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ABSTRACT 

Prediction of harvest yield is an important and challenging problem. Attempts to solve this problem rely 

usually rely on regression techniques highly dependent on local factors. This paper presents a hidden 

Markov model approach for forecasting weight production. The model can deal with any culture or 

provided data. Results show that the model can capture both spatial and temporal harvest variability. Model 

analysis can help determine causes of variability, differently from regression or more straightforward 

Markov chain approaches. The resulting structure can benefit from statistical techniques for model tuning 

and model fitting.  

KEYWORDS 

Precision Agriculture, Stochastic Processes, Probabilistic Inference 

1. INTRODUCTION 

Crop productivity depends on a diversity of factors ranging from the production environment to 

plants' genetic characteristics (Franchini et al., 2016). The production environment refers to soil 

properties, water availability, terrain elevation, slope, and orientation, among other traits. It is 

possible to modify some of the production environment by human management activities. Land 

management can be costly, so it is mandatory to understand the impact changes will have on the 

final profit. To make matters more complicated, carrying out the same way planting, 

management, and harvest are done will not change the fact that the final production results will 

present both spatial and temporal variability. Discovering the main factors associated with 

production variability assures two significant developments: the definition of management 

practices aimed at maximizing the results of the harvest, and the correct prediction of crop 

results, given the existing conditions in the actual production environment. 
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Looking for the leading causes of production variability is an active topic of research within 

the Agricultural Sciences. The reviewed literature shows that experiment findings depend 

strongly on the available data, usually specific to each culture and location. So, it is often not 

possible to extrapolate the results to other places or different types of cultures. The findings 

referring to the primary causes of productivity variation cover almost all agronomic and 

meteorological variables: air temperature (Franchini et al., 2016), water deficit  

(Guedes-Filho, 2009), topography (Kravchenko and Bullock, 2000), cation exchange capacity 

(Usowicz and Lipiec, 2017), and so forth. The difficulty in analyzing the variables that intervene 

in the production results seems to be intrinsic to the problem: Vieira and Gonzalez (2003) 

suggest that the factors that cause the variability in the production results themselves also vary 

with time. 

Precision in forecasting crop productivity has essential economic, environmental, and social 

impacts. Even a partial solution to that problem is desirable if an optimal one is not available. 

To be useful, a crop yield forecasting model must deal with both spatial and temporal variability 

and also provide information to the producer to take management actions even during the 

planting season. The methods used to define the causes of variability in production results are, 

for the most part, based on correlation and regression techniques as seen in Cai et al. (2013) and 

Miller, Singer, Nilsen (1998) or geostatistical methods as discussed in Al-omran et al. (2013), 

Mattioni, Schuch and Villela (2011) and Acosta et al. (2019). However, correlation cannot 

capture causation or any other non-linear relationships (Murphy, 2012). Geostatistics requires 

interpolation of data points that may not accurately represent actual soil characteristics and 

cannot capture crop development's temporal aspects. 

A stochastic process is a probabilistic chain of events or situations where future events in 

the chain depend on the previous ones (Taha, 2007). Markov chains are a special kind of 

stochastic process suitable to represent time-evolving processes where the next system state is 

determined uniquely from the past state by a fixed set of computed conditional probabilities. 

Unlike most statistical and other forecasting models, Markov chains are characterized by less 

rigorous assumptions and provide more information about causality than logistic regression, 

neural networks, and other non-explanatory inference models. Named after the Russian 

mathematician Andrei Andreyevich Markov (1856-1922), Markov chains have various 

applications, ranging from – but not limited to – finance, marketing, biology, text processing, 

and pattern recognition. 

Markov chains are an often encountered modelling technique for ecological and 

environmental systems (Paegelow and Olmedo, 2008). Diniz (1984) highlighted the potential 

for applying Markovian principles and information technology resources to agricultural 

transition and transformation studies. Matis et al. (1985) and Matis, Birkett, Boudreaux (1989) 

present different ways of using Markov chains to predict crop yields and establish the 

methodology's generality and practicality that involves this type of model. Thirunavukkarasu 

(2015) assessed the trend (increase or decrease) of barley production in India, using a Markov 

model, which only depends on the past data set instead of a more rigorous set of assumptions. 

Growth rate analyses are widely used to study different agricultural products' behaviour and are 

usually estimated using parametric models and time series. 

Although its general use in a wide range of applications, Markov chains have a simple 

definition based on states without any internal structure. Modelling variable relations – binary 

or otherwise – within the framework of Markov chains can be very challenging. Markov chains 

are simply a set of states with transitions from one state to another. Each state transition in a 

Markov chain is labelled with the conditional probability of the system make it at some point. 
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However, farmers are more interested in how the environment affects production, to which a 

structure consisting solely of states cannot adequately respond. The question "what is the most 

likely harvest yield for this plantation, based on current data?" determines an inference problem 

from a set of conditions to a final result. The search for causal effects between agricultural 

variables and crop yield demands a richer framework. It is not enough to know the system 

change probability from one state representing yield change to another. It is also necessary to 

establish the likelihood of how system variables modifications affect that change.  

A hidden Markov model provides such a framework. Hidden Markov models separate 

observable variables (attributes of the production environment) from hidden variables 

(production results), which is the inference goal. One can address three problems within that 

framework: i) the likelihood or probability evaluation problem, ii) the decoding or optimal state 

sequence problem, and iii) the learning or parameter estimation problem (Rabiner and Juang, 

1986). We want to determine the most likely harvest yield, given actual production data. So, the 

second problem is of interest. The Viterbi algorithm (Viterbi, 1967) presents an efficient optimal 

recursive solution to this problem (Forney, 1973). 

This work focuses on developing a flexible forecasting model for predicting harvest results, 

capable of incorporating new information as they become available, considering it is a 

characteristic of agricultural production systems. To the extent of our knowledge, supported by 

relating literature review, it is a novel approach. 

The rest of the text is structured as follows: Sec. 2 presents the technological framework 

used to build the model and their algorithms; Sec. 3 presents and discusses the most significant 

findings; finally, Sec. 4 concludes and discusses some further developments. 

2. MATERIAL AND METHODS 

Conceptually, this work can be categorized as applied research, consisting of the following 

steps: data collection and preprocessing; model design, implementation, and subsequent 

simulation and analysis. The dataset comes from two sources: the meteorological data originates 

from the Brazilian National Institute of Meteorology database; the soil and production data come 

directly from the experimental research land owned by EMBRAPA South Livestock. 

Gathered data was imported and subsequently preprocessed with the Geographic 

Information System QGIS (QGIS, 2019). Data residing in Microsoft Excel™ datasheets were 

imported to LibreOffice Calc, reorganized, exported to ASCII files, and later used as input for 

QGIS (QGIS, 2019) and R Studio (R Core Team, 2019). Productivity data were in a Shapefile 

(.shp) format, generated by Stara TOPPER 4500 (STARA, 2011) precision agriculture 

controller, which saves the actual production weight collected during harvest. The shapefile 

contains polygons associated with a local database using DBF files, imported to layered QGIS 

files. A GPS built into the controller generates altitude data. 

Meteorological data were retrieved from the INMET database (INMET, 2018a), referring to 

Bagé/RS, Brazil (OMM 83980, latitude -31:305661º, longitude -54:119352º, altitude 245.66m). 

Notice that there was no meteorological station inside the property. The actual station is about 

12km straight away; therefore, that information is just an approximation. The chosen variables 

are the accumulated precipitation in 24 hours, solar irradiation per time unit, expected water 

deficit and surplus for soy cultures, measured in millimetres. The latter was estimated using the 

decision support system for agriculture SISDAGRO (INMET, 2018b).  
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Soil penetration resistance data were collected in the field by EMBRAPA technicians using 

the soil compactness electronic meter penetroLOG, from Falker (FALKER, 2018). The full 

dataset corresponds to measurements in 50 sites, with 4 to 8 samples taken in each locale. Each 

measure registers soil penetration resistance between 1 and 40 centimetres, totalizing 40 

measurements per sample.  

Soil chemical fertility data also correspond to 50 georeferenced samples, with 22 variables 

quantified. We only used 5 of them to build the model, as shown in Table 1. 

Table 1. Soil measurements variables 

Name Measurement unit Description 

Clay % amount of clay in the soil 

P 

K 

mg/L 

mg/L 

amount phosphor in the soil 

amount potassium in the soil 

Organic matter % organic material percentage 

CTC cmolc/dm3 cation exchange capacity with pH 7 

 

Meteorological information was the same for the whole area. Fifty (50) points across the 

terrain provided the rest of the data. Each of those points has productivity, soil, climate, and 

altimetry data across different harvests. Figure 1 shows the distribution of data points across the 

area. 

Data discretization of numerical values followed the guidelines presented in the literature. 

If there was no available definition of appropriate class values, a frequency distribution was 

computed and partitioned into classes. The class frequency is the number of elements belonging 

to each class (Assis; Arruda; Pereira, 1996). Spiegel and Stephens (2008) recommended 

defining the total amplitude by calculating the difference between the highest and lowest data 

set value. Afterwards, the amplitude value was divided by three, according to a criterion of the 

same class size and number of pre-fixed classes. The final step was to determine class 

frequencies and class intervals to feed into the model. Table 2 presents all the model variables 

and their respective classes and value limits for each class. 

Model development and programming used the R programming language (R Core Team, 

2019) within the R Studio. The model implementation used the following R packages: 

TraMineR, gmodels, sf, tmap, readODS, gstat, sp, raster, and rgdal. The functions in the R 

package markovchain (Spedicato, 2019) implement conditional probabilities calculations, 

transition matrices definitions, matrix multiplication, and other elementary functions. Package 

seqHMM (Helske e Helske 2019a, 2019b) provides the methods for data organization, model 

building, analysis, and testing; the same package provides an implementation of the Viterbi 

algorithm. The model analysis procedure used the Bayesian Information Criterion, or simply 

BIC, which measures overfitting (Robles et al., 2012).  
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Figure 1. Data points distribution across the field of study 

The algorithms developed can present model results as lists, sequential graphs, percentage 

graphs, spatialized maps in the form of points, and interpolated maps with the Inverse Distance 

Weighting or IDW method (Bivand, Pebesma e Gómez-Rubio, 2008). The only culture used in 

the model was soy, which can be replaced by any other culture without changing the model 

structure. A straightforward modification in the model permits to tackle several cultures at once. 

Table 2. Variable classes and value limits 

Name Low Medium High 

Production weight (ton) < 1.9 1.9-3.5 > 3.5 

Precipitation (mm) 

Insolation (h) 

<= 671.4 

<= 1,226.9 

- 

- 

>  671.4 

> 1,226.9 

RP (Kpa) <= 2,000 - > 2,000 

Water deficit (mm) <= 164.1 - > 165.1 

Water surplus (mm) <= 488.5 - > 488.5 

Altitude (m) <= 243.5 - > 243.5 

Organic matter (%) <= 2.5 - > 2.5 

Phosphor <= 12 - > 12 

Potassium (CTC <= 15) < 40 40-60 > 60 

Potassium (CTC >15) <=90 - > 90 

3. THE HIDDEN MARKOV MODEL  

The production yield forecasting system was model as a finite hidden Markov chain. The hidden 
states are the production yield; the visible states correspond to each observable variable: 
precipitation (Prec), insolation (Insol), water deficit (Defi), water surplus (Exce), soil 
compaction (RP), altitude (Alti), organic material (MO), phosphorous (P), and potassium (K). 
Production yield has three classes: low, medium, and high. Figure 2 depicts the model 
organization.  
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Figure 2. Production yield forecasting model organization 

Formally, a hidden Markov chain is a tuple M = (S, V, A, B, π), where S is a finite set of 

(hidden) states; V is a set of observable variables;  A is the transition matrix where each element 

a(i,j) in A is the conditional probability p(Sj|Si), or the probability of system M goes to state Sj 

given that its current state is Si; B is the observation probability matrix, where each element 

b(j,k) in B is the conditional probability p(Vk|Sj) or the probability of observing values Vk given 

that the system is in state  Sj; and π is a probability mass function, where π(s) indicates the 

likelihood of system M starts in state s. The system M = (S, V, A, B, π) is sometimes written as 

M = (A, B, π) since it is possible to infer the first by the latter (Fink, 2008; Jurafsky e Martin, 

2018; Rabiner e Juang, 1986). The decodification problem can be formally stated as follows: 

given a model M and a sequence of observations O = o1, o2,…, on, whats is the most probable 

sequence of hidden states occurring? Each observation consists of one value for each visible 

variable in the model. The Viterbi algorithm gives an efficient recursive optimal solution for 

this problem (Viterbi, 1967; Forney, 1973). 

 The data gathered from four years of production fed the model. The marginal and the 

initial probabilities were directly calculated from the production yield in each year. Figures 3a, 

3b, 3c, and 3d show the productivity yield in each harvest, categorized by produced weight (low, 

medium, high). Notice that productivity is not uniform along the area. Some regions were 

consistently more fruitful than others in all periods, while others presented high variation rates 

along the time. 

Markov chains have the property that the final results are independent of the initial 

conditions, given enough system transitions over time. It means the system stabilizes around 

general condition probabilities. The actual production and measure data, taken from the 50 

points shown in Figure 1, served as input to the model. A matrix with 50 lines and 4 columns 

codes the production data. Each element in that matrix gives a production yield from a specific 

year. Figure 4 shows the system transition matrix and the system emission (or observation) 

matrix and its elements. The transition matrix elements refer to the probability of a specific 

(high, medium, low) yield given last year's (high, medium, low) production result. The emission 

matrix E informs the yield's probabilities (high, medium, low) given the set of observed variable 

classes. There is an emission matrix for each of the visible variables: precipitation, insolation, 

water deficit, water surplus, soil compaction, altitude, organic material, phosphorous, and 

potassium. As shown in Figure 4, emission matrices have three lines, one for each possible 

production yield. The number of columns in an emission matrix depends on how many value 

classes the variable has. 
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Figure 3. Production yield in four different harvests 

  

𝑀 = (

𝑝(ℎ|ℎ) 𝑝(ℎ|𝑚) 𝑝(ℎ|𝑙)
𝑝(𝑚|ℎ) 𝑝(𝑚|𝑚) 𝑝(𝑚|𝑙)

𝑝(𝑙|ℎ) 𝑝(𝑙|𝑚) 𝑝(𝑙|𝑙)
) 𝐸 =  (

𝑝(𝑎|𝑜1) … 𝑝(𝑎|𝑜𝑛)
𝑝(𝑚|𝑜1) … 𝑝(𝑚|𝑜𝑛)

𝑝(𝑙|𝑜1) … 𝑝(𝑙|𝑜𝑛)
) 

Figure 4. Probability transition matrix and emission probability matrix 

The straightforward extension of the model structure allows for addressing any number of 

variables. Since the model is discrete, it is necessary to group continuous values into arbitrary 

classes, depending only on the concrete problem. There is no need to establish any assumptions 

about how variables influence the final yield. The computed conditional probabilities allow the 

inference of how observations affect results. It is also possible to build a sequence of models to 
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predict the outcome given a timeline of events. Time intervals can be years, months, days, 

growth phase, or any other chosen interval. The only existent restriction is data availability for 

a frequentist approach to probability. A Bayesian approach to initialize the model is also 

possible. Model tuning is possible as new data arrives. Sec. 3 presents the results obtained by 

the model described herein, and Sec. 4 discusses further improvements to our model. 

4. RESULTS AND DISCUSSION 

Data were available for four harvests, with two of them having a medium yield, one having a 

low output, and one having a high result. The supplied data allowed the calculation of marginal 

and conditional probabilities. However, the patent limitations on the sample size prevent the 

achievement of general conclusions about causal relationships. Figure 5 depicts the generated 

hidden Markov model, in the form of a graph, with the nine variables described in Table 2. 

Graph nodes represent the three hidden states (low, medium, and high yield). Each node is 

partitioned accordingly to the probabilities of observing different classes of each visible 

variable. Graph edges show the transition probabilities. Initial probabilities appear under the 

nodes. Observation states with probability lower than 1% appear as a single node sector 

(coloured white). The graph also omits the states with an estimated zero probability. Transitions 

probabilities values are round off for legibility. 

 

 

Figure 5. The complete hidden Markov model  

The model testing used both factual and simulated data. The four harvests data set served to 

build the model and to analyze its results. Investigation of model strength and adequacy used 

simulated data. QGIS preprocessed all georeferenced data before their input into the model, 

coded in the R programming language. Figure 6 presents the most probable harvest yield 

evolution along the years, given observation data. The graphics in Figure 6 (right) reads as 

follows: results point to the first harvest having high yield with 48% chance, no chance for low 

output, and 52% chance of medium yield; productivity yield for the second harvest has a 
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probability of 12% for high yield, 50% of low yield, and 38% for medium yield; the third harvest 

have 80% chance of high yield, 12% of low yield, and  8% medium yield; the fourth and last 

harvest has a chance of high, low and medium yield of, respectively, 6%, 80%, and 14%. The 

image on the left side of Figure 6 shows the expected outcome per data point. The pictures 

displayed in Figure 6 allows the assessment of both spatial and temporal yield variability within 

the field. 

 

Figure 6. Most probable harvest yield 

Figure 7 presents the expected productivity by region in each of the four harvests (indicated 

as T0, T1, T2, and T3). Interpolated data from the 50 information sources points appear where 

no data exist. The map identifies the original regions that serve as data sources for yield weight, 

soil samples, and soil penetration resistance. QGIS, or any other geographical information 

system, can generate a map like this from the model. Farmers or other  

non-specialists more easily read charts and other graphic presentations. 

Emission matrices, built from observed variables concerning production yield, can estimate 

a particular variable's relative impact on the outcome. Figure 8 shows the computed emission 

matrices for precipitation and potassium in the soil. Both matrices present data ordained from 

high to low, where the lines refer to productivity, and the columns refer to the variable classes, 

also sort from higher to lower. Although the amount of data is not enough to draw definitive 

conclusions about causality relations, it still provides information. For instance, precipitation 

values correlate almost directly with the final weight result; potassium, on the other hand, does 

not appear to have any influence on the harvest outcome. 
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Figure 7. Expected productivity by region  

 

𝑃𝑟𝑒𝑐 =  (
0.9722 0.0278
0.5256 0.4744
0.1733 0.8267

) 𝐾 =  (
0.6111 0.2778 0.1111
0.6410 0.3077 0.0513
0.7733 0.1733 0.0533

) 

Figure 8. Emission matrices values 

The model testing proceeded to investigate what was the best set of variables to fit the model. 

According to the Bayesian Information Criterion (BIC), the best model to accurately represent 

the data with minimum overfitting has six variables (1207.326) followed by a five variable 

model (BIC 1398.319); the complete nine variables model has the worst result (BIC 2090.064). 

The emission matrices analysis had already pointed out that result since the model relies on 

variables with no influence on the actual product yield.  
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5. CONCLUSION 

Harvest yield prediction is a relevant and challenging problem for farmers in particular and for 

the society in general. Currently, most approaches to solve this problem rely on regression 

techniques that cannot establish causal relationships. Furthermore, factors influencing 

production variability can themselves change with time.  

Markov models are a special kind of stochastic process with a short-term memory of events. 

Hidden Markov chains are a special kind of Markov models that separate visible variables (the 

information on the production system) from the hidden variables (the harvest outcome). There 

are no assumptions to build a model other than some statistical relationship between the 

observed elements and the result. Additionally, Markov chains capture the temporal process 

evolution in a very straightforward manner. 

This work presented a hidden Markov model to predict crop yield results. The model uses 

nine soil and meteorological variables as the visible ones: accumulated precipitation, 

accumulated insolation, accumulated water deficit, accumulated water surplus, soil compaction, 

altitude, organic material percentage, amount of phosphorous, and amount of potassium. The 

hidden variable is the harvest weight production.  

The model received data from four harvests. The sample size was not sufficient to draw 

general conclusions about relations between variables. However, there was enough information 

to establish the pertinence of the technique. Emission matrices permit investigating causal 

relations while the transition system model can infer future states based on past ones. The hidden 

transition system allows the inference of probable future yields given present observable 

conditions. The same model technique applies to any culture or available production system 

data. If a new measurement becomes available, it suffices to calculate the new emission matrix 

to extend the model. We can also attach multiple models to a region, to investigate variability 

in a more precise way.  

We used the Bayesian Information Criterion (BIC) to evaluate models built with simulated 

data. The simulated data was necessary because the actual data was too scarce to reveal any of 

the method's strengths when applied to the model. The BIC analysis has shown the pertinence 

of statistical techniques to refine and tune hidden Markov chain models. 
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