
IADIS International Journal on Computer Science and Information Systems

Vol. 15, No. 2, pp. 44-57

ISSN: 1646-3692

44

DESIGN OF COOPERATIVE OPENMP-BASED

METAHEURISTIC APPROACH

FOR MULTI-OBJECTIVE KNAPSACK PROBLEM

Imen Ben Mansour1,2, Ines Alaya1 and Moncef Tagina1
1ENSI-COSMOS, University of Manouba, Manouba 2010,Tunisia.
2Esprit School Of Engineering, Tunis, Tunisia

ABSTRACT

Parallelism arises as an attractive option when solving Multi-Objective optimization problems (MOPs).

Moreover, it seems interesting when metaheuristics demand an intensive use of CPU or memory. In this

paper, we propose a parallel implementation of a hybrid ant colony optimization metaheuristic for the

multiobjective knapsack problem using the OpenMP framework called MHAC_OMP. The proposed

approach combined a MultiObjective Ant Colony Optimization (MOACO) algorithm with Tchebycheff

based Local Search (TLS) procedure. The idea behind MHAC_OMP is to evolve several independent

MOACO in parallel. Each MOACO hold a local archive to maintain diversity. The parallelization is

defined as assuming a shared-memory based on threads in which the initialization phase begins with a

single thread called the master thread and executed sequentially. Afterward, a parallel region is defined

where many threads are created, each one of them executing its own copy of the proposed ant colony

algorithm independently. Experimental results show a significant efficiency of the solutions returned over

the sequential implementation.

KEYWORDS

Parallel Metaheuristic, Threads, OpenMP, Ant Colony Optimization, Multiobjective Optimization,

The Augmented Weighted Tchebycheff Method

1. INTRODUCTION

Several real-life optimization problems are modeled as a multiobjective combinatorial

optimization problem, due to the multiple conflicting objectives and the different constraints

that have to be respected simultaneously. Since such optimization problems cannot be tackled

by exacts methods, metaheuristics represent a great alternative, they are used with less

computational effort to find a good approximation of the optimal Pareto set.

DESIGN OF COOPERATIVE OPENMP-BASED METAHEURISTIC APPROACH

FOR MULTI-OBJECTIVE KNAPSACK PROBLEM

45

Since introduced in 1992 by Marco Dorigo (Dorigo, 1992), ant colony optimization (ACO)

algorithms have been successfully applied to many combinatorial mono and multi-objective

optimization problems, ranging from traveling salesmen (TSP) (Angus, 2007; Dorigo

& Gambardella, 1991) to knapsack problems (KP) (Alaya, Solnon, & Ghédira, 2007; Zouari,

Alaya, & Tagina, 2017) and a lot of derived methods have been adapted to cooperative and

parallel implementations.

ACO was proposed as a solution when suffering from limited diversification. Therefore,

ACO is a powerful technique in exploration of the solution space. In addition to its significant

performance improvement compared with other metaheuristic techniques, its multicore

computing power encouraged the modification of the standard sequential form to be applied in

a parallel framework.

In this paper, we propose an efficient and straightforward OpenMP multiobjective ACO

(MOACO) implementation based on shared memory multiprocessing programming

architecture. Here, OpenMP is implemented with its parallel regions. A shared memory model

has been considered to get the benefit of creating a common space sharing pheromone matrix

and the approximate Pareto set without the overhead of communication, especially when

applying both the Construct Ant Solutions and Update Pheromone processes. The proposed

approach is implemented to improve the approximation of the Pareto-optimal solutions not

altering the MOACO algorithm behavior. The design of a parallel framework is motivated by,

firstly, the need to improve the convergence and the diversity of the solutions, secondly to

reduce computing efforts without altering its behavior. This paper proposes a solution with

OpenMP to get the performance gain of parallel regions. These parallel regions provide

parallelizing to the MOACO algorithm not only to speed-up the MOACO but also to improve

its Pareto set's quality.

This paper is organized as the following: in Section 2, the related work to ACO and the

research efforts towards its parallelization are presented. Section 3 introduces the studied

problem: the multiobjective KP. Section 4 presents the sequential ACO algorithm mapped to

the multiobjective knapsack problem. In section 4, the proposed ACO parallelization using

OpenMP is introduced where its sub-sections show the analysis of different elements of

OpenMP and its effects on performance. In section 5, results and performance evaluation are

investigated using the multiobjective KP problem as an implementation of the parallel ACO

algorithm. Finally, section 6 concludes the research and suggests the future work.

2. RELATED WORK

Many efforts have been devoted to adapting the ACO algorithm on several cooperative and

parallel paradigms (Pedemonte, Nesmachnow, & Cancela, 2011). The first implementation of a

parallel Ant System is attributed to (Bolondi & Bondanza, 1993), who presented a fine-grain

implementation that uses several groups of ants executed a standard AS algorithm and placed

one ant in each processor to solve the Traveling Salesman Problem (TSP).

Talbi et al. in (Talbi, Roux, Fonlupt, & Robillard, 2001) presented a method called ANTabu

combining ACO and Tabu Search (TS), applied to solve the Quadratic Assignment Problem

(QAP). The TS method was used as a local search to improve the solutions in each thread. The

parallel version was compared against a sequential ACO, a parallel TS, genetic algorithms (GA)

and variable neighborhood search. In (Lv, Xia, & Qian, 2006) Lv et al. proposed a parallel ACO

IADIS International Journal on Computer Science and Information Systems

46

using P groups of ants, distributed in P processors, which shared one pheromone matrix in

multiprocessing computer to solve TSPLIB instances with up to 15,915 cities. The algorithm

achieved better solutions than sequential versions. Stützle in (Stützle & Hoos, 2000) studied the

parallel independent execution of MAX − MIN Ant System (MMAS) with a local search for

the TSP. The evaluation analyzed the benefits of using a parallel model with respect to a

sequential ACO, comparing the quality of the solutions for TSPLIB instances with up to 1173

cities. The results showed that the parallel executions obtained better solutions than the

sequential algorithm in all the studied instances. In (Bai, OuYang, Li, He, & Yu, 2009), the

authors implemented parallel independent runs of MMAS on GPU. Each thread executed one

ant and each thread block was used for independent execution. The main algorithm runs on

GPU, while the CPU is only used to initialize the solutions and to control the iteration process.

Regarding the quality of the solutions, the GPU-parallel implementation outperformed three

sequential MMAS versions, while acceleration values between 2 and 32 were obtained. In

(Abouelfarag, Aly, & Elbialy, 2015), the authors proposed a parallel ACO using the OpenMP

framework. Parallel regions are used, to increase the overhead of creating and terminating

threads and a shared memory model has been chosen to get the benefit of creating a common

space sharing pheromone matrix without the overhead of communication.

Although several studies have been proposed for the parallel implementation of

mono-objective ACO, as far as we know, few references can be found about parallel

implementations of the multiobjective ACO (MOACO) (Falcón-Cardona, Leguizamón, Coello,

& Tapia, 2020), even less with the openMP framework. In (Delisle, Krajecki, Gravel, & Gagné,

2001) a parallel implementation of an ant colony optimization metaheuristic with OpenMP for

the solution of an industrial multiobjective scheduling problem in an aluminum casting center

is introduced. The parallelization process consists to affect the generation and evaluation of each

ant to a different processor. The pheromone matrix is in the shared memory and is updated by

one ant, by an OpenMP thread, at a time, in a critical section of the parallel region. In (Mora,

García-Sánchez, Merelo, & Castillo, 2013), the authors introduce an island-based model where

the colonies communicate by migrating ants, following a neighborhood topology that fits the

search space. Thus a parallel scheme will be implemented, taking a coarse-grained

parallelization approach, at the colony level, so every computational node (processor) will

contain a set of ants (colony).

3. MULTIOBJECTIVE KNAPSACK PROBLEM

The multiobjective multidimensional knapsack problem consists of finding a subset of items

subject to a set of resource constraints while maximizing several objectives. Due to its NP-hard

nature (Martello, 1990), several approaches has been proposed (Lust, & Teghem, 2012).

Formally, MOMKP could be written as follows:

Maximize mk ,...,1= (1)

 Subject to qi ,...,1= (2)

 nj ,...,1=

 =
n
j j

k

j xp1

 =
n
j ij

i

j bxw1

 1,0jx

DESIGN OF COOPERATIVE OPENMP-BASED METAHEURISTIC APPROACH

FOR MULTI-OBJECTIVE KNAPSACK PROBLEM

47

There are 𝑛 items, for each item 𝐼𝑗 is assigning a decision variable 𝑥𝑗 equal to 1 if the item

is selected, 0 otherwise. Each item 𝐼𝑗 has a profit 𝑝𝑗
𝑘 relatively to the objective 𝑘 and 𝑤𝑗

𝑖

consumed quantity relative to the resource 𝑖 (like weight, volume...). The aim objective of the

problem is to select a subset of items among the 𝑛 items in order to maximize 𝑚 objective

functions while not exceeding 𝑞 resource constraints 𝑏𝑖 regarding the total quantity available

for the resource 𝑖.

4. THE SEQUENTIAL MHAC

ACO metaheuristic is a cooperative population-based construction algorithm inspired from the

behavior of real ants while searching for a food source. The colony of ants cooperates to build

a set of solutions using an indirect form of communication, called pheromone, deposited by the

member of the colony while building their solutions. The Tchebycheff-based Local Search

(TLS) procedure is a simple heuristic algorithm used to find good-quality solutions or to

improve results in a relatively short time. They provide an interesting alternative to classical

evolutionary algorithms and often involve a small number of parameters.

MHAC()

{

 Initialize Pheromone Structure to τ_max

 A← Ø

 While(run time limit not reached)

 {

 Sol← Ø

 For each ant k

 { Construct Solution Sh;

 Sol ← Sol ∪ Sh; }

 Local Search (Sol);

 A ← non-dominated (A ∪ Sol);

 Update Pheromone Structure 𝜏(𝐼𝑗);

 P ← non-dominated (A ∪ Sol);

 }

 }

Figure 1. The pseudo code of MHAC algorithm

Here, the hybrid approach called MHAC is proposed as a synergy of the multiobjective ACO

algorithm with a Tchebycheff-based Local Search (TLS) procedure. In summary, the structure

of the MHAC algorithm is given in Figure 1. The MOACO algorithm is used to favor the

exploration in the search space while the TLS method tries to enhance the solutions built by

ants. Since our algorithm follows the MMAS scheme (Stützle & Hoos, 2000) so, as a first step,

the pheromone traces are initialized to an upper bound τ_max. Apart from that, mainly, the

hybrid MOACO algorithm for MOMKP consists of three procedures described in the following

sub-sections.

IADIS International Journal on Computer Science and Information Systems

48

4.1 Construct Ants Solutions

To tailor the ACO for solving the Knapsack problem (KP), the problem must be reduced to a

complete graph G =(V ,E) along which the ants move to build candidate solutions. Where V is

the set of vertices and E is the set of edges. The vertices V acted as the set of items to be selected

and E represents the connection between the vertices V i.e. path constructed by a given ant.

Here, the pheromone trails are associated with the vertices of this graph. Each ant h constructs

one feasible solution by applying repeatedly the state transition rule to select the most

appropriate item Ij to be added to the solution Sh among a set of feasible items Feas (candidate

vertices). This set is updated by including items not yet added and that doesn't violate any

constraint. The transition rule pS
h is directed by the pheromone value τS

h and the heuristic

information ηS
h:

pSh (Ij) =
[τ

Sh(Ij)]
α

[η
Sh(Ij)]

β

∑ [τ
Sh(Il)]

α
[τ

Sh(Il)]
α

Il∈Feas

 (3)

The heuristic information is used to guide the search process of artificial ants. In order to

orientate ants to look in different regions of the non-dominated front, different configurations

of the heuristic information matrix are executed, i.e. using different weight vectors

𝜆(g)=(𝜆1(g),..., 𝜆m(g)). To generate the set of the weight vector, we use the Gradual weights
generation method (Gw) (Mansour, Alaya, & Moncef, 2017a, 2017b, 2019). For that, ηS

h for

a given ant h, is set as:

 ηS
h (Ij) =

∑ λk
m
k=1 (g)pj

k

∑ (
wj

i

RS
h(i)

q
i=1

)

 (4)

where is the remaining amount of the resource i when an ant h is currently building its

solution Sh. pk
j and wi

j are respectively the profit and the weight of the candidate item.

4.2 Local Search

This step is started after the solution construction phase and before the pheromone update. The

local search procedure aims to improve the quality of solutions generated by the Ant Colony

algorithm. The figure 2 presents the local search procedure used in the proposed MHAC

algorithm. The fitness value of each solution in Sol is calculated before performing a local

search step. This step consists of exploring the neighborhood of each solution Sh in Sol until we

find a solution Sh* that is better than the worst solution w of Sol regarding the search direction

𝜆 under consideration. Then, Sh* is added to Sol and replaces the solution w. The neighborhood

exploration process stops once the first improving neighbor is found.

In order to evaluate a solution Sh against the whole population, we use one of the most

commonly-used scalarization approaches: the augmented weighted Tchebycheff method (Steuer

& Choo, 1983):

𝐴𝑊𝑇 (𝑆ℎ|𝜆, 𝑧∗) = 𝑚𝑎𝑥𝑘=1…𝑚{𝜆𝑘. |𝑧𝑘
∗ − 𝑓𝑘(𝑆ℎ)|} + 𝜀 ∑ |𝑧𝑘

∗ − 𝑓𝑘(𝑆ℎ)|𝑚
𝑘=1 (5)

DESIGN OF COOPERATIVE OPENMP-BASED METAHEURISTIC APPROACH

FOR MULTI-OBJECTIVE KNAPSACK PROBLEM

49

Where 𝑧∗ is the ideal point, used as a reference point here, and updated during the execution

of the algorithm; 𝑧𝑘
∗ = 𝑚𝑎𝑥𝑘=1…𝑚 𝑓𝑘(𝑆ℎ) and 𝜀 ≥ 0 is usually chosen as a small positive

number.

Local Search(Sol)

{

 For each solution Sh

 {

 Evaluate solution Sh;

 Repeat {

 Generate neighbor Sh* of Sh;

 Evaluate Sh*

 If Sh* is better than the worst solution in Sol w

 Replace w with Sh* in Sol

 }

 Until (Sh*≠ w or all neighbors are explored)

 }

}

Figure 2. The the local search procedure

Since the 0/1 multi-objective knapsack problem is a constrained problem, all solutions

should satisfy all resource constraints. Indeed, to generate a new neighbor of Sh, we have to use

an efficient neighborhood structure for this problem. To this end, we use the same neighborhood

function proposed in (Mansour, Alaya, & Moncef, 2017a). This function allows establishing an

order between items according to their profitability. It has the goal of finding the item that

minimizes an extraction ratio to permute it with items that maximize an insertion ratio in order

to improve the quality of the obtained solutions, i.e. the neighbor in a small computational time.

A solution Sh to the MOMKP can be presented as a double list 𝐼 = (𝐼𝑙
+, 𝐼𝑙 ̅

−). The first list 𝐼𝑙
+

corresponds to the taken item (belonging to the solution) 𝐼𝑙
+ = {𝐼1

+, 𝐼2
+, … , 𝐼𝑇

+}, where T is the

size of the list. The second list 𝐼𝑙 ̅
− is the list of the remaining items 𝐼𝑙 ̅

− ={𝐼1
−, 𝐼2

−, … , 𝐼𝑁𝑇
− }, where

NT is the number of unselected items.

The transition from one solution Sh to Sh' is referred as a move. Two neighborhood operators

are performed in sequential order in this paper for the MOMKP:

𝑈(𝑙+): The extraction ratio is calculated for all items in the list 𝐼𝑙
+, which measures the utility

value of each item. The lower this ratio is, the worst the item is. The figure 3 outlines the

Extraction_Items algorithm.

IADIS International Journal on Computer Science and Information Systems

50

Extraction_Items ()

{

 For 𝑙+ from 1 to T

 {

 Calculate 𝑈(𝑙+) =
∑ 𝜆𝑘(𝑔)𝑝

𝑙+
𝑘𝑚

𝑘=1

∑ 𝑤
𝑙+
𝑖𝑞

𝑖=1

;

 Add item 𝐼𝑙
+ to list 𝐿𝑈

 }

 Sort 𝐿𝑈 in ascending order

}

Figure 3. The Extraction_Items algorithm

𝑈(𝑙)̅: The insertion ratio is calculated for all unselected items in list 𝐼𝑙 ̅
−, the ratio measures

the quality of the candidate item according to the solution Sh where the higher this ratio is, the

better the item is. The figure 4 outlines the Insertion_Items algorithm.

Insertion_Items ()

{

 For 𝑙 ̅ from 1 to NT

 {

 Calculate 𝑈(𝑙)̅ =
∑ 𝜆𝑘(𝑔)𝑝

𝑙̅
𝑘𝑚

𝑘=1

∑
𝑤

𝑙̅
𝑖

𝑅𝑖(𝑠)
𝑞
𝑖=1

 ;

 Add item 𝐼𝑙 ̅
− to list 𝐿𝑈

 }

 Sort 𝐿𝑈̅ in decreasing order

 Sh' ← Remove 𝐿𝑈(𝑙+) from Sh

 While no constraint is violated and 𝑙 ̅ < 𝑁𝑇 do

 {

 Sh'← Add 𝐿𝑈̅(𝑙)̅ to solution Sh'

 }

}

Figure 4. The Insertion_Items algorithm

4.3 Pheromone Update

The pheromone update step is the most important phase. When all ants construct their solutions,

the non-dominated solutions of the current generation are stored in the archive. The ants that are

allowed to update the pheromone trails, are thus who have found the member of the current

archive by laying an amount of pheromone on each item. The pheromone trail is updated as

follows:

DESIGN OF COOPERATIVE OPENMP-BASED METAHEURISTIC APPROACH

FOR MULTI-OBJECTIVE KNAPSACK PROBLEM

51

𝜏(𝐼𝑗) ← (1 − 𝜌) ∗ 𝜏(𝐼𝑗) + ∆𝜏(𝐼𝑗) (6)

with

 ∆𝜏(𝐼𝑗) = {
|𝐴| 𝑖𝑓 𝐼𝑗 ∈ 𝑆𝑁𝐷

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (7)

In order to give every generation of ants the same influence in a particular part of the Pareto

front, ants that are authorized to update, lay the same amount of pheromone which is equal to

the current archive set size.

5. THE PROPOSED PARALLEL MHAC_OMP

The Ant Colony Optimization is a potential candidate for parallelization for different reasons.

One can cite: The large number of iterations required in updating pheromone trails, the

computations needed for the single ant/ group of ants to construct solution(s) and the

independent behavior of ants. Many strategies have been proposed to implement a parallel ACO.

In this paper, we adopt a parallelization strategy based on multi-thread programming with

multi-core processors. This section introduces an implementation for parallel MHAC using the

OpenMP framework.

The idea is to execute several algorithms instead of a panmictic one, since the management

of the many populations has a great impact on the efficiency of the approach and its ability to

compute a sufficiently diverse and representative Pareto front. Also, we choose to parallel the

places which consume most execution time in the sequential MHAC and to overcome the

problem of communication overhead by using the OpenMP directives. Larger OpenMP parallel

regions are used, because fragmented parallel regions would increase the overhead of creating

and terminating threads.

The proposed framework begins as a single execution thread called the master thread. When

the thread meets the parallel sections, it creates a team of threads consisting of the initial thread

itself and the other threads and becomes the main thread in the team. All the members of the

team execute a copy of the MHAC algorithm and update their local archive called A and then

collaborate to the update of the global Archive named P. At the end of the parallel sections, the

further execution of the code is performed only by the master thread. Therefore, the main thread

is responsible for the final update the global archive holding all the non-dominated solutions

found so far.

Figure 5. shows the parallel programming method of the proposed Algorithm,

Multiobjective Hybrid Ant Colony based on OpenMP (MHAC_OMP). The algorithm is divided

into four sections relatively to the “sections” of OpenMP. Each section is assigned to one thread.

Once all threads finish the execution of MHAC_OMP, the shared global archive P is updated

by all the threads and returned by the master thread. In summary, the structure of the

MHAC_OMP algorithm is given in Figure 6.

IADIS International Journal on Computer Science and Information Systems

52

Initialize Global Archive P

Initialize pheromone trails;

#pragma omp parallel sections shared (𝑃, 𝜏(𝐼𝑗))
 {

 #pragma omp section

 MHAC_OMP();

 #pragma omp section

 MHAC_OMP();

 #pragma omp section

 MHAC_OMP();

 #pragma omp section

 MHAC_OMP();

 }

 Update and return (P);

Figure 5. Parallel Programming method of MHAC_OMP

Figure 6. The general schema of MHAC_OMP with 4 threads. The gray zone corresponds to the

common space between threads sharing pheromone matrix and Pareto set. The arrows correspond the

sending of non-dominated solutions

DESIGN OF COOPERATIVE OPENMP-BASED METAHEURISTIC APPROACH

FOR MULTI-OBJECTIVE KNAPSACK PROBLEM

53

6. EXPERIMENTS AND RESULTS

In this section, we assess the performance of the MHAC_OMP. The platform for conducting

the experiments is a IntelCore i5 2.60 GHz laptop with 6 GB RAM. The program was

implemented using C++ language with OpenMP 4.0. We examine the performance of

MHAC_OMP on nine instances of MOMKP (Zitzler & Thiele, 1999) with two sequential

MOACO algorithms: Gw-ACO (Mansour, Alaya, & Moncef, 2019) and the sequential version

of MHAC_OMP called here MHAC.

To evaluate the efficiency of MHAC_OMP, we use as metrics of performance the

hypervolume difference (HypD) (Zitzler & Thiele, 1999). The HypD value has to be as close as

possible to zero to prove the efficiency of the algorithm. To compare the approaches behaviors

in a graphical way, we use also the summary attainment surface (Da Fonseca, Fonseca, & Hall,

2001). We perform the non-parametric Mann-Whitney statistical test described in (Knowles,

Thiele, & Zitzler, 2005.) in order to verify if the difference between the tested algorithms is

statistically significant with a confidence level greater than 95% (p-value ≤ 0.05). The bold

values in the tables denote the best results found in the considered instance by the corresponding

algorithm.

6.1 Parameterization of MHAC_OMP

Metaheuristic algorithms and parallel approaches require a crucial decision about the values of

numerous parameters. The solution quality and speed may be affected by the parameter settings.

Accordingly, we have been striven to determine an appropriate set of parameter values for the

MD-HACO. The number of threads is fixed to 4, the significance weights for pheromone trail

α set to 1, the significance weights for heuristic information β set to 10, pheromone evaporation

rate ρ set to 0.90, the number of ants equal to 10, the lower bound of pheromone τmin is 1 and

the upper bound τmax is 5.

Each algorithm runs 30 times and each time we run 100 seconds if the number of objectives

if 2, 300 seconds if is equal to 3 and 500 seconds with 4 objectives. We use for each algorithm

the same computation time budget. This choice was motivated by the fact that measuring the

speed up using the time taken by parallel and sequential algorithms to find good solutions is a

more significant measure of performance than simply comparing the time taken to run a certain

number of generations.

6.2 Experimental Results

Table 1 reports the average values obtained by the hypervolume difference metric when

comparing MHAC_OMP, Gw-ACO and MHAC. By analyzing the table it is clear that

MHAC_OMP achieves the best results. In fact, MHAC_OMP is more effective than Gw-ACO.

Moreover, this parallel approach returns better values than the sequential one on all tested

instances.

Table 2 gives the p-values of the Mann-Whitney statistical test of MHAC_OMP against

Gw-ACO and MHAC. Indeed, this table confirms the results obtained in Table 1. The returned

values highlight that MHAC_OMP strongly outperforms Gw-ACO on all tested instances.

When comparing the p-values obtained by MHAC_OMP against MHAC, one can say that the

parallel approach statistically outperforms the sequential one in almost all instances. In fact,

IADIS International Journal on Computer Science and Information Systems

54

MHAC_OMP is significantly better than MHAC for 7 out of the 9 instances. Moreover, it seems

that the results of the parallel algorithm increase according to the size of the problem. Clearly,

the larger the instance is, the better the results are.

Table 1. Average values of the hypervolume difference metric of MHAC_OMP, Gw-ACO and MHAC

Instance MHAC_OMP Gw-ACO MHAC

250_2 1.50E-01 4.29E-01 2.32E-01
500_2
750_2
250_3
500_3
750_3
250_4
500_4
750_4

1.39E-01
1.28E-01
1.69E-01
1.80E-01
1.45E-01
1.73E-01
1.49E-01
1.49E-01

4.28E-01
4.20E-01
5.41E-01
5.49E-01
5.72E-01
5.59E-01
5.23E-01
5.60E-01

1.92E-01
1.45E-01
1.70E-01
2.02E-01
1.81E-01
2.12E-01
1.77E-01
1.76E-01

Table 2. The p-value of the Mann-Whitney statistical test of MHAC_OMP compared to Gw-ACO

and MHAC

Instance Gw-ACO MHAC

250_2 ≤ 0.05 ≤ 0.05
500_2
750_2
250_3
500_3
750_3
250_4
500_4
750_4

≤ 0.05
≤ 0.05
≤ 0.05
≤ 0.05
≤ 0.05
≤ 0.05
≤ 0.05
≤ 0.05

≤ 0.05
0.38
0.5
≤ 0.05
≤ 0.05
≤ 0.05
≤ 0.05
≤ 0.05

Figure 7 plots the median attainment surface of the approximation sets of MHAC_OMP,
Gw-ACO and MHAC on bi-objective instances. The figure shows that MHAC_OMP produces
a very well-distributed Pareto front. It is evident from the figure 7, that almost all the final
solutions obtained by MHAC_OMP dominate those obtained by Gw-ACO and there are no
solutions returned by Gw-ACO that dominate anyone returned by MHAC_OMP and this is for
all the bi-objective tested instances.

From the same figure, one can see that the surfaces of MHAC_OMP and those of MHAC
are difficult to distinguish visually, but it is clear that MHAC_OMP returns an important number
of solutions than MHAC and that the parallel approach provides a better distribution i.e. the
surfaces of MHAC_OMP cover all the extreme ends of the Pareto front.

7. CONCLUSION

In this paper, we have proposed a parallel Multiobjective Ant Colony Optimization approach

based on OpenMP to solve the Multiobjective Knapsack Problem. The nature of the ACO and

the functionality offered by OpenMP made the transition from sequential to parallel easier and

straightforward, while some modifications had to be made to the algorithm to obtain the level

of efficiency that we achieved in comparison with other approaches. Ongoing work follows two

main directions: the study of the further properties of OMP with MOACO and the development

of further applications to multiobjective combinatorial optimization problems.

DESIGN OF COOPERATIVE OPENMP-BASED METAHEURISTIC APPROACH

FOR MULTI-OBJECTIVE KNAPSACK PROBLEM

55

Figure 7. The median attainment surface obtained by MHAC_OMP, Gw-ACO and MHAC on

biobjective instances

IADIS International Journal on Computer Science and Information Systems

56

REFERENCES

Abouelfarag, A. A., Aly, W. M., & Elbialy, A. G., 2015. Performance analysis and tuning for

parallelization of ant colony optimization by using OpenMP. In IFIP International Conference on

Computer Information Systems and Industrial Management. Springer, Cham. 73-85.

Alaya, I., Solnon, C., & Ghédira, K., 2007. Ant Colony Optimization for Multi-objective Optimization

Problems. 19th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'07),

450-457.

Angus, D, 2007. Crowding population-based ant colony optimisation for the multi-objective travelling

salesman problem. IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-

Making (MCDM),333–340.

Bai, H., OuYang, D., Li, X., He, L., & Yu, H., 2009. Max-min ant system on gpu with cuda. Proceedings

of the 2009 Fourth International Conference on Innovative Computing, Information and Control,

IEEE Computer Society. 801–804.

Bolondi, M., & Bondanza, M., 1993. Parallelizzazione di un algoritmo per la risoluzione del problema del

commesso viaggiatore (Doctoral dissertation, Master’s thesis, Dipartimento di Elettronica e

Informazione, Politecnico di Milano, Italy).

Delisle, P., Krajecki, M., Gravel, M., & Gagné, C., 2001. Parallel implementation of an ant colony

optimization metaheuristic with OpenMP. Proceedings of the 3rd European Workshop on OpenMP

(EWOMP’01), Barcelona, Spain.

Dorigo M., 1992. Optimization, Learning and Natural Algorithms. PhD thesis. Politecnico di Milano,

Italy.

Dorigo, M., & Gambardella, L. M., 1997. Ant colony system: A cooperative learning approach to the

traveling salesman problem. Evolutionary Computation, IEEE Transactions, 1(1), 53-66.

Falcón-Cardona, J. G., Leguizamón, G., Coello, C. A. C., & Tapia, M. G. C. .,2020 Multi-Objective Ant

Colony Optimization: An Updated Taxonomy and Review of Approaches.

Da Fonseca, VG., Fonseca, CM., & Hall, AO., 2001. Inferential performance assessment of stochastic

optimisers and the attainment function. 1st International Conference on Evolutionary Multi-criterion

Optimization (EMO 2001). Lecture Note in Computer Science. 1993,213–225. Springer, Berlin.

Knowles, D [Joshua], Thiele, L., & Zitzler, E., 2005. A tutorial on the performance assessment of

stochastive multiobjective optimizers. Technical report TIK-Report No. 214, Computer Engineering

and Networks Laboratory, ETH Zurich.

Lust, T., & Teghem, J., 2012. The multiobjective multidimensional knapsack problem: a survey and a new

approach. International Transactions in Operational Research 19 (4), 495-520.

Lv, Q., Xia X., & Qian, P., 2006. A parallel ACO approach based on one pheromone matrix. Proceedings

of the 5th International Workshop on Ant Colony Optimization and Swarm Intelligence. Lecture Notes

in Computer Science. 4150. 332–339.

Mansour, I. B., Alaya, I., & Moncef, T., 2017a. A Min-Max Tchebycheff Based Local Search Approach

for MOMKP. In ICSOFT (pp. 140-150).

Mansour, I. B., Alaya, I., & Moncef, T., 2017b. Chebyshev-based iterated local search for multi-objective

optimization. In 2017 13th IEEE International Conference on Intelligent Computer Communication

and Processing (ICCP). 163-170.

Mansour, I. B., Alaya, I., & Moncef, T., 2019. A gradual weight-based ant colony approach for solving

the multiobjective multidimensional knapsack problem. Evolutionary Intelligence, 12(2), 253-272.

Martello S., 1990. Knapsack problems: algorithms and computer implementations. Wiley-Interscience

series in discrete mathematics and optimization.

DESIGN OF COOPERATIVE OPENMP-BASED METAHEURISTIC APPROACH

FOR MULTI-OBJECTIVE KNAPSACK PROBLEM

57

Mora, AM., García-Sánchez, P., Merelo, JJ., & Castillo, PA., 2013. Pareto-based multi-colony

multi-objective ant colony optimization algorithms: an island model proposal. Soft Computing 17.7.

1175-1207.

Pedemonte, M., Nesmachnow, S., & Cancela, H., 2011. A survey on parallel ant colony optimization.

Applied Soft Computing. 11, 5181-5197.

Steuer, R. E., & Choo, E. U., 1983. An interactive weighted Tchebycheff procedure for multiple objective

programming. Mathematical programming, 26(3), 326-344.

Stützle T., 1998. Parallelization strategies for ant colony optimization. Proceedings of the 5th International

Conference on Parallel Problem Solving from Nature, Lecture Notes in Computer Science. 1498

722–731.

Stützle, T., & Hoos, H. H. 2000. MAX–MIN ant system. Future generation computer systems, 16(8),

889-914.

Talbi, EG., Roux, O., Fonlupt, C., & Robillard, D., 2001. Parallel ant colonies for the quadratic

assignement problem, Future Generation Computer Systems 17 (4) 441–449.

Zitzler, E., & Thiele, L., 1999. Multiobjective Evolutionary Algorithms: A Comparative Case Study and

the Strength Pareto Approach. IEEE Transactions on Evolutionary Computation. 3(4): 257–271.

Zouari, W., Alaya, I., & Moncef, T., 2017. A hybrid ant colony algorithm with a local search for the

strongly correlated knapsack problem. In 2017 IEEE/ACS 14th International Conference on Computer

Systems and Applications (AICCSA). 527-533.

