). These times are two orders of 

magnitude lower than the times of their competitors. 

 

 

(a) b=0.1, size 1000 × 1000 

 

(b) b=0.5, size 1000 × 1000 
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(c) b=0.1, size 1000 × 1000 

 

(d) b=0.5, size 1000 × 1000 

 

(e) b=0.5, size 1000 × 1000 

 

(f) Size 1000 × 1000 

 

(g) Size 1000 × 1000 

 

(h) Size 250 × 250 

Figure 3. Experiment results related to pre-Band (a-e) and pre-Circumplex (f-h) matrices 

We concluded from the experiment results that the best choice to reorder pre-Circumplex 

matrices, among the tested algorithms, is also PSF, given its execution time and output quality.  

For the sake of completeness, we note that our experiment run into a high-performance 

cluster that has 160 cores Power 755 3.3 GHz, 8 cores Power 720 3.0 GHz, and 24 cores Intel 

X5650 2.6 GHz. However, we cannot define exactly which processor executed the jobs. 

This experiment revealed that PSF can produce fast and good quality results when reordering 

pre-Band and pre-Circumplex matrices with the tested sizes. Due to its O(n log n) asymptotic 

time complexity, PSF tends to be faster than the remainder tested algorithms even for matrices 

with size greater than 1000 × 1000; however, we have no proof that the output quality will 

remain so good for these untested situations as it was in our tests. It is worth to consider that 
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PSF could replace Polar Sort inside Hybrid Sort, which will also reduce Hybrid Sort’s time 

complexity to O(n log n). 

We selected three real-world datasets to exemplify the utility of PSF. The first example 

presents how PSF can unveil a pattern that is similar to a Circumplex pattern. Figure 4 shows a 

matrix of the correlation between pairs of 12 mood-related adjectives (Browne, 1992), in three 

distinct permutations: (a) the matrix in its original order; (b) a scrambled version of it; and (c) 

the results of using PSF to order the scrambled matrix. The color scheme is such that reddish 

and bluish cells stands for high and low correlations, respectively. Note that (a) and (c) have the 

same circular list of adjectives in their rows (and columns), but in reverse order and starting at 

a distinct adjective. 

 

 
(a) Original matrix 

 
(b) Scrambled matrix 

 
(c) Reordered by PSF 

Figure 4. Using PSF to reorder a pre-Circumplex matrix. 

The second example (Figure 5) is related to distances between cities. It is based on a table 

of travel distances between cities in Portugal (https://portugal.com/portugal/travel-

tips/distances, accessed in April 1, 2021). We converted this table into a table of how close these 

cities are to each other. Each distance measure d(x,y) was converted to a proximity measure 

p(x,y)=1 – d(x,y) / maxd, where maxd is the greatest distance between any pair of cities in the 

dataset. Figure 5(a) presents a heatmap whose cities follow the same order provided in the 

original matrix. Figure 5(b) shows how PSF sorted this heatmap, which is close to a Band 

pattern. A map with these cities is available at Figure 6(a). Note that the order provided by PSF 

follows approximately the latitudes of the cities, from north to south, as presented at Figure 6(b).  
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(a) 

 

(b) 

Figure 5. (a) Matrix about proximities between cities in Portugal; the red-white-blue color scale 

represents how close (red) or distant (blue) two cities are. (b) The same matrix, reordered by PSF 

 

(a) 

 

(b) 

Figure 6. (a) A map of Portugal with the cities cited in Figure 5. (b) A scatterplot showing the 

relationship between the order of rows in the reordered matrix at Figure 5(b) and the latitude of the 

Portuguese cities mentioned. (Sources of latitudes: Wikipedia webpages of each city, with the support of 

https://geohack.toolforge.org/; and Citipedia.info 

(https://www.citipedia.info/city/general/Portugal_Marvão_Galegos_id_2267758). Map generated by 

Tableau Desktop (www.tableau.com) 
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(a) 

 

 
(b) 

Figure 7. A heatmap about airline distances between 30 cities. The red-white-blue color scale represents 

how close (red) or distant (blue) two cities are. (a) Cities alphabetically sorted. (b) Cities sorted 

according to the output of PSF 



REVEALING BAND AND CIRCUMPLEX PATTERNS IN REORDERABLE MATRICES USING 

POLAR SORT AND FAST MULTIDIMENSIONAL PROJECTIONS 

13 

The third example is about city distances around the world. It comprises 30 international 

cities and their pairwise airline distance. This dataset, called HA30, is available at 

https://people.sc.fsu.edu/~jburkardt/datasets/cities/cities.html (accessed in September 1st, 

2021). Figure 7(a) shows a heatmap that shows this data with the cities alphabetically sorted. 

Figure 7(b) is a reordered version of the same heatmap, according to PSF output. The blue 

regions at the center of the heatmap indicates groups of cities that are close to each other, e.g. 

London, Paris, and Rome, or Chicago, New York, and Montreal. The cells with an intense red 

indicate the most distant pairs of cities, such as Rio de Janeiro and Tokyo. The dataset seems to 

have a kind of reversed Band pattern, i.e., a matrix whose band has the lower values of the 

matrix. However, the last heatmap column about Honululu and its partial similarity with both 

Sydney and Santiago columns suggest that this matrix may have a Circumplex-like pattern (with 

noise). This pattern is very coherent with the nature of the dataset, which comprises cities around 

all the globe. 

6. CONCLUSION AND FUTURE WORK 

In this paper, we proposed PSF, a new version of the matrix reordering algorithm Polar Sort that 

uses the multidimensional projection algorithm FastMap. In the same way as Polar Sort, the 

goal of PSF is to reveal Band and Circumplex patterns by reordering appropriately rows and 

columns of pre-Band and pre-Circumplex matrices. PSF’s time complexity (O(n log n)) 

surpasses the O(n³) time complexity of its antecessor without reducing the quality reordered 

matrices, as we noted in the results of experiments with synthetic data. We also presented the 

potential of this method for revealing information in real-world data.  

Future work includes studying other matrix patterns, such as the ones defined by Behrisch 

et al. (2016), and discovering or proposing fast reordering algorithms that are able to reveal 

these patterns. 
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