
IADIS International Journal on Computer Science and Information Systems
Vol. 16, No. 1, pp. 1-15
ISSN: 1646-3692

1

DYNAMIC CONNECTIVITY:

SOME GRAPHS OF INTEREST

George Lagogiannis
Department of Agricultural Economics and Rural Development, Agricultural University of Athens, Iera

Odos 75, 11855 Athens, Greece

ABSTRACT

In this paper we deal with the dynamic connectivity problem, targeting deterministic worst-case
poly-logarithmic time-complexities. First we show that instead of solving the dynamic connectivity
problem on a general graph G, it suffices to solve it on a graph we name aligned double-forest that has
only 2n-1 edges where n is the number of vertices. Then we present an algorithm that achieves all the
operations in logarithmic worst-case time on a graph we name star-tied forest that consists of a star and a
forest (of trees), both defined on the same set of vertices. The star-tied forest which can be seen as a special
case of an aligned double-forest is more complicated than a forest on which deterministic worst-case
logarithmic time-complexities have already been obtained by means of the Dynamic Trees algorithm,
introduced by Sleator and Tarjan (1983). For implementing the operations we build upon Dynamic Trees.

KEYWORDS

Dynamic connectivity, logarithmic, worst-case, Dynamic Trees

1. INTRODUCTION

The dynamic graph connectivity problem, involves the maintenance of a graph of n vertices and
initially no edges, under the following operations:

• insert(v, w): insert the edge that connects the vertices v, w.
• delete(v, w): delete the edge that connects the vertices v, w.
• connected(v, w): return “yes” if there is a path connecting v and w and “no” otherwise.
Insert and delete operations are called updates whereas connected operations are called

queries. In the decremental version of the problem we cannot insert new edges thus only
delete(v, w) and the connected(v, w) are supported. We adopt an abstract view on the parameters
of the above operations. In particular to insert/ delete an edge we only need a pointer to
(the memory space occupied by) the edge and we will assume that such a pointer is given.

IADIS International Journal on Computer Science and Information Systems

2

For the query operation we need two pointers to (the memory space occupied by) the two
vertices and we will assume that these two pointers are given.

Many real world applications exist for the dynamic connectivity problem. For example, the
vertices of the graph can be users in a social network and the edges can be relationships of some
kind. Connected components in such a graph represent user groups with certain characteristics.
The vertices could also be computers (Doulamis et al. 2007) or other mobile devices (Ryu et al.,
2013) on a network, digital images (Eppstein, 1997), web pages on the Internet or even
transistors on a computer chip.

We can distinguish the solutions presented so far, based on whether or not they introduce
randomness or amortization. If neither is introduced, we are led to the deterministic worst-case
framework where achieving poly-logarithmic time-complexities for all the operations is a long
standing open problem. It has long ago been solved though (Sleator and Tarjan, 1983), in the
case that the graph is a forest (i.e. a collection of vertex disjoint trees). In this case, each edge is
a bridge, and thus the deletion of any edge splits a tree into two trees and the insertion of an
edge joins two trees into one tree (because we are not allowed to insert an edge that connects
two vertices belonging to the same tree). Then, in order to find if any two vertices belong to the
same tree, all we need is to reach the root of the tree containing each of the two vertices and
check whether the two reached roots are identical or not. In the following of the paper we will
refer to this solution as the Dynamic Trees. For a general graph, the first non-trivial solution
within the deterministic worst-case framework was presented by Frederichson (1983) and
supported constant query time and O() update time where m is the number of edges.
Eppstein, Galil, Italiano and Nissenzweig (Epstein et al, 1997) improved the update time of
Frederichson's solution to O() where n is the number of vertices. Recently
Kejlberg-Rasmussen, Kopelowitz, Pettie and Thorup (Kejlberg-Rasmussen et al, 2015),
managed to improve the update time to O(/log1/4n).

Allowing both amortization and randomization, Henzinger and King (1995) obtained
O(log3n) amortized expected time for the update operations and O(logn·loglogn) worst-case
query time. The update time was improved by Henzinger and Thorup (1997) to O(log2n) and
further improved by Thorup (2000) to O(logn·(loglogn)3).

Allowing amortization but not randomization, Holm, De Lichtenberg and Thorup (Holm
et al, 1998) achieved deterministic O(log2n) for update operations and O(logn/loglogn) for query
operations. Wulff-Nilsen (2013) improved the update time to O(log2n/loglogn).

Allowing randomization but not amortization, worst case poly-logarithmic update
time-complexities were finally presented by Kapron, King and Mountjoy (Kapron et al, 2013).
In particular they achieved O(log4n) per edge insertion, O(log5n) per edge deletion, and
O(logn/loglogn) per query. Their query algorithm is correct if the answer is "yes" but correct
with high probability if the answer is "no". An improvement on the worst-case update time came
by Gibb, Kapron, King and Thorn (Gibb et al, 2015) where they improved the time complexity
for deletions to O(log4n).

The lower bound of Ω(logn) proved by Patrascu and Demaine (2005) implies that
amortization and randomization altogether have in fact allowed for near optimal solutions.
In the worst-case framework, poly-logarithmic (but far from optimal) time complexities have
been accomplished but not deterministically. Achieving deterministic poly-logarithmic
worst-case time complexity for all the operations on a general graph has turned out to be a
tantalizing open problem.

m

n

n

DYNAMIC CONNECTIVITY: SOME GRAPHS OF INTEREST

3

We now propose another route for the investigation of this open problem. According to this
route, deterministically achieving poly-logarithmic worst-case update time on any graph that is
more complex than a forest of trees (which is accomplished by Sleator and Tarjan (1983)) is an
open problem. The idea is to obtain poly-logarithmic worst-case update time on graphs that are
more complex than a forest, ultimately (and hopefully) reaching a general graph. Let us now
define the graphs of interest.

Definition 1. Let G=(V, E) be a graph where V is the set of vertices and E is the set of edges.
Then G is α star-tied forest if there exist two disjoint sets E1, E2 of edges such that E = E1 ∪ E2
and G1 = (V, E1) is a star whereas G2 = (V, E2) is a forest.

Definition 2. Let G=(V, E) be a graph where V is the set of vertices and E is the set of edges.
Then G is called double-forest if there exist two disjoint sets E1, E2 of edges such that E = E1 ∪
E2 and G1 = (V, E1) is a forest and G2 = (V, E2) is also a forest.

Definition 3. Let G=(V, E) be a graph where V is the set of vertices and E is the set of edges.
Then G is called aligned double-forest if it is a double-forest and in advance, any two vertices
that belong to the same tree in G2, belong to the same tree in G1.

In this paper we are going to prove that solving the dynamic connectivity problem on a
general graph is equivalent to solving it on an aligned double-forest. In advance we will perform
a step to this direction by achieving worst-case logarithmic time-complexity for all the
operations of the dynamic connectivity problem on a star-tied forest. It must be noted that the
best deterministic worst-case update time in the literature for a star-tied forest is due to
Kejlberg-Rasmussen, Kopelowitz, Pettie, and Thorup (Kejlberg-Rasmussen et al, 2015) and it
is not poly-logarithmic.

The outline of the paper is the following: In Section 2 we briefly describe the operations of
the dynamic connectivity problem on an aligned double-forest. In Section 3 we describe how
we can transform a general graph into an aligned double-forest. This transformation includes
two steps. First (Subsection 3.1) we transform a general graph into a graph with maximum
degree 3 and then (Subsection 3.2) we transform a graph with maximum degree 3 into two
aligned double-forests. Finally, (Subsection 3.3) we present the operations of the dynamic
connectivity problem on a graph with maximum degree 3, in terms of the corresponding
operations on an aligned double-forest. In Section 4 we present a solution for the decremental
version on a star-tied forest which is a special version of the aligned double-forest. We begin
by presenting the data structures used (Subsection 4.1.1) and we proceed (Subsections 4.1.2 and
4.1.3) by showing how to recognize bridges i.e. edges that when deleted, the graph splits.
Knowing when an edge is a bridge we proceed to the description of the complete algorithm for
the decremental case (Subsection 4.1.4) and finally to its time-complexity and details of
implementation (Subsection 4.1.5). The fully dynamic version is addressed in Section 5 and the
conclusions follow in Section 6.

2. DYNAMIC CONNECTIVITY ON AN ALIGNED

DOUBLE-FOREST

In this subsection we will assume that G1 and G2 are maintained as described in the Dynamic
Trees algorithm (Sleator and Tarjan, 1983) and we will present the operations of the dynamic
connectivity problem on an aligned double-forest, using the corresponding operations in the
Dynamic Trees algorithm. In the following, the operations insert, delete and connected as

IADIS International Journal on Computer Science and Information Systems

4

described in the Dynamic Trees Algorithm are named DTinsert, DTdelete and DTconnected
respectively. The Dynamic Trees structure for G1 and G2 is named DTG1 and DTG2 respectively.

The definition of the aligned double-forest implies that the deletion of an edge from G1 may
create a graph that is not an aligned double-forest. Figure 1 further explains this fact. The black
edges belong to G1 whereas the red edges belong to G2. It is easy to conclude that Part A shows
an aligned double forest since G1 consists of one tree and G2 consists of a forest of trees. As a
result, any two vertices that belong to the same tree in G2, belong to the same (and only) tree in
G1. Part B shows the same graph after deleting edge (u, w). Parts C and D show G1 and G2 after
the deletion. One can observe that after the deletion, vertices u and w belong to different trees
in G1 but to the same tree in G2 and this does not comply with the definition of the aligned
double-forest. For the graph to become an aligned double-forest again, we must transfer (w, v)
or (u, z) from G2 to G1 (changing the color of the edge from red to black).

Figure 1. Edge deletions may result to a graph that is not an aligned double-forest

To insert an edge (u, w) into an aligned double-forest G we assume for simplicity that (u, w)
does not exist in G prior to the insertion. To delete an edge (u, w) from an aligned double-forest
G we assume for simplicity that (u, w) exists in G prior to the deletion. The result of an insertion
is and integer which is either implying the forest (G1 or G2) in which the edge was inserted, or
implying that the edge was not inserted because the insertion would result in a graph that is not
an aligned double forest. The result of a deletion is a pair {x, p} where x implies the forest from
which the edge was deleted and p is a pointer. If x=1 (i.e. the edge was deleted from G1) then p

points to the edge (if such an edge exists) that was deleted from G2 and inserted in G1 in order
to re-establish the fact that G is an aligned double-forest. The description of the operations of
the dynamic connectivity problem on an aligned double-forest follows:

• AlignedDFconnected(u, w): Execute DTconnected(u, w) in DTG1 (i.e., find the roots of
the trees containing u, w in G1 and if the two roots are identical, return “yes” otherwise
return “no”).

• AlignedDFinsert(u, w): Execute DTconnected(u, w) in DTG1. If the result is “no” then
execute DTinsert(u, w) in DTG1 and return 1. Otherwise Execute DTconnected(u, w) in
DTG2 and if the result is “no” execute DTinsert(u, w) in DTG2 and return 2 otherwise
return -1 (returning -1 means that the edge (u, w) cannot be inserted in G because G will
not then be an aligned double-forest).

• AlignedDFdelete(u, w): If (u, w) belongs to G2, delete it (by executing DTdelete(u, w) in
DTG2) and return {2, Null}. Otherwise (i.e. if (u, w) belongs to G1), delete it from G1
(by executing DTdelete(u, w) in DTG1) and search in G2 to find an edge that will
reconnect the two newly created trees in G1. If such an edge is found, let (v, z) be this
edge. Execute AlignedDFdelete(v, z) in DTG2 (that is, delete it from G2) and then execute

DYNAMIC CONNECTIVITY: SOME GRAPHS OF INTEREST

5

AlignedDFinsert(v, z) in DTG1 (that is, insert it in G1) and return {1, p} where p is a
pointer to (v, z). Otherwise (i.e. if no such edge exists) return {1, Null}.

It is trivial to see that if the graph is an aligned double-forest before an AlignedDFinsert or
AlignedDFdelete operation, it remains an aligned double-forest after the operation. It is also
trivial to determine the correctness of the connected operation. In all the operations except from
AlignedDFdelete, the time complexity is ruled by DTinsert or DTconnected therefore the time
complexity is O(logn) in the worst-case. In AlignedDFdelete the time complexity is ruled by the
time needed to find an edge in G2 that can reconnect the two newly created trees in G1 because
no deterministic worst-case (poly)logarithmic solution exists for this task. As a result, achieving
worst-case (poly)logarithmic update operations on an aligned double-forest is still an open
problem.

3. FROM A GENERAL GRAPH TO AN ALIGNED

DOUBLE-FOREST

3.1 Reducing the Maximum Degree of a General Graph to 3

We are going to use an idea given in (Frederickson, 1983) according to which we can pretend
that every vertex in a general graph G has maximum degree 3. The idea is simple but we will
cover every detail in this subsection in order for our transformation from a general graph to an
aligned double-forest to be clear.

Any vertex u with degree d can be replaced by d vertices connected in a list (which we call
adjacenty-list of u) where each vertex (or alternatively, node) of this list is also connected to one
of the vertices connected to u in the initial graph. As a result, each node of the list has degree at
most 3. This way the number of vertices of G becomes O(m) where m is the number of edges.
We are going to use this idea on a general graph. To distinguish the initial graph from the one
that results from the above described transformation we use tones that is if our original graph is
G, the resulting graph with maximum degree 3 is G'. We distinguish the vertices of G' into black
vertices which are the vertices of G and red vertices which are the vertices added to G for
achieving maximum degree 3. This is graphically depicted in Figure 2, the left side of which
shows the initial graph whereas the right side shows the resulting graph with maximum degree
3, with the additional red (shaded) nodes. Each black vertex is connected through a pointer
(dashed arrows) to the last node of its adjacency-list.

The above described degree-reduction transformation alters the problem definition given in
the Introduction. In particular, we initially assumed that we start with a graph of n vertices and
no edges and during the operations the number of vertices remains unchanged. We now call this
version of the dynamic connectivity problem vertex-static version. We can still follow the
vertex-static version by assuming that initially we have inserted all the possible edges and made
them inactive thus an edge insertion/deletion is actually an edge activation/inactivation.
Obviously this costs O(n2) space. To keep the space linear to the number of edges, we have to
include operations for inserting/deleting red vertices and we call this version, vertex-dynamic.

IADIS International Journal on Computer Science and Information Systems

6

Figure 2. Reducing the maximum degree of any node to 3

Each time a new edge (u, w) is inserted into a general graph G according to the
vertex-dynamic version, we insert one red node in the adjacency-lists of u and w (thus we delete
at most two edges, and then we insert two new vertices and at most four edges into G'). Then
we insert an edge that connects these two new red vertices. Each time an edge (u, w) is deleted
from a general graph G according to the vertex-dynamic version, we first find the red node in
the adjacency-list of u connected to a node in the adjacency-list of w. Then we delete the edge
connecting these two red nodes and finally we delete the red nodes from the adjacency-list they
belong to. As a result, the deletion of an edge in G may lead to at most five edge deletions, two
edge insertions (to reconnect the two adjacency-lists) and two vertex deletions in G΄.

Given a deletion operation in G that has an edge e as a parameter, we need to find the edge
e΄ of G΄ that corresponds to e. For example, in Figure 2, each named edge of G΄ corresponds to
the edge of G having the same name. In the vertex-static version, given an edge in G we can
find its corresponding edge in G΄ in constant time through a table of n rows and n columns
(the details are omitted). In the vertex-dynamic version this task is not difficult either: Since the
black vertices are known in advance and cannot be deleted, we can give each black node a
number (between 0 and n-1) and sort the red nodes in each adjacency-list according to the
indirectly pointed black nodes. Then we can reach the red node indirectly pointing to a given
black node in logarithmic worst-case time by using a balanced search tree on top of each
adjacency-list.

We conclude that by adopting the above described transformation we introduce:
• an extra overhead of a constant number of edge insertions/deletions per update in the

vertex-static version.
• an additional logarithmic cost for accessing red edges through black edges and an extra

overhead of a constant number of edge/vertex insertions/deletions per update in the
vertex-dynamic version.

3.2 From a Graph of Maximum Degree 3 to 2 Aligned Double-Forests

Let G΄ be a graph of maximum degree 3 and let us assume that all edges of G΄ are stored in a
list L. We will represent G΄ through at most 3 forests F1, F2 and F3 by executing the following
algorithm called step, the i-th execution of which creates forest Fi.

DYNAMIC CONNECTIVITY: SOME GRAPHS OF INTEREST

7

Algorithm Step: for each edge e in L we check if the two end-points of e belong to the same
tree in Fi. If they do we do nothing otherwise we delete e from L and insert it in Fi.

It is clear that no more than 3 forests are created, because the maximum degree in G΄ is equal
to 3, and at least one edge per vertex is inserted in each forest per step i.e. after 3 executions of
step, list L is empty. Also it is trivial to see that algorithm step ensures that the following
invariant holds:

Invariant 1. If any two vertices belong to the same tree in Fi, they belong to the same tree in
all Fj where j < i.
Theorem 1. Let G΄=(V, E) be a graph of maximum degree 3. Let Ei be the set of edges in forest
Fi created by algorithm step described above. Then the graph Si = (V, Ei ∪ Ei+1) (1≤ i ≤ 3) is an
aligned double-forest.
Proof. The proof is an immediate consequence of Invariant 1.

3.3 Dynamic Connectivity on a Graph with Maximum Degree 3

In this subsection we present the dynamic connectivity operations on a graph G' of maximum
degree 3 (created by the actions of Subsection 3.1 on a general graph G), given that G' is stored
in the form of 2 aligned double-forests S1 and S2 (as described in the previous subsection). For
simplicity we assume that all possible red nodes have been inserted in advance that is, we adopt
the vertex-static version. Note that the parameters of the following operations are edges that
connect red nodes, i.e. they do not belong to G.

• MaxD3insert(u, w). Execute AlignedDFconnected(u, w) on S1. If the result is “no” then
execute AlignedDFinsert(u, w) on S1 (observe that in this case, the edge is inserted in
forest F1). Otherwise execute AlignedDFinsert(u, w) on S2. If the result of this operation
is 1, then execute AlignedDFinsert(u, w) on S1 (observe that in this case, the edge is
inserted in F2).

• MaxD3delete(u, w). Set {x, p} = AlignedDFdelete (u, w) on S1. If x=2 (observe that in
this case the deleted edge belonged to F3) return. Otherwise, if x=1 then in case that
p=Null return, and if this is not the case, let (z, f) be the edge pointed by p and set
{y,q}=AlignedDFdelete(z, f) on S2. If q = Null return, otherwise let (c, b) be the edge
pointed by q (this is the edge that was moved from F3 to F2 because of the deletion of
(z, f) from F2). Execute AlignedDFinsert(c, b) on S1 and return.

• MaxD3connected(u, w). Execute AlignedDFconnected(u, w) on S1.
It is trivial to see that both S1 and S2 continue to be aligned double-forests after a

MaxD3insert or a MaxD3delete operation if they were aligned double-forests before the
operation. This fact guarantees the correctness of the connected operation.

Theorem 2. Let TADFI, TADFD and TADFC be the deterministic worst-case time-complexities
for AlignedDFinsert, AlignedDFdelete and AlignedDFconnected respectively. Then, there
exists a deterministic worst-case solution for the static version of the dynamic connectivity
problem on a general graph with the following time-complexities:
• Time complexity for the insert operation: O(TADFI)
• Time complexity for the delete operation: O(TADFD)+O(TADFI)
• Time complexity for the connected operation: TADFC

Proof. The proof is an immediate consequence of Sections 2 and 3. Each update operation
on a general graph results to a constant number of update operations on a graph of maximum
degree 3 and each such operation is performed through a constant number of operations on two

IADIS International Journal on Computer Science and Information Systems

8

aligned double-forests. The connected operation is achieved through a connected operation
operation on an aligned double-forest.

Theorem 2 means that in the vertex-static version, if one manages to achieve
poly-logarithmic worst-case time complexities for the update operations on an aligned
double-forest, one has then achieved poly-logarithmic worst-case time complexities for the
update operations on a general graph. As already mentioned, the vertex-static version is based
on the premise that we use O(n2) space.

By adopting the vertex-dynamic version that implies linear (to the number of edges) space,
the additional constant number of vertex insertions/deletions per update operation introduces an
extra but still logarithmic overhead, since we can insert/delete a red vertex of degree 0 in time
proportional to the time needed to access it, and we can access a red vertex in logarithmic time.

4. DYNAMIC CONNECTIVITY ON A STAR-TIED FOREST

4.1 The Decremental Case

4.1.1 The Data Structure

Let us assume that we have a star-tied forest G with n vertices (alternatively, nodes) u0, u1, ... ,
un-1. Let u0 be the center of F1 and let us call all the other nodes of F1, leaves of F1. No edge
exists in both F1 and F2 which means that all edges of F2 connect leaves of F1 (alternatively, u0
does not belong to F2). Figure 3 gives an example of our graph. The black (straight) edges belong
to F1 and the red (curved) ones belong to F2. We are going to devise deterministic algorithms
that achieve logarithmic worst-case time complexities for the following operations:

• delete(v, w) which deletes the edge of the graph connecting vertices v and w
• connected(v, w) which returns “yes” if v and w belong to the same connected

component and “no” otherwise.
We assume that our initial graph is full that is, F2 is a tree containing all the vertices of the

graph except u0 (which means that F2 is full) and for each ui (1 ≤ i ≤ n-1) the edge (u0, ui) exists
in the graph (which means that F1 is full).

Each edge e of F2 leaves a mark on its two end-points that is, (ui, uj) leaves a mark in ui and
uj. We are only interested in the number of edges in F2 that have marked each leaf of F1 thus we
associate a counter with each leaf of F1 and when an edge of F2 marks a leaf of F1, it increases
its counter by 1. For example, in Figure 3 the counter of u7 is equal to 2 because of (u6, u7) and
(u5, u7). Also, the counter of u5 is equal to 3 because of (u5, u7), (u5, u1) and (u5, u2). In each

Figure 3. An example of a star-tied forest

DYNAMIC CONNECTIVITY: SOME GRAPHS OF INTEREST

9

node, we maintain a list that contains the edges (in F2) attached to this node. We name this list
neighbor-list.

To detect if a deletion creates a new connected component, we use F1. As long as F1 is full,
no new connected component is created in our graph. Obviously deleting an edge e1 of F1 splits
F1 into two connected components (the leaf is separated from the star center). Let us assume
that we are able to find an edge e2 in F2 that if transferred to F1, it will reunite F1 into one
connected component. The problem is that by transferring an edge from F2 to F1 we will cancel
the fact that F1 is a star. To solve this problem we relocate e2 which means that e2 continues to
exist “disguised” as e1. For example, we may relocate (u3, u6) because of the deletion of (u3, u0).
Then (u3, u6) takes the place of (u3, u0). Thus, the edges of F1 may be original edges of F1, which
we now call, Type 1 edges, or relocated edges of F2, which we now call, Type 2 edges. We use
the same notation for the leaves of F1. Thus, a leaf of F1 connected to u0 through a Type 1 edge
is called, Type 1 node. In the same manner, a leaf of F1 connected to u0 through a Type 2 edge
is called, Type 2 node.

Each connected component of G may be strong, if it contains u0 or weak otherwise
(obviously there is only one strong component). Each deletion in the strong connected
component may create a weak connected component which is separated from the strong one.
Every deletion in a weak connected component definitely splits the weak connected component
into two weak connected components because a weak connected component contains only edges
of F2 that is, it is a tree.

4.1.2 An algorithm for Performing “Safe” Deletions

We call a deletion safe if we can guarantee that no new connected component is created after
the deletion. Otherwise, we call the deletion non-safe. Let us now devise an algorithm that
allows us to delete edges and ends at the point where a non-safe deletion occurs. A trivial
solution is to do nothing (i.e., to have no algorithm), assuming that all deletions are non-safe.
Our algorithm is a step forward compared to the trivial solution, and incorporates our basic idea
for solving the problem. Before we start deleting edges, all the edges of F1 are of Type 1 and
our graph is full. Let us assume that we delete an edge e of G. We distinguish the following
cases:

1. Edge e is a Type 1 edge of F1. Let us assume that e is (ui, u0). If the counter of ui is
equal to 0, then the algorithm ends. Otherwise let (ui, uj) be the first edge in the
neighbor-list of ui. Edge (ui, uj) becomes a Type 2 edge (alternatively, node ui becomes
a Type 2 node). We decrease by one the counters of ui and uj. We delete (ui, uj) from
the neighbor-list of ui and from the neighbor-list of uj. Figure 4 depicts this case and it
seems as if we deleted (ui, uj) instead of (ui, u0). An intuitive view of what happened is
that (ui, u0) was deleted and (ui, uj) has taken its place. Said otherwise, (ui, uj) now exists
“disguised” as (ui, u0).

2. Edge e belongs to F2 and it has not been relocated. We delete e from the two
neighbor-lists that contain it, and we also delete its marks (we reduce two counters by
one).

3. Edge e is a Type 2 edge of F1. We execute case 1 assuming that e belongs to F1.
That is, if e has been relocated as (ui, u0) we execute case 1 and delete (ui, u0).

IADIS International Journal on Computer Science and Information Systems

10

Theorem 3. When the above algorithm terminates, our graph remains connected i.e. only
one connected component exists.

Proof: Let us assume that Theorem 3 does not hold. When the algorithm terminates, all the
initial leaves of F1 continue to be connected to u0 through Type 1 or Type 2 edges. Let C1 and
C2 be the strong and the weak connected component respectively. Let S be the set of vertices
that belong to C2. Let K = |S|. Clearly S contains Type 2 nodes only, because otherwise at least
one vertex of C2 would belong to C1. This means that C2 contains K vertices and at least K edges
(the Type 2 edges connecting the vertices of G2 to u0). Since F2 was initially a tree, these K
vertices and K edges should then form a forest in C2 which is not possible because this forest
has too many edges i.e. there is a cycle in C2 and this is not true by assumption.

We have determined that according to our algorithm, all the deletions are safe up to the point
where we delete an edge of F1 such that the involved leaf of F1 has a zero counter.

4.1.3 Deleting an Edge having a Zero Counter: Observations

Let us now assume that we have deleted an edge (u0, ui) (either of Type 1 or of Type 2), and the
counter of ui is equal to 0. Clearly, if no edge is attached on ui after the deletion, we conclude
that ui now forms a singleton connected component. Otherwise the possibilities grow. Figure 5
shows the possible cases.

Figure 4. The right part visualizes the graph of the left part after deleting (u0, u6). Edge (u0, u6) was
replaced by (u3, u6) which becomes a Type 2 edge of F1. Edge (u3, u6) is now “disguised” as (u0, u6)

Figure 5. Deleting (u0, u6) in the left part creates a new connected component that contains u3, u4 and u6.

In the right part, the deletion of u0, u6 does not create a new connected component

DYNAMIC CONNECTIVITY: SOME GRAPHS OF INTEREST

11

In the left part of Figure 5, (u3, u4) and (u4, u6) have been relocated as (u0, u3) and (u0, u4)
respectively. The counter of (u0, u6) is equal to 0. If (u0, u6) is deleted, it becomes obvious that
u3, u4 and u6 form a connected component. However, the right part of Figure 5 shows a slightly
different scenario. In particular, (u0, u6) still has a zero counter, however after deleting (u0, u6),
no new connected component is created. This is because of the existence of (u3, u7), which now
connects the subgraph consisted of u3, u4, u6 and the edges between them, to the rest of the graph
(through (u7, u0)). Our next task is to enhance our algorithm so that we can without any doubt
decide what actually happens after deleting a Type 1 or Type 2 edge of F1, where the counter of
the involved leaf of F1 is equal to 0.

4.1.4 The Final Algorithm for the Decremental Case

In the final algorithm for the decremental case we are going replace the “relocated” status, by
the “Type 2” status (because the “relocated” status was introduced in a more intuitive sense).
In particular, let ui be a vertex of the graph, other than the star center (which is u0). If ui is not a
root in F2, let uj be the father of ui. If (ui, u0) is deleted, then edge (ui, uj) and node ui are of Type

2. Otherwise (i.e. if (ui, u0) is not deleted), edge (ui, uj) and node ui are of Type 1. In comparison
to the previous subsections this means that if (ui, u0) is deleted, the only F2 edge we are now
allowed to relocate is (ui, uj), whereas in the previous subsections we could relocate any F2 edge
adjacent to ui.

In each node u we maintain a counter which is equal to the number of Type 1 nodes in its
subtree. If ui is a Type 2 root in F2 and the counter of ui is positive then ui becomes a Type 3

node, i.e. it becomes a special Type 1 node, connected to u0 through a virtual edge. Thus the
root of a tree in F2 may be of Type 1 (which is directly connected to u0), Type 2 (which is not
directly connected to u0 and has a zero counter) or Type 3 (which is not directly connected to u0
and has a positive counter). Intuitively when a node ui becomes a root in F2, its counter
determines whether the tree rooted at ui has been separated from the star center or not (if its
counter is equal to 0 then the tree has been separated from the star center).

Let us now assume that we want to delete an edge e of the graph. We distinguish the
following cases:

• Edge e is of Type 1 and let (u0, ui) be e. Node ui becomes of Type 2. We distinguish the
following subcases:
➢ Node ui is a root in F2. We decrease the counter of ui by one. If the counter of ui is

now zero, ui becomes of Type 2.
➢ Node ui is not a root in F2. Let uj be the father of ui. The edge (ui, uj) becomes a Type

2 edge (observe that (ui, uj) was of Type 1, because it can become of Type 2 as a
result of deleting (ui, u0) only). This means that ui also becomes a Type 2 node. We
decrease by 1 the counter of all the ancestors of ui in F2 (because their subtree now
has one less Type 1 node). Let uk be the root of the tree that contains ui. If the counter
of uk is equal to 0 and uk is of Type 3, uk becomes of Type 2.

• Edge e is an edge of F2, and let (ui, uj) be e. Let us assume w.l.o.g. that uj is the father of
ui in F2. We go to the root of the tree (in F2) containing ui. Let uk be that node. We
decrease the counter of all the ancestors of ui, up to uk (uk included) by the counter of ui
(because all the Type 1 nodes included in the subtree of ui are not now included in the
subtree of all the ancestors of ui). We delete (ui, uj). Node ui is now a root in F2. If uk is
of Type 3, and its counter is now 0 then uk becomes of Type 2. If ui is of Type 2 and its
counter is greater than 0, then ui becomes of Type 3.

IADIS International Journal on Computer Science and Information Systems

12

Let us now focus on the query algorithm. Assume that we are given two vertices ui, uj of G
and we want to find out if they belong to the same connected component. Let uk be the root of
the tree in F2 containing ui. Let uv be root of the tree in F2 containing uj. If both uk and uv are not
of Type 2 (which means that they are both belong to the strong connected component) or uv is
identical to uk (which means that ui and uj both belong to the same tree of F2) we conclude that
ui and uj belong to the same component, otherwise ui and uj belong to different connected
components.

The correctness of the query operation is obvious. The time-complexity for all the above
operations is discussed in the following subsection.

4.1.5 Implementation and Time-Complexity of the Decremental Algorithm

The decremental algorithm described in the previous subsection includes some tasks that
involve O(n) nodes and the time-complexity for performing these tasks rules the overall
time-complexity of the operations. In particular, given a node u we need to be able to

• access the root of the tree that contains u (i.e., root(u)) in logarithmic time
• modify in logarithmic time the counters of all ancestors of u in F2 by subtracting from

them the same number.
From a first glance it seems that the time needed to perform the above tasks is proportional

to the height of the tree, that is, O(n) in the worst case. Fortunately, according to Dynamic Trees
(see Sleator and Tarjan (1983)) both tasks mentioned above can be performed in O(logn) time.

According to the Dynamic Trees algorithm, a tree is represented through a number of vertex
disjoint paths and each edge is associated with a cost. Given a node u of the tree we are able to
access root(u) in logarithmic time. We can also subtract the same value from the cost of all
edges on a tree path from u to root(u) in logarithmic time. To use this result without having to
deal with its technical details, we define the cost of an edge (ui, uj) where uj is the parent of ui
to be the number of Type 1 nodes in the subtree rooted at ui. In the Dynamic Trees algorithm,
the cost of an edge is an inherent property of the edge whereas now it is depended on the subtree
defined by the child node of the edge. This poses no problem as long as we never change the
root of a tree. Changing the root of a tree may reverse the parent-child relationship between the
two end-points of an edge and obviously the cost of the edge (as we defined it) changes. We
need to change the root of a tree only when we insert edges into the graph. Since we are now
considering the decremental case, we never insert any edges. It is now easy to see that all the
operations of our decremental algorithm can be achieved in O(logn) worst-case time by using
the Dynamic Trees algorithm for representing F2.

5. INTRODUCING INSERTIONS: THE FULLY DYNAMIC

CASE

The fully dynamic algorithm is described at a lower level, using the operations and notation of
Dynamic Trees and we assume that the operations and details of Dynamic Trees are familiar to
the reader of this subsection.

In Dynamic Trees, each tree edge may be solid or dashed and each tree of F2 is maintained
as a collection of vertex disjoint solid paths connected to each other through dashed edges.
In particular, each leaf-to-root path of the tree is composed of O(logn) such solid paths and each
solid path is kept in the form of a binary tree of logarithmic height. The leaves of such a binary

DYNAMIC CONNECTIVITY: SOME GRAPHS OF INTEREST

13

tree correspond to the vertices of the solid path and the internal nodes of the binary tree
correspond to edges of the solid path (see Figure 6). The operation expose(v) creates a solid path
from v to root(v) (see Figure 6). In the following, by “tree” we mean a tree in F2 and by “binary
tree” we mean the tree that represents a solid path of a tree in F2.

In Dynamic Trees, the size of a vertex u is defined to be the number of vertices in the subtree
rooted at u and the weight of u is equal to size(u) if no solid edge enters u or equal to size(u) -
size(w) if the solid edge (w, u) enters u. The weight of each internal node in a binary tree is
defined to be the sum of the weights of its children. It is easy to verify that the weight of the
root of a binary tree is equal to the size of the subtree rooted at the top-most node of the solid
path.

To adjust the Dynamic Trees structure into our case, we define the volume of a vertex u to
be the number of Type 1 nodes in the subtree rooted at u. Then we define the income of a vertex
u to be equal to volume(u) if no solid edge enters u or equal to volume(u) - volume(w) if the
solid edge (w, u) enters u. The income field of each internal binary tree node is defined to be the
sum of the income fields of its children. We manipulate income in a way identical to the
manipulation of weight i.e. we just insert under each instruction (in the operations of Dynamic
Trees) that manipulates weights, a copy of itself and replace weight by income. It then follows
that the weight and income fields have identical values under the operations defined in Dynamic
Trees.

In order to set the values of the income fields according to our definition of income, we
introduce the following two operations into the Dynamic Trees algorithm, one for deleting an
edge e from F1 and one for inserting an edge e into F1.

• Delete_F1(e). Let (ui, u0) be e. We execute expose(ui) in F2. Node ui is now the leftmost
leaf of a binary tree that represents the solid path from ui to root(ui). Starting from ui
we traverse the path to the root of the binary tree decreasing by one the income field.

• Insert_F1(e). Let (ui, u0) be e and let us assume that e does not exist. We execute
expose(ui) in F2. Node ui is now the leftmost leaf of a binary tree that represents the
solid path from ui to root(ui). Starting from ui we traverse the path to the root of the
binary tree increasing by one the income field.

Figure 6. Each edge may be either solid, or dashed. Observe that we have solid paths but no solid

subtrees. The operation expose(v) creates a solid path that extends from v up to root(v). Each solid path is
represented as a binary tree, as shown in the right part of the figure. Moving to the right, we move

towards the root

IADIS International Journal on Computer Science and Information Systems

14

In both the above operations it is easy to see (following the logic and details of Dynamic
Trees), that the income field of the root of the binary tree having ui as its leftmost leaf contains
the volume of the tree of F2 that contains ui (in the same way that by summing the weights we
produce the size). Let us now present the operations of the fully dynamic connectivity problem
on a star-tied forest:

➢ Insert(e). We execute Insert_F1(e) if one of the two end-points of e is u0. Otherwise we
execute the link operation of the Dynamic Trees structure. Observe that this operation
needs the cost of the new edge as a parameter, however in our case we do not need
edge costs. To solve this without getting into the details of Dynamic Trees, we can
simply assume that each edge of F2 has cost a cost of 1.

➢ Delete(e). We execute Delete_F1(e) if one of the two end-points of e is u0. Otherwise
we execute the cut operation of Dynamic Trees.

➢ Connected (u, v). Let z, s be the roots of the trees that contain u, w respectively. If z is
identical to s, we conclude that u and w belong to the same connected component.
Otherwise, we execute expose(u). Let k1 be the income field of the root of the binary
tree that contains u, which is equal to the volume of z (i.e. it is equal to the number of
Type 1 nodes in the tree rooted at z). Then we execute expose(w). Let k2 be be the
income field of the root of the binary tree that contains w, which is equal to the volume
of s (i.e. it is equal to the number of Type 1 nodes in the tree rooted at s). If k1 is positive
and k2 is positive, we conclude that u and w belong to the same connected component
(since they belong to the same connected component with u0). If, on the other hand, at
least one of k1, k2 is equal to 0, we conclude that u and w do not belong into the same
connected component.

The time complexity of all the above operations is logarithmic in the worst-case since since:
• We use the operations of the Dynamic Trees algorithm.
• The two additional operations we introduce (Insert_F1(e) and Delete_F1(e)) contain

tasks achieved in logarithmic worst-case time.
• The additional instructions we introduce to the operations of the Dynamic Trees

algorithm (i.e. the ones for manipulating the income field) are identical to the already
existing ones that manipulate the weight field.

6. CONCLUSION

We presented an algorithm for achieving all the operations of the dynamic connectivity problem
on a graph that consists of a forest and a star defined on the same set of vertices, in worst-case
logarithmic time. We based our solution on the Dynamic trees algorithm which was introduced
for solving the same problem on a forest of trees. It turns out that although our graph has n-1
additional edges compared to a forest with n vertices, the tools provided by the Dynamic Trees
algorithm suffice for achieving all the additional tasks in worst-case logarithmic time. An
interesting question that now arises is whether the tools provided by the Dynamic trees
algorithm suffice for achieving the same result on an even more complicated graph. Finally we
have shown that this “more complicated graph” on which one needs to advance in is not a
general graph but an aligned double-forest.

DYNAMIC CONNECTIVITY: SOME GRAPHS OF INTEREST

15

REFERENCES

Doulamis N. D. et al, 2007. Cluster-based proactive replication of multimedia files in peer-to-peer
networks, Proceedings of the second International Conference on Digital Information Management,
Lyon, France, pp. 368–375.

Eppstein D., 1997. Dynamic connectivity in digital images. Information Processing Letters, Volume 62,
Issue 3, 121–126.

Eppstein, D. et al., 1997. Sparsification—a technique for speeding up dynamic graph algorithms. Journal
of the ACM (JACM), Volume 44, no.5, pp. 669–696.

Frederickson G. N., 1983. Data structures for on-line updating of minimum spanning trees. Proceedings
of the fifteenth annual ACM symposium on Theory of computing (STOC '83). Boston, USA,
pp 252-257.

Gibb, D. et al., 2015. Dynamic graph connectivity with improved worst case update time and sublinear
space. arXiv preprint arXiv:1509.06464.

Henzinger M. R. and King V. 1995. Randomized dynamic graph algorithms with polylogarithmic time per
operation, Proceedings of the 27th Symposium on Theory of Computing, Las Vegas, USA,
pp. 519–527.

Henzinger, M. R. and Thorup, M. 1997. Sampling to provide or to bound: With applications to fully
dynamic graph algorithms, Random Structures and Algorithms, Volume 11, no 4, pp. 369–379

Holm, J. et al, 1998. Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum
spanning tree, 2-edge, and biconnectivity. Proceedings of the thirtieth annual ACM symposium on
Theory of computing, Dallas, USA pp. 79-89

Kapron, B. et al., 2013. Dynamic graph connectivity in polylogarithmic worst case time. In Proceedings
of the twenty-fourth annual ACM-SIAM symposium on Discrete algorithms. New Orleans, USA,
pp. 1131-1142

Kejlberg-Rasmussen et al., 2015. Deterministic worst case dynamic connectivity: Simpler and faster.
CoRR, abs/1507.05944.

Patrascu, M. and Demaine, E., 2005. Logarithmic Lower Bounds in the Cell-Probe Model. SIAM Journal
on Computing, Vol 35. No 4, pages 932–963.

Ryu S. et al, 2013. Development of device-to-device (D2D) communication based new mobile proximity
multimedia service business models. Proceedings of the IEEE International Conference on Multimedia
and Expo Workshops, San Jose, USA, pp. 1–6.

Sleator D. D. and Tarjan R. E., 1983. A data structure for dynamic trees. Journal of Computer and System
Sciences, Volume 26, Issue 3, pp 362-391

Thorup, M., 2000. Near-optimal fully-dynamic graph connectivity. Proceedings of the thirty-second
annual ACM symposium on Theory of computing, Portland, USA, pp. 343-350.

Thorup M., 2000. Near-optimal fully-dynamic graph connectivity. Proceedings of the 32nd annual ACM
symposium on Theory of computing (STOC), Portland, USA, pp. 343–350.

Wulff-Nilsen, C., 2013. Faster deterministic fully-dynamic graph connectivity. Proceedings of the
twenty-fourth Annual ACM-SIAM Symposium on Discrete Algorithms New Orleans, USA,
pp. 1757-1769

