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ABSTRACT 

Coverage path planning (CPP) is a fundamental task that is conducted in many applications for 
machining, cleaning, mine sweeping, lawn mowing, and performing missions by using unmanned aerial 

vehicles such as mapping, surveillance, search and rescue, and air-quality monitoring. An approach for 
conducting CPP for a known environment with obstacles involves decomposing the environment into 
cells such that each cell can be covered individually. The visiting order of the cells can then be decided 
to connect those intracell paths together. Finding the shortest intercell path that visits every cell and 
returns to the origin cell is similar to the traveling salesman problem (TSP). However, an additional 
variation from TSP that should be considered is that there are multiple intracell paths for each cell. These 
paths result from different selections of entry and exit points in each cell and thus affect the intercell 
path. This integrated TSP and CPP problem is known as TSP-CPP and is similar to the TSP with 

neighborhoods (TSPN). To solve TSP-CPP, one must simultaneously determine the visiting order of 
sites with minimal repetition and the transition points of each visiting site. The current approaches for 
solving TSP-CPP are as follows: (i) adapting dynamic programming (DP) for TSP to TSP-CPP, which is 
excellent for obtaining the optimal route and (ii) determining the optimal route by conducting a brute 
force enumerative search on entry and exit point combinations for every cell and then solving each 
combination of entry and exit points with a TSP solver. For large numbers of cells, approaches (i) and 
(ii) both suffer from exponential complexity and are impractical for complex environments. In this study, 
we proposed an appropriate genetic algorithm implementation for TSP-CPP to achieve an optimal 

balance between time efficiency and path optimality to eliminate the curse of dimensionality in DP. Our 
approach is demonstrated to find the true optimal solution as DP in all simulation environments that can 
be solved by both DP and GA, and GA is one hundred times faster than DP approach for maps 
decomposed with large cell number. 
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1. INTRODUCTION 

Coverage path planning (CPP) is a fundamental task of mobility used for a given or unknown 

cluttered environment of interest that must be covered using one or more mobile vehicles 

(Choset, 2001; Galceran and Carreras, 2013; Dasgupta, 2015; Das et al., 2016). This task is 

necessary in various real-world civilian, military, and commercial sensing applications that 

use autonomous or manned ground vehicles, surface or underwater vehicles, and unmanned 

aerial vehicles (UAVs). The broad applications of CPP, such as machining, cleaning, mine 

sweeping or humanitarian demining, lawn mowing, farming, search and rescue or disaster 
management, mapping tasks, surveillance, inspection (e.g., forest fire or aging infrastructure 

such as bridges), and monitoring (e.g., air quality or climate monitoring by using UAVs with 

onboard sensory and navigation systems), are emerging (Oksanen and Visala, 2009; Mansouri 

et al., 2017; Otto et al., 2018). Many CPP problems have been studied for different application 

scenarios (Khan et al., 2017). A commonly encountered problem of CPP pertains to the 

completion of CPP, that is, fully covering the portion of the two-dimensional environment 

with known static obstacles and returning to the starting position with or without repeatedly 

covering the same regions that have already been covered. An efficient approach for 

conducting CPP is to first decompose the polygonal environment into cells such that the entire 

region is covered and the resulting structure is simple. Then, each cell can be covered 

individually by a simple intracell path, and the intracell paths of each cell are connected to 

each other via intercell path. Decomposition methods such as the boustrophedon method 
(Choset and Pignon, 1998), multiple sequence alignment decomposition (Huang, 2001), 

trapezoidal method (Jimenez et al., 2007; Oksanen and Visala, 2009), and Morse 

decomposition (Galceran and Carreras, 2013) were used. 

The shape of the map and obstacles influence the direction of sweeping to completely 

cover the entire area. For example, a rectangular map can be covered by following a sweeping 

direction along the longest side that is perpendicular to the width of the rectilinear area. The 

coverage path is not unique. Thus, in addition to the decomposition methods, some studies 

have attempted to find the optimal sweeping direction for an intracell path in terms of 

conserving energy consumption or have proposed shorter paths with few turns in which the 

vehicle switches its moving direction by selecting from multiple sweeping directions (Huang, 

2001). The A* search algorithm with an admissible heuristic design was applied to conduct an 
enumerative search in a grid environment to find a coverage path with few turns (Dogru and 

Marques, 2017) or with high coverage and low repetition (Cai et al., 2014). The intercell path 

length can be optimized by deciding the visiting order of cells that visits every cell exactly 

once and returns to the origin cell with the lowest possible sum of the Euclidean distances 

along the path. This is the traveling salesman problem (TSP). Specifying an a priori sweeping 

pattern is practically useful for an intracell path that covers a cell completely. In practice, a 

commonly used sweeping pattern is the zig-zag path (parallel lines) or back-and-forth motion 

in certain orientations (or more generally oriented line sweeping; Huang, 2001) with a 

predictable vehicle behavior. This integrated TSP and CPP problem is known as the TSP-CPP 

and was coined by Xie et al. (2019). In this problem, both TSP and CPP are NP-hard. The 

additional variation to consider in TSP-CPP is that multiple options intracell paths exist for 
each cell that result from different selections of the entry and exit points. These paths 

influence the length of the intercell path during cell-to-cell transitions resulting from the 

visiting order of cells by providing a solution to TSP. To consider the visiting order and the 
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selection of entry and exit points of each cell, TSP-CPP comprises two asymmetric 

subproblems: determining the visiting order (TSP, an NP-hard problem) and determining the 

exit and entry point pairs for incoming or outgoing intercell paths in each cell, which also 

represent the starting and ending points of the intracell path (an optimization problem).  
TSP-CPP has an exponentially larger search space than TSP; the selection of entry and exit 

points of each cell is challenging. The two problems are coupled; that is, the solution of one 

subproblem requires the solution of the other subproblem. These problems can be solved 

separately, but in full generality they should be solved simultaneously. Recent approaches for 

solving TSP-CPP are based on the solutions of TSP. Thus, dynamic programming (DP) for 

TSP can be adapted to TSP-CPP to find the optimal solution (Xie et al., 2019), or a two-step 

procedure from Khsheibun et al. (2018) can be conducted. In this procedure, first a brute force 

enumerative search is performed on all the possible combinations of the entry and exit points 

of every cell. Then, each combination of entry and exit points is solved using a TSP solver. 

Both methods suffer from exponential complexity and thus are prohibitive for complex 

environments with large numbers of cells; this computational burden remains a major obstacle 
to broad applications of DP in practice. 

The TSP with neighborhoods (TSPN) is a variant formulation of TSP; TSPN is relevant to 

data collection in a wireless sensor network by using data mule (Wu and Liu, 2014), task 

sequencing relevant to industrial and service robotics (Alatartsev et al., 2015) such as that 

motivated by robot remote laser welding (Kovács, 2016), CPP (Yu, 2015), and other problems 

(such as Otto et al., 2018). In TSPN, the shortest tour that visits the given sites must be found. 

A visited site is no longer counted as a point but a spatial region, known as a neighborhood. 

That is, not only the order of visiting (or task sequencing) sites is set but also the entry and 

exit points of a tour within a site (at the most two points) are determined simultaneously for 

TSPN. In most formulations, the entry point can be the same as the exit point. In a study by 

Yu (2015), a simplified TSPN related to CPP for a workspace without obstacles was solved by 

first specifying a single via point (the center) and sweeping pattern for each cell (a disk) to 
reduce TSPN into TSP. Then, the resulting TSP is solved for all cells to determine the optimal 

visiting order. For the optimal visiting order, the via point is modified to further shorten the 

tour. In general, two subproblems are involved in TSPN: (1) determination of the visiting 

order of neighborhoods and (2) determination of precise via points of nighborhoods to enter 

and exit. The latter subproblem in full generality is a continuous optimization problem over 

theneighborhood, because the via points can be located at any point in the neighborhood and 

the neighborhood can have an arbitrary shape. Therefore, TSP-CPP is similar to TSPN in 

terms of solving the problem of interest with different underlying meanings. Because both 

methods are variants of TSP, they are NP-hard problems. Moreover, their solutions require a 

solution to TSP with additional complexity of searching via points (one via point for TSPN 

and two via points for TSP-CPP with a prespecified sweeping pattern that is selected from a 
finite selected set of sweeping patterns for each cell) for each cell to connect the intercell paths 

together for enabling cell-to-cell transition. 

Metaheuristics are proved to be practically useful for efficiently computing approximate 

solutions to NP-hard problems. In general, metaheuristics quickly provide an approximate 

solution but are susceptible to getting trapped in local optima. Genetic algorithms (GAs) 

constitute a class of metaheuristics used for stochastic search and derivative-free optimization 

and belong to a larger family of population-based evolutionary algorithms inspired by nature 

and biology. A practical advantage of GA-based approaches is that they can find multiple 

suitable solutions when limited time and memory are available even when the data is large. 
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GA-based approaches have been developed as effective approaches to TSP (Potvin, 1996; 

Scholz, 2019) and TSPN (Wu and Liu, 2014). GAs have already been considered for a 

problem similar to TSP-CPP in a study by Jimenez et al. (2007). Their GA only applied a 

simple single-point crossover and swap mutation, and no performance evaluation was 
presented. In this paper, we propose a genetic algorithm approach for TSP-CPP. In the context 

of DP, the contributions of this paper are as follows: 1. Even though GA metaheuristics do not 

guarantee optimal solutions in general, our GA approach with modified operators can find a 

solution identical to the optimal solution of DP for TSP-CPP in all simulation environments 

that can be solved by both approaches. For any problem with a large number of cells, the time 

and space requirements of DP increase exponentially (the well-known curse of dimensionality 

or search space explosion). Our approach has the potential to successfully find one solution 

and is more than one hundred times faster than a DP approach for large problems that suffer 

from the curse of dimensionality. 2.We provide a complete workflow and implemented code 

to transform our original CPP problem to the TSP-CPP problem; the DP and proposed GA 

code for TSP-CPP are available at (https://github.com/WJTung/GA-TSPCPP). In addition, we 
believe GA can also be used for a more difficult TSP-CPP, such as for handling multiple 

conflicting objectives and change in workspace, such as obstacles motion and extension with 

constrained vehicle motion. 

The paper is organized as follows. In section 2, we describe how to decompose the 

environment into cells. In section 3, we display different choices for entry and exit points of 

each cell and how they affect the inter-cell path. In section 4, the proposed GA approach is 

presented along with a brief introduction to DP. Time and space complexity of GA is given. In 

section 5, performance of GA and DP in six simulation environments is compared to present 

the advantages of GA. Section 6 presents the conclusion. 

2. SPACE DECOMPOSITION AND COVERAGE PATH OF A 

SINGLE CELL 

The workspace or target area to be covered is a closed and bounded region W in R2. W is 

cluttered with a finite number of static disjoint polygonal obstacles {Pi} and is a priori known. 

For simplicity, the vehicle or the robot V is modeled as a point with a constant sensing range 

that can translate in any direction so that a piecewise linear path or a 900 turn is executable. In 

this paper, we assume the robot’s task is to completely cover the environment W with no 

collisions with the obstacles{Pi}. One common approach to coverage of an area of interest W 

is the decomposition of W into a collection of connected, possibly irregular cells served as the 

independent target regions. There still remains a small area in W that cannot be reached by the 

robot due to motion constraints. We let  Wfree :=W\{Pi} denoting the free space that 

can be fully covered by the robot motion, i.e. any point in  can be covered. We apply the 

boustrophedon cellular decomposition to break the robot’s achievable free space  down 

into cells, whose union is the complete covering region . To implement the 

boustrophedon cellular decomposition, we use a vertical slice to sweep through the 

environment, and open and close cells according to the connectivity change of the slice. For 
cell decomposition of workspace, the motion is restricted from a current cell to its neighboring 

cells that can be directly reached from the current cell. Assume for simplicity that coverage 

path pattern is back-and-forth motion in accordance with boustrophedon cellular 

https://github.com/WJTung/GA-TSPCPP)
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decomposition (Choset and Pignon, 1998) so that only one path enters each cell and only one 

path exits from each cell. The distance between the boustrophedon path and the boundary of 

cell must be smaller than the sensing radius, and the distance between two adjacent vertical 

lines in the boustrophedon path must be smaller than twice of the sensing radius. Figure 1 
demonstrates the result of the boustrophedon cellular decomposition for one example 

environment and how each cell can be covered with back-and-forth path pattern in accordance 

with boustrophedon decomposition of polygonal environment. 

 

 
Figure 1. The free space is decomposed into 10 cells (each labelled with an id) by the boustrophedon 

cellular decomposition. Each cell can be completely covered with a sweeping back-and-forth 
boustrophedon path from an entry point to an exit point so that the environment can be completely 

covered 

3. DETERMINE THE ENTRY AND EXIT POINTS FOR EACH 

CELL AND THE VISITING ORDER OF CELLS 

After the cluttered environment is decomposed into N cells by boustrophedon cellular 

decomposition, each cell is labeled a cell ID (identification number). The environment to be 

covered is then represented by a set of N cell IDs. By a priori specifying the aforementioned 

back-and-forth sweeping motion pattern as the intra-path coverage for each cell, the next step 

is to determine the visiting order to connect intra-cell paths to completely cover every 

individual cell. We assume that we can only connect the ending point of an intra-cell path to 
the starting point of the next intra-cell path in some adjacent cell; the next path also ends at 

another ending point. Therefore, it is assumed that the starting point and ending point of the 

boustrophedon path in a given cell coincide with the entry point and exit point of the  

cell-to-cell transition for incoming and outgoing inter-cell paths of the given cell, respectively, 

that connect together the previous and next cells. There are four alternative pairs of entry and 

exit points for intra-cell paths of lawn mowing pattern for a cell with opposite traversal 

direction, which we call cell-path combinations. If the entry and exit points of each cell are 

fixed, finding the coverage path with the shortest length is actually solving the TSP, i.e. a 

shortest path search problem in the partitioned cells.. The TSP is a classical NP-hard problem 

in which one must find the shortest possible route (in the metric of Euclidean distance). This 

route visits each city and returns to the initial departure city. To find the shortest path between 
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two points in terms of the cell distance when the forbidden regions occupied by the 

nonoverlapping obstacles are polygonal regions (bounded by straight line segments), we can 

construct a visibility graph using the vertices of obstacles with the start and goal points used as 

additional vertices. Then, the edges of the visibility graph can be marked with the 
corresponding Euclidean lengths and Dijkstra’s algorithm can be used to find the shortest path 

from the start point (Alt and Welzl, 1988). 
However, for the CPP problem within each cell, there exists some flexibility in selecting 

the entry and exit points for the boustrophedon path. The path can be entered or exited from 

either the top left, top right, bottom left, or bottom right, thus yielding the four candidate 

coverage paths for each cell with an opposite traversal direction. Figure 2 presents an 

illustration. In addition to the change in the intracell path length (difference between intracell 

path lengths of (a) = (b) and (c) = (d), which depends on the cell shape, is usually small for 

polygonal cell), the determination of the entry and exit points for each cell greatly affects the 

total inter-cell path length. Figure 3 presents an example that illustrates that the determination 

of the visiting order of cells and the entry and exit points in each cell should be conducted 
simultaneously for TSP-CPP. Figure 3(a) is the optimal solution for the simple four path-cell 

environment. Either a different visiting order that resembles (b) or a different selection of 

entry and exit points for any cell that resembles (c) can cause an increase in the intercell path 

length. In the following section, two distinct algorithms, DP and GA, are presented for solving 

TSP-CPP. These algorithms simultaneously find the entry and exit points for each intracell 

path within a cell and the visiting order of cells to incur the minimum total sum of lengths 

over the intracell coverage paths and the intercell transition paths covering the entire 

workspace. 

    
(a) (b) (c) (d) 

Figure 2. Each cell has the same number of (4) cell-path combinations. The coverage intra-cell path for 
each cell depends on the choice of a pair of entry point and exit point (as its starting and ending points) 

shown in (a), (b), (c), (d). The length of the intra-cell path corresponding to each choice of cell-path 
combination is the same. The entry point is marked by the orange circle, and the exit point is marked by 

the sea green cross. The direction of the lawn mowing path is indicated by the green arrow 
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(a) (b) (c) 

Figure 3. We can see the influence of the visiting order of cells and entry and exit points of each cell on 
the intercell path length through (a), (b), and (c). (a) Optimal visiting order of 1, 2, 4, and 3 and solution 

of the entry and exit points for this environment with the shortest intercell path length of 802.78.  
(b) Entry and exit points of each cell are the same as (a), but the visiting order is 1, 3, 2, and 4, which 

results in a total intercell path length of 1347.40 (67.8% larger than that in (a)). (c) Visiting order of cells 
is the same as that in (a), but the intracell path of 1 and 4 starts from the top left instead of the bottom 

right, which results in a total inter-path length of 1153.72 (43.7% larger than that in (a)) 

4. SOLUTIONS TO TSP-CPP 

4.1 Problem Analysis 

In the following text, we denote the cell number as N. Moreover, to make the explanation 

more concise, we denote a specific cell based on the selection of its entry and exit points 

(intracell path) that specifies a cell-path combination. Each cell has four possible choices of 

entry and exit points; four combinations are possible. In total, 4N cell-path combinations exist 

for all cells. Suppose that the sum of lengths over intracell paths and over intercell paths are 

Lintra and Linter, respectively. Let the length of a TSP subtour of a TSP-CPP tour T for a given 

visiting order of  the set {cell-path combinations for all cells} with cardinality 4N be LTSP(T). 

The actual length for a given candidate TSP-CPP solution is as follows: 

 

L=Lintra+  LTSP(T)                                                                                                    (1)  

 

where  is the summation of the distance between each pair of entry and exit points 

for each cell over . Clearly, because  is compact and the N decomposed cells are 

compact, connected, and disjoint, exist such that 

Moreover, Lintra is the complete coverage path length. This path 

length for each cell that is fully covered is bounded by a cell area divided by the width of the 
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back-and-forth motion pattern. This length is the same for any complete coverage path. In 

particular, for our decomposition and a priori selected intracell path pattern, the selection of 

the starting and ending points of intracell coverage path can be different. Therefore, we 

assumed that Lintra for is constant. Moreover,  where  

is a constant (Steele 1990). Therefore, the TSP-CPP route length is upper and lower bounded. 

If the variation in the intracell path length due to different entry and exit points is small  

(e.g. tending to be average out for long intracell path) and can be neglected, then the optimal 
solution of TSP for the least sum of lengths of the intercell paths is an optimal solution used 

for minimizing the total coverage path length of TSP-CPP. The search for the shortest route 

for TSP-CPP over W for a given decomposition of is equivalent to the search for the 

shortest path that results from the shortest TSP tour in combination with the largest S resulting 

from an appropriate selection from {cell-path combinations for all cells} over . In full 

generality, the solution of TSP-CPP requires the following two steps to be conducted 

simultaneously: (1) determining the visiting order of cells by solving a TSP of all cells and  

(2) determining a cell-path combination including the sweeping direction and the starting and 

ending points of the intracell path for each cell. The two subproblems are coupled, that is, the 

solution to one subproblem influences the solution to the other. The alternative cell paths and 
the visiting order of all cells or simplifications conducted by sequentially solving the two 

subproblems can be enumerated to produce an acceptable solution to TSP-CPP. The use of DP 

and GA for obtaining the global optimal solution for a given boustrophedon decomposition of 

W and specified intracell sweeping pattern is presented in the following section. 

4.2 DP Approach 

The DP approach methodology for TSP-CPP and the proof of its optimality are described in 

the study by Xie et al. (2018). The main idea of this approach is similar to that of DP for TSP. 

We can assign one cell as the starting cell and select one of its four cell-path combinations as a 

starting cell-path to break the route cycle. We then recursively update shortest path length for 

a specific visited state (set of cells that have already been visited) and last cell-path. This can 

be done by checking all possible previous cell-paths with corresponding previous visited 

states. The time complexity of DP approach is , and the space complexity is 

. These time and space complexities are the same as those for DP for TSP, 

and , respectively. Although the DP approach can provide the optimal 

solution for TSP-CPP, the computation quickly becomes prohibitively large as the number  

N becomes moderately large due to the exponential factors in both time and space 
complexities. Thus, the DP approach is only suggested to be used for up to N = 17 (Bellman, 

1961; Xie et al., 2018). However, numerous real-life applications have more than 20 cells in 

an environment with many obstacles. 

4.3 GA Approach 

A GA comprises a population of candidate solutions, a fitness function to rank the solutions, a 

selection mechanism, reproduction operators to generate the new population, and a 

termination criterion. A suitable set of solutions can be obtained using the GA with an 

appropriate setting of the parameters involved, design of the operators, and incorporation of 
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additional guiding heuristics (such as preference or mating restriction) to bias the search for 

operating a GA for a given problem. Due to its generality, GAs have been used to solve TSP 

(e.g., Vahdati et al., 2009; Ismkhan and Zamanifar, 2015) and TSPN (Wu and Liu, 2014). 

Among the many methods for TSP, GA is an efficient approach to obtain a suitable (in general, 
not optimal) solution within a limited time period or with a limited computation power and 

memory. Thus, GAs are suitable for path computation onboard UAV. For the operators of the 

GA, we modify the GA operators for TSP to apply to TSP-CPP. 

4.3.1 Encoding and Decoding 

For N given cells, a valid tour in a TSP is the one that begins and ends at the same cell that 

initiates the tour and that visits the other (N − 1) cells exactly once. A chromosome represents 

a candidate solution of TSP or TSPN that encodes the cells in the order that the vehicle 

traverses. Each cell is a gene of the chromosome. Various scholars have different methods for 

representing TSP candidate solutions in a GA. For TSP in a GA, the genes of one individual 

are usually one ordered permutation of number , which can be directly 

viewed as the visiting order of the entire cells. The search procedure for a solution to TSP is 

simply to generate and evaluate as many different permutations  as possible so as 
to retain the optimal permutation as the solution. A candidate solution to TSP-CPP 

simultaneously comprises both the entry and exit points of each cell and the visiting order of 

cells, which is similar to TSPN. Let the four alternative pairings of  exit and entry points  of 

intracell lawnmower path for  cell be denoted by  with =4 (refer to Figure 2).  

In TSP-CPP, a chromosome T is a TSP-CPP tour naturally represented by a concatination of 

two substrings  

 

T= (                                                                                                                             (2) 

 , i=1, , N,  

 

where      is a gene composed of     representing the cell ID, i.e. a given 

visiting order    of each cell associated with one of 4N cell-path combinations 

  assigned to each cell for a specified visiting order. That is,   is an offspring 

segment of a TSP-CPP route formed by associating each cell with one of  four cell-path 

combinations. The cell ID and the corresponding choice of entry and exit points can be 

decoded by dividing 4 and modulo 4. Furthermore, for feasibility genes of one individual 

cannot have repeated cell ID to ensure that each cell is visited once. In order to find the 
shortest total tour length path, GA searches for the chromosome T defined in (2) minimizing 

the fitness function L in (1). 

4.3.2 Fitness Function 

We want to minimize the length of a tour, that is, the sum of the length of an intercell path and 

the length lengths of an intracell path in the order of visit. The fitness function used in the GA 

for TSP-CPP is then given by the length of the tour L defined in (1) with which to select and 

to evaluate a chromosome T. The vehicle may take any cell from where it is transitioned via 

a local route TSPij  consisting of an exit point of cell  and an entry point of cell  to cell , 

which incurs a path cost  where dist( , ) >0 represents the local 
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transition path length of inter-cell path from cell ID  to cell ID  (i.e. shortest path length 

between the exit point of cell  and the entry point of cell  obtained by the visibility graph). 

Then  

 

                                                                                                        (3) 

 

The metric dist( , ) satisfies the triangle inequality. Since dist( , ) might be different 

from dist( , ),  in general the distance metric depends on the direction of the motion. The 

optimal permutation we search is an asymmetric TSP. 

4.3.3 Crossover Operator 

Crossover is a crucial operation that influences the final outcome in GA. Crossover in the 

context of permutation is conducted to generate better offsprings by inheriting the optimal 

segments of parents and adding new segments that do not exist in the parents into the 

offsprings. Various crossover operators can be used in GA for TSP or TSPN. One simple but 

powerful crossover operator is the heuristic crossover operator used in the study by Vahdati et 

al. (2009). This heuristic crossover operator performs well even when the number of cities is 

greater than 100 (Ismkhan and Zamanifar, 2015). Our modified heuristic crossover operator 

for considering the entry and exit points of each cell can be described with the following steps: 

1. Randomly pick one cell as the starting cell. Then, randomly pick the cell-path 

combination of starting cell from one parent. Add combination to the offspring as the starting 
cell path. 

2. Find four candidates for the next cell, namely cells of the first left neighbor and the first 

right neighbor of the starting cell in two parents which are still not visited in the offspring. 

This step can be implemented by retaining four pointers of the current position, as described in 

the study by Vahdati et al. (2009). 

3. Consider four alternative choices of the entry and exit points for each candidate cell so 

that 16 candidates are available for the next cell path. For the heuristic to determine the next 

cell path of the offspring in addition to the intercell path length between the current cell path 

of offsprings and candidates of the next cell-path, we consider the change in the intracell path 

length caused by different entry and exit point selections of a cell. We define the cost of one 

cell path to be its intracell path length minus the minimum intracell path length among four 
possible entry and exit point selections of its cell. This cost represents the additional cost for 

not selecting the entry and exit points of a cell with the shortest intracell path. We add the cell 

paths with a minimum distance (current cell path of offspring, cell-path) + cost(cell path) of 

the 16 candidates to the offspring as the next cell path. 

4. Repeat steps 2 and 3 until all cells are visited in the offspring. 
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4.3.4 Mutation Operator 

Algorithm 1: Given the visiting order of cells, find the optimal entry and exit points for each cell with the 

shortest coverage path using DP 

Input: Offspring after the crossover and swap mutation 

Output: Individual that has the same visiting order as the input with the shortest coverage path 

Initialize a cell array of size N 

for each i = 1 ~ N do 

cell[i] =the cell of individual[i] 

Initialize the optimal solution array of size N 

for each starting cell path of cell[1]do 

Initialize from an array of a size of 4N 

Initialize the shortest path length array of a size of 4N with infinity 

shortest path length[starting cell path] = intracell path length of the starting cell path 

for each i = 2 ~ Ndo 

for each current cell path of cell[i]do 

for each previous cell path of cell[i – 1]do 

if the shortest path length[previous cell-path] + distance(previous cell path, current cell 

path)+ intracell path length of current cell path is smaller than the shortest path 

length[current cell-path]then 

update the shortest path length from the current cell path 

for each ending cell path of cell[N]do 

add distance(ending cell path, starting cell path) to the shortest path length[ending cell path] 

find the optimal ending cell path with the shortest path length[ending cell path] 

if the shortest path length[best ending cell path] is smaller than the coverage path length of the optimal 

solution then 

find the whole solution for the current starting cell path by backtracking from the optial ending cell 

path from array 

update the optimal solution 

return the optimal solution 

The mutation operation is used for triggering the diversity of a population and avoiding 

getting trapped in the local optimum by extending the search space of GA occasionally. The 

swap mutation operator is a commonly used mutation operator in GA for TSP. In addition to 

the swap mutation operator, the two-opt local search was proposed for solving TSP and is a 

widely used and effective mutation operator that improves an individual solution through a 

local search. In our GA for TSP-CPP, we randomly swap the visiting order of two cell-path 

combinations under the assigned probability. Suppose the visiting order of cells is fixed; we 

need not go back to the starting cell. The only factor that influences the following path is our 

selection of the exit point for current cell. We can permute four possible starting cell-paths to 

break the route cycle, and use an array to record the shortest path length with regard to each 
cell-path combination of all cells for the given visiting order. As the minimum distance sum  

to current cell-path, whatever the choice of current cell-path, is only related to the previous 

cell-path and its shortest path length, we can update the minimum distance sum array by 

checking four possible previous cell-path combinations. An additional array is used to record 

from which previous cell-path we get the minimum distance sum with regard to current  

cell-path for backtracking. Then we can determine the optimal entry and exit points for each 

cell with the shortest coverage path through the application of dynamic programming in linear 

time (see the Algorithm 1) for a fixed visiting order of cells starting from any cell. Although 
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the result is a local optimal solution as we consider only the entry and exit points of each cell 

and the visiting order of cells cannot be modified, this optimal entry and exit points mutation 

will very likely increase our probability of getting a global optimal solution through evolution 

4.3.5 Overall Workflow of GA Implementation 

The overall workflow of our GA approach is described as follows: 
1. Start with a diverse population. Initialize the population of the assigned population size 

with a random permutation of cells by using Knuth shuffling and randomly select one entry 
and exit points from four possible selections for each cell. 

2. Calculate the coverage path length of each individual in the initial population and 
determine the current optimal solution. 

3. Randomly select two parents from the population by using a roulette wheel selection 
and generate an offspring with our modified heuristic crossover operator. Repeat this process 
until there are as many offspring as the original population. 

4. For each offspring generated using the crossover operator, randomly swap the visiting 
order of two cells according to the assigned swap mutation probability. Then, find the optimal 
entry and exit points for each cell with the same visiting order of cells (call Algorithm 1). 

5. Replace the population with the newly generated offspring. Calculate the coverage path 
length of each individual in the new population and update the current optimal solution if any 
better solution is found. 

6. Repeat step 3 to 5 until the termination criterion is met. Output the optimal solution 
obtained in the evolution process. 

The minor implementation variations of GA could yield different achievable performance 
levels. Relative to the standard settings, a smaller (larger) population size and generation 
number can be used for a small (large) cell number, where the length of an individual coding 
is considerably small (large). In practice, a large population can hold numerous diverse 
individuals, which prevent important gene combinations from disappearing. The only 
significant difficulty in using a larger population size or a larger generation number for our 
current GA implementation on a desktop PC is that except that convergence simply takes too 
long or the cost of computing is high,  because the fitness evaluation comprises the vast 
majority of computational time. 

Note that in step 6, common termination criteria of the GA are run-time limit being 
reached, number of evolved generations being equal to the assigned generation number, or a 
predefined fitness value being achieved. For our purpose of simplicity and efficiency of GA 
implementation, maximum number of generations is adopted as the termination criterion. 
Once a converged solution is found, it can be checked if the converged solution is a local 
optimal solution or the global optimal solution (i.e. the same as the solution found by DP). 
This can be checked by using different initializations for GA to prevent the search from 
becoming trapped in local minima; one drawback of GA is that GA can generate local minima. 
An important implementation issue with GA for TSP or TSPN is initialization, which is an 
initial effort or guess toward the exploration of the solution space. GA initialization methods 
have been proposed for TSP. A suitable initialization, instead of randomly generating 
chromosomes,  usually improves the convergence and solution quality of a GA. Moreover, a 
parallel computing approach, such as the island model, capitalizes on diversified initialization. 
Initialization of TSP is likely to obtain many duplicate individuals. Duplicates might limit 
further exploration of the search space because duplicates are likely to be paths with short 
length; thus population diversity will be low. To streamline search, duplicates of individuals 
can be prohibited. Various methods can generate an initial population but avoid duplicates 
(Wu and Liu, 2014).  
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4.3.6 Time and Space Complexity of GA 

Although the computational load of our GA depends on the specific implementation details, 

here we give a complexity analysis. The measure used for time complexity of GA is the 

number of genetic operations and evaluations performed. 

Time complexity: 

 Calculate coverage path length: for each individual 

 Modified heuristic crossover: for each offspring (16 candidates for each 

position) 

 Optimal entry and exit points mutation: for each offspring (Permute 4 possible 
starting cell-path combinations and consider the four possible previous cell-path 

combination search time for updating the shortest path length of cell-path combinations) 

 Overall:  

Space complexity:  
 

The path quality and convergence speed of GAs used for solving the instances of TSP-CPP 

are not sensitive to the shape of the workspace to be covered and the shape of the decomposed 

cells. We consider GA a potential approach to find the optimal or near-optimal solution for 

environments with a large number of decomposed cells that prohibit the application of DP. 

This is demonstrated in the following simulations. 

5. SIMULATION RESULTS 

To test the ability of a GA of converging to the optimal solution and to examine the GA 

generated path quality in the metric of path length, DP was used as the baseline of optimality, 

computation time, and memory usage. We first generated 100 random environments with 

multiple spatially distributed rectangular regions that cover the region for comparing the 

coverage path length generated by GA and DP. In the absence of obstacles, there is no 

requirement of considering the decomposition of an environment, and a visibility graph is not 

required for finding the shortest path between two points. For comparison simplicity, we 

assumed that the intracell path length is the same for all four combination selections of a cell. 

Therefore, the intracell path part is common for GA and DP, regardless of the solution. Only 
the intercell path length, which is an influential factor, was is used to calculate the relative 

error, which is also more similar to the original TSP. As seen in Table 1, our GA approach is 

capable of finding the optimal solution in multiple operations in all generated environments 

and the near-optimal (within 3%) solution, even in the worst performance. Figure 4 displays 

two examples of the tests with 21 cells and their corresponding optimal solutions. Figure 5 

presents the test case with the maximum relative error of 2.78% (25 cells) in the worst 

performance scenario. 
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Table 1. Solution quality of GA for multiple spatially distributed rectangular regions over ten runs. For 
each cell number, we randomly generated ten corresponding test cases of the same environment size. The 

number of successes is defined as the number of times that the GA successfully finds the same optimal 
solution as DP among those ten cases. The relative error reported here is calculated between the intercell 

path length of DP and GA 

Cell Number Environment Size Number of Success Relative Error (intercell path length) 

Maximum Average 

16 1280 720 10 0.0% 0.0% 

17 1080 1080 10 0.0% 0.0% 

18 1280 720 10 0.0% 0.0% 

19 1080 1080 10 0.0% 0.0% 

20 1280 720 9 0.095% 0.01% 

21 1080 1080 9 1.063% 0.106% 

22 1280 720 8 0.322% 0.057% 

23 1080 1080 8 1.217% 0.227% 

24 1080 1080 7 1.688% 0.288% 

25 1080 1080 4 2.778% 0.750% 
 

  
  

Figure 4. Two example test cases with 21 cells and their corresponding optimal solutions 

 
 

(a) (b) 

Figure 5. Test case (25 cells, as tabulated in Table 1) with the maximum relative error of 2.778% for 
solutions obtained using the GA-based and DP-based approaches. (a) Optimal solution generated by DP 

and (b) solution generated using our GA approach. The numbers represent the cell IDs 
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The solution quality and performance (computation time and memory) of DP and GA 

approaches to TSP-CPP depend on the task environment of interest. To verify the performance 

and correctness of the implementation, the simulations were conducted for polygons of 

various shapes and sizes with different obstacle distributions. Then, we designed six 
experiment environments of varying complexity comprising polygonal obstacles of various 

shapes, which are possibly concave, and sizes so that the decomposition yields different 

numbers of cells (between 10 and 26). We used a sensor radius of 10, population size of 4096, 

generation number of 16, crossover probability of 0.9, and swap mutation probability of 0.02 

for all the experiments. For the performance test, we used the GA five times on each 

environment. Moreover, if the GA was successful in finding the same solution as the DP, the 

time and memory required were recorded. The successful results are displayed in Table 2. The 

table shows the improvement of GA over the DP as the cell number increases up to 26 (the 

dimensionality limit of DP in the PC) in terms of the computation time and memory. In all the 

experiments, an agreement in DP and GA is observed for obtaining the same solution without 

adjusting the parameters, which is guaranteed to be the optimal solution. GA can find the same 
solution as that of DP for all six experiments within a much less time and with a much lower 

memory requirement when the number of cells is increased. Figures 6 to 11 display the 

optimal solutions obtained by both DP and GA in different environments. For the experiment 

No 1 that is illustrated in Figure 6, the entire optimal path is depicted. However, for the 

experiment No 2, 3, 4, 5, and 6 that are illustrated in Figures 7 to 11, respectively, we only 

depict the intercell path and the entry and exit points for each cell. However, the intracell path 

is not plotted. Note that Figure 11 is a densely crowded environment that comprises 26 cells 

after decomposition. 

 

Figure 6. Optimal solution for Experiment 1 with the total coverage path length of 15582. The light gray 
path is the intracell path (boustrophedon path), and the dark gray path is the intercell path. The numbers 
represents the cell IDs. The optimal visiting order of cells in this simulation is 1, 3, 6, 10, 9, 8, 7, 5, 4, 2, 

and 1 
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Figure 7. Optimal solution for Experiment 2 with a total coverage path length of 26977.5. The numbers 
represent the cell IDs.The optimal visiting order is 1, 2, 3, 5, 12, 14, 13, 10, 11, 8, 9, 7, 6, and 4 

 

Figure 8. Optimal solution for Experiment 3 with a total coverage path length of 43682.8. The numbers 
represent the cell IDs. The optimal visiting order is 1, 5, 11, 15, 18, 12, 13, 17, 16, 14, 10, 9, 7, 4, 3, 2, 6, 

8, and 1 

 

Figure 9. Optimal solution for Experiment 4 with a total coverage path length of 43640.1. There are 
concave obstacles that increase the number of decomposed cells having a few small cells. The numbers 

represent the cell IDs. The optimal visiting order is 1, 3, 4, 6, 7, 9, 12, 11, 8, 10, 16, 18, 20, 19, 17, 15, 
14, 13, 5, 2, and 1 
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Figure 10. Optimal solution for Experiment 5 with a total coverage path length of 52065.4. The numbers 
represent the cell IDs. The optimal visiting order is 1, 4, 6, 14, 11, 15, 16, 17, 23, 22, 12, 21, 20, 19, 18, 

13, 10, 7, 3, 2, 9, 8, 5, and 1 

 

Figure 11. Optimal solution for Experiment 6 with the total coverage path length of 37717.7. The 
numbers represent the cell IDs. The optimal visiting order is 1, 3, 11, 12, 19, 21, 22, 20, 18, 17, 10, 7, 9, 

14, 16, 24, 23, 25, 26, 15, 4, 13, 8, 6, 5, 2, and 1 

As presented in Table 2, when the population size and generation number are fixed, the 

computation time of GA is almost linear to the cell number. GA is determined to be 

considerably less computationally expensive and much (2–3 orders of magnitude) faster than 

the DP approach that has an exponential time complexity when the cell number is large. 

Moreover, the memory of GA is 2–3 orders of magnitude less than that of DP. Due to the 

exponential time and space complexity (curse of dimensionality or dimensionality limitation 
due to fast growth of the search space) encountered by DP as the cell number increases, except 

for maps with a small cell number (that is, small problem dimensionality), the application of 
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DP is limited to TSP-CPP of low dimensions. For example, application of DP is problematic 

in real-time applications that require onboard computation by a UAV with limited memory 

and computational resources. Nevertheless, because the complexity is linear to the cell 

number, if population size and generation number are fixed, we considered GA, in 
combination with decomposition, to be an easy-to-implement, suitable metaheuristics 

approach whose convergence speed is insensitive to the obstacle distribution. GA yields an 

optimal or near-optimal solution with a high quality of TSP-CPP for environments with a 

large number of decomposed cells, which prohibit the application of DP. 

Table 2. Time and memory comparisons of GA and DP for Figures 6 to 11. GA can find the same 
solution as the optimal solution of DP in all these six experiments. C++ programs of DP and GA are 

executed on the same computer (HP Z440 Workstation, CPU: Intel Xeon E5-1630 v3, 64G RAM, OS: 
Ubuntu 18.04) five times to obtain the average computation time. Parameters for GA: population  

size = 4096, generation number = 16, crossover probability = 0.9, and swap mutation probability = 0.02 

Experiment 
No 

Environment 

Size 

 

N 

Computation Time (s) Memory (Maximum RSS, 

MB) 
DP GA DP/GA DP GA DP/ GA 

1 (Figure 6) 640 480 10 0.014 1.508 0.009 3.668 4.052 0.905 

2 (Figure 7) 1200 1200 14 0.289 1.845 0.157 6.836 4.264 1.603 

3 (Figure 8) 1080 1080 18 7.538 2.210 3.411 78.92 4.284 18.42 

4 (Figure 9) 1280 720 20 36.53 2.361 15.47 339.1 4.340 78.13 

5 (Figure 10) 1080 1080 23 383.2 2.629 145.8 3083 4.716 653.8 

6 (Figure 11) 1080 1080 26 3965 2.900 1367 27790 4.740 5863 

6. CONCLUSION 

In this study, we pointed out the similarity between TSP-CPP and TSPN in solving the  

NP-hard problem of interest, which was also seen in Yu (2015). Both approaches are variants 

of TSP with additional complexity; they involve searching one or two via points over the 

spatial region for enabling transition between cells. For the TSP-CPP problem, after a 
boustrophedon decomposition of the environment has been conducted to obtain 

nonoverlapping cells, a coverage intracell path comprising back-and-forth path pattern with 

four options of pairs of the starting and ending points for each cell can be determined. To 

achieve a suitable balance between efficiency, scalability, and path optimality, a sequential 

two-step optimization procedure based on an appropriate implementation of GA was adopted 

for full coverage with null or minimum repetition of a known cluttered environment after 

decomposition into cells. First, a visiting order of cells was determined using GA. Then, 

optimal entry and exit points according to a given visiting order were determined so that the 

crossing between the two cells occurs only once. The combination of the GA and DP 

approaches can help to coordinate and jointly optimize both the selections of the entry and exit 

points for each cell and the visiting order of the cells simultaneously. Moreover, we 
demonstrated that GA can successfully find the true optimal solution as found by DP in all six 

performed experiments in all six performed experiments that can be solved both by DP and 

GA. Furthermore, GA is hundred times faster than the DP approach when the cell number is 

large. Therefore, due to the limitations of computation time and computational resources in 
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applications such as UAV flight, GA offers a simple-to-implement, computationally feasible 

approach to TSP-CPP in highly complex environments with numbers of decomposed cells 

beyond the dimensionality limitation of DP. In this study, we did not consider the more 

realistic vehicle model that the incorporates the size and shape of a vehicle and its 
kinodynamic constraints, such as curvature or turn-rate constraint, into the motion of vehicle, 

such as Dubins vehicle (Dubins TSPN) (Sujit et al., 2013; Yu, 2015) and that includes the 

variation in the intracell path length caused by different selections of entry and exit points. For 

nonpolygonal or arbitrary shape obstacles, convex hull or bounding volume approaches can be 

implemented at the expense of reduced free space. Some possible further improvements 

include testing more intracell path patterns by considering the reduction in the number of turns 

cost (Huang, 2001; Vandermeulen et al., 2019), which is related to the travel time and energy 

consumption, because the complete coverage path in the current implementation comprises a 

single sweeping direction zig-zag (back-and-forth sweeping) path pattern with frequent turns. 

A multi-objective GA can also manage multiple conflicting criteria for more difficult coverage 

path optimization problems. Future research will consider these complicating factors. 
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