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ABSTRACT 

The technology of nowadays allows to easily extract, store, process and use information about individuals 
and organizations. The increase of the amount of data collected and its value to our society was, at first, a 
great advance that could be used to optimize processes, find solutions and support decisions but also 
brought new problems related with lack of privacy and malicious attacks to confidential information. 
In this paper, a tool to anonymize databases is presented. It can be used by data publishers to protect 
information from attacks controlling the desired privacy level and the data usefulness. In order to specify 
these requirements a DSL (PrivasL) is used and the automatization of repository transformation, that is 
based on language processing techniques, is the novelty of this work. 
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1. INTRODUCTION 

Due to advances in information processing technology and storage capacity, modern 
organizations end up processing and storing a large volume of data — personal details of 
individuals and organizations — for multiple purposes. Currently this volume is 2.5 quintillion 
bytes every day and it tends to increase in the next years (Marr, 2018). In order to analyze such 
a huge amount of data and extract knowledge from that, there is a strong research line inside the 
computer science area: artificial intelligence techniques were further explored namely data 
mining, statistical models used to discover patterns and compare historical data and other 
machine learning approaches were implemented. (Chakrabarti et al., 2006). Today’s large 
companies, such as Amazon, Google, Facebook, Spotify, take advantages from the amount of 
data and information they have about their customers. There are also other important 
organizations that use the data in different ways like in test environments and simulations 
(Goldman, 2018). 
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However, the application of these techniques can cause undesirable effects such as viewing 

personal, private, sensitive and confidential data. In order to produce results from data 

exploration it is also necessary to raise privacy and information security concerns (Naik and 

Ghule, 2013). Even if these processes can bring a number of benefits, advantages and 
discoveries, it is fundamentally to ensure that privacy is guaranteed. For a long period of time, 

privacy of the user data was neglected (Corrigan, Craciun and Powell, 2014). Nowadays, 

regulators are starting to worry about such important topics. One of the examples of this newer 

preoccupation is the EU General Data Protection Regulation (GDPR) (Murphy, 2018), that is 

already in place since 25th May 2018, and tries to regulate the protection and privacy of user’s 

data and sensitive information. 

In order to protect information is crucial to identify all the actors of the data exploration 

process. The different types of users in this process are: Data Provider (that provides the data), 

Data Collector (that collects and stores the data provided), Data Publisher (that transforms data 

and publishes it to be explored) and Data Explorer (that explores the data and retrieves 

information). Figure 1 illustrates the data exploration process with all of these users and roles. 
As privacy threats exist along and in every step of the data exploration process, each one of 

these users has privacy concerns and is able to ensure privacy with a set of methods and 

techniques. The Data Provider can protect its data by using external tools to provide fake data 

or even to limit the quantity and type of information provided when there is an intention to sell 

its data for some value. Data Collector can take some measures to first collect the data safely 

and then use some tools to store data while preserving privacy. The Data Publisher can assure 

the data privacy by adopting and applying the privacy-preserving data publishing (PPDP) 

techniques. Finally, Data Explorer can assure the privacy preserving by adopting the techniques 

according with the exploring purpose (for example, for the data mining process a set of  

privacy-preserving data mining techniques is available) (Xu et al., 2014). 
 

 

Figure 1. Global process of data exploration 

A system called Privas has been developed to aid the Data Publisher in its data publishing 

process. This system accepts a repository and creates a copy maintaining the information to be 

explored (coherence in data to be analyzed) but assuring that involved individuals/organizations 

cannot not be identified by applying PPDP techniques. Privas offers PrivasL, a Domain Specific 

Language (DSL) that easily allows to specify: the original repository schema, the identification 

of the tables/columns that one wants to explore and the definition of the privacy level to be 

assured. The PrivasL specification is submitted to Privas processor that interprets it. Then 
Privas automatically chooses the best techniques to apply to the repository in order to transform 

it and improve its privacy level. The compilers’ generator — ANTLR4 — is used to implement 

PrivasL processor. This brings novelty and value to our contribution comparing to the actual 

manual implementation of anonymization techniques. 

In Section 2 we shortly present the most relevant ‘privacy-preserving data publishing 

(PPDP)’ methods or techniques proposed in the literature for data anonymization after being 

collected and before exploration, balancing privacy assurance and information preservation. In 
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that section three different perspectives are discussed. We did not include specifically a related 

work section because all the tools available do not automatically anonymize data and either 

focus on masking the data or require knowledge, expertise and configuration to apply the 

anonymization techniques. Our proposal, Privas tool, is introduced in Section 3. In that Section 
3, after an overview of the system features and a brief description on how Privas is integrated 

in the flow of the global process for data exploration, Privas architecture is explained in detail. 

Then a description of PrivasL, designed to describe privacy concerns, is presented along with 

how to measure the percentage of information loss; the way how anonymization techniques are 

implemented is also referred in the same section. Before concluding the paper in Section 5,  

a Case Study is discussed in Section 4. In that section, Sakila database is presented highlighting 

the privacy problems arising in that context; then the desired transformation for privacy 

preservation is shown written in PrivasL and the tables transformed according to that description 

are also shown; a discussion about the results obtained closes Section 4. 

2. DATA ANONYMIZATION - TECHNIQUES AND METHODS 

As it was discussed, the Data Publisher is in charge of select and transform the data to be 

provided. Typically, this process brings a loss of information’s usefulness. The process of 

balancing the privacy with the loss of information is commonly referred as privacy-preserving 

data publishing (PPDP). It will always be necessary, and it will always be the biggest challenge, 

that Data Publisher factors these two weights during the PPDP process to ensure that the 

collected data is useful so it can be later explored. This challenge raises three questions (Wong 
and Fu, 2010). 

2.1 How Does the Data Publisher Prepares the Data to be Modified? 

In order to be able to answer this question, it is necessary to understand some fundamental 

concepts used in the PPDP. The existing information and its parts can be classified into different 
attribute types (Wong and Fu, 2010; Sharma Amita et al., 2014; Xu et al., 2014): 

 Identifier (ID): It is an attribute or set of attributes, such as name, telephone number, 

social security number, which contains information that allows to directly and uniquely 

identify an individual; 

 Quasi-identifier (QID): a set of attributes that can potentially lead to the identification 

of record owners (e.g. in (Sweeney, 2000), the report stated that in a U.S. Census the 

set of 5-digit Zip, gender and birth date, allowed the identification of 87% of the 

population); 

 Sensitive Attribute (SA): consist of information specific to each individual they wish 

to enclose, such as illness, salary value, level of disability, etc.; 

 Non-Sensitive Attributes (NSA): all attributes that do not fit in the three previous 
categories are non-sensitive attributes. 

Based on this categorization a set of data anonymization techniques can be applied. 

(Fung et al., 2010): Generalization, Bucketization, Suppression, Anatomization, Permutation, 

and Perturbation.  Each of these techniques ends up being used inside the algorithms developed 

to implement the anonymization. 
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2.2 How Does the Data Owner Guarantee that the Modified Data 

are Protected from Attacks? 

The assurance that the modified data is protected can be given by quantifying the preservation 

of privacy according to the type of privacy threats (Fung et al., 2010). 

Table 1. Main Privacy models with associated attack models. Adapted from (Fung et al., 2010;  
Mendes and Vilela, 2017) 

Privacy Model Description 
Application and 

Domains 

Attack Model 

Record 

Linkage 

Attribute 

Linkage 

Table 

Linkage 

Probabilistic 

Attack 

 k-Anonymity (P. 

Samarati and 

Sweeney, 1998; 

Pierangela Samarati 

and Sweeney, 1998) 

Anonymity is guaranteed by the 

existence of at least other k-1 

undistinguishable (w.r.t. the QID) 

records for each record in a 

database. This group of k 

undistinguishable records is 

referred to as equivalence class. 

Wireless Sensor 

Networks (Groat, Hey 

and Forrest, 2011), 

Location-based services 

(Bamba et al., 2008), 

Cloud (He et al., 2016), 

E-health (Gal, Chen and 

Gangopadhyay, 2008)  

✓ 

 

   

 l-Diversity 

(Machanavajjhala et 

al., 2006) 

Expands the k-anonymity model 

by requiring every equivalence 

class to have at least one “well-

represented” value for the sensitive 

attributes. 

E-health (Gal, Chen and 

Gangopadhyay, 2008; 

Kim, Sung and Chung, 

2014), Location-based 

services (Bamba et al., 

2008; Liu, Hua and Cai, 

2009)  

✓ ✓   

t-Closeness (Ninghui, 

Tiancheng and 

Venkatasubramanian, 

2007) 

Extends the l-diversity model by 

treating the values of a sensitive-

attribute distinctly by taking into 

account the sensitive-attribute's 

distribution of data values. 

Location-based 

services (Riboni et al., 

2009)  ✓  ✓ 

Personalized 

Privacy (Xiao and 

Tao, 2006) 

Achieved by creating a taxonomy 

tree using generalization, and by 

allowing the record owners to 

define a guarding node. Owners’ 

privacy is breached if an attacker 

is allowed to infer any sensitive 

value from the subtree of the 

guarding node with a probability 

(breach probability) greater that a 

certain threshold. 

Social Networks (Yuan, 

Chen and Yu, 2010), 

Location-based services 

(Agir et al., 2014; 

Ghasemi Komishani, 

Abadi and Deldar, 

2016)] 

 ✓   

 ε-Differential Privacy 

(Dwork, 2006) 

Ensures that a single record does 

not considerably affect (adjustable 

through the value ε) the outcome 

of the analysis of the dataset. In 

this sense, a person’s privacy will 

not be affected by participating in 

the data collection since it will not 

make significant difference in the 

final outcome. 

E-health (Dankar and El 

Emam, 2013; Lin et al., 

2016), Smart meters 

(Zhang et al., 2017), 

Location-based 

services (Elsalamouny 

and Gambs, 2016)  

  ✓ ✓ 

 

According to (Fung et al., 2010), threats to privacy can be classified into two categories: 

 The first category considers that the adversary or attacker is capable of identifying the 

record of a target individual by linking the record to data from other sources, such as 
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linking the record to a record in a published data table (this is called record linkage 

method), to a sensitive attribute in a published data table (this is called attribute linkage 

method), or to the published data table itself (this is called table linkage method);  

 The second category aims at achieving the uninformative principle (Machanavajjhala 
et al., 2006): consider that the attacker or adversary has enough background knowledge 

to execute a probabilistic attack, that is, the adversary is able to make a confident 

inference about whether the target’s record exist in the table or which value the target’s 

sensitive attribute would take and because of that, the publish data, cannot disclose 

additional information beyond the background knowledge that may already have.  

According to the attack models and to measure the quantification of privacy preservation, 

different privacy models were proposed. In the Table 1 it is possible to consult the main models 

of privacy according to the different types of attack, as well as a small description. New privacy 

models have appeared recently but contain small differences from the models presented. 

Each privacy model in its definition uses techniques from different categories presented 

previously. Multiple algorithms were developed over the years to achieve such techniques. 
Figure 2 gives a general overview of how privacy models are linked to the privacy attacks, 

privacy attributes, privacy techniques and algorithms. The Figure helps to understand how the 

concepts around the privacy context are connected. 

 

Figure 2. Privacy domain context. Different concepts of the privacy domain with its connections 

2.3 How Much Does the Data Needs to be Modified so that no 

Sensitive Information Remains? 

In order to transform the data and generate new data without sensitive information, the Data 

Publisher can use several techniques. One needs to remember that when the data is changed, 

exists an impact in its usefulness. There is always a trade-off between privacy and usefulness. 

The transformation of data to ensure privacy can be done in multiple ways and with several 

techniques and it will result in information with different utility. 



IADIS International Journal on Computer Science and Information Systems 

46 

Since there are available several ways to transform data, the Data Publisher should choose 

the one that seems to be the most useful. Generally the one that contains more valuable 

information for the data analysis (Wong and Fu, 2010), but that criteria can change depending 

on the purpose of the exploration phase. 

3. PRIVAS - AUTOMATIC ANONYMIZATION OF DATA 

REPOSITORIES 

There are lots of techniques to provide data privacy protection at the publisher stage. The main 

focus of the literature so far has been finding and/or creating new and better techniques to apply 

privacy to data. Due to already exist a large number of techniques and ways of protecting privacy 

and as they require some study on how they should be applied, the choice and use of these 

techniques is still an ad-hoc choice in accordance with business solutions and types of data. 

As a way to help and to promote privacy protection, this work aims to present a solution that 
helps to choose and use the various techniques and methods of privacy protection in data 

repositories in the data publishing phase (PPDP). This solution creates a tool - named Privas - 

that enables to: 

 Specify the type of data repository to be treated; 

 Identify the existing information in the repository and classify its type (ID, QID, 

sentive, none) – this step is currently manual; 

 Set desired privacy level (choosing the type of attacks to prevent); 

 Produce a metrics of the utility of data still present with the desired level of privacy; 

 Apply privacy protection techniques (PPDP) and methods to the specified repository. 
 

 

Figure 3. Global process of data exploration with Privas 

The goal is that, as shown in Figure 2, the Data Publisher user has a tool available that, after 

configuring the parameters, will automatically transform their data and prepare them for 

publication with the type privacy requested. To achieve this goal, the Privas tool and 

architecture was thought as a set of components/parts that serve different purposes. 

3.1 Tool Architecture 

Privas’ architecture can be seen in Figure 3. The different components present on Privas are: 

1. PrivasL, a domain-specific language (DSL) that allows the description of the repository 

type, the desired privacy level and the data types classification for that privacy level. 

This language must be expressive enough to allow all the needed specifications, and 

simple and intuitive to be easily learned by anyone;  
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2. A core software unit, agnostic to the kind of repository, which will have the techniques 

and modes of privacy protection and the logic to add privacy to the data of the 

repository - by having this core unit, the goal is to allow an easier evolution of the tool 

to other repositories and techniques, and make it a task specific and simplified; 
3. A specific connector for each type of repository that will be responsible to transform 

the information into a format that the core software unit can then process and later 

generate the new transformed repository; 

4. A web interface that offers users a visual tool to obtain PrivasL descriptions. Within 

the web platform the user defines all the details about the repository and the desired 

transformation level and, in the end, a PrivasL description is generated. 

These parts/components are an integral part of a process (Figure 3) of defining the repository 

data and its types and enable the transformation of data in a way that guarantees privacy. 

By zooming into the core of Privas tool, one can see that Privas is developed through several 

independent and perfectly separable components, which are:  

 The PrivasL parser; 

 The connector to each repository type; 

 The set of PPDP techniques and models; 

 A core unit that connects everything with a decision engine to automatically apply the 

techniques. 

 

 

Figure 4. Privas Core architecture 

The main idea behind this division is to allow the Privas tool to be modular and extensible, 

and therefore, easily scalable. Thus, new techniques can be easily added, and new repositories 

can be configured in few steps. 

In the next subsection, a DSL to classify and configure the desired privacy level is shown. 

3.2 PrivasL - A DSL to Classify Original Data 

The description written in PrivasL allows to configure all the transformation process:  

 Configure the repository type and its basic information (connection string, path, etc.); 

 Classify each data type of information present on the repository being handled (he can 

choose between ID, QID, SA, NSA); 

 Choose what type of attack models the repository should be protected from. These 

attack models can be Record Linkage, Attribute Linkage, Table Linkage and 

Probabilistic Attack; 

 Optionally define generalization trees to give domain context when anonymizing. 
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Actually, there are combinations of type of attacks that are not covered by any of the Privacy 
Models available. The PrivasL processor detects this as an invalid configuration sending an alert 
to the user. 

What the user has to provide through PrivasL is represented in Listing 1:  

 Database name; 

 Specify the tables where the privacy techniques will be applied, and for each of them 
classify the attributes in PPDP (‘@’: attribute identifier (ID); ‘&’: attribute  
quasi-identifier (QID); ‘~’: attribute sensitive (SA); and nothing: none of the others); 

 Type of attack (or set of attacks) that is intended to protect which offers some degree 
of privacy. For example, the user can choose to protect from the record linkage attack; 

 Optionally define generalization trees for the attributes to obtain a domain 
anonymization. 

 

privas : repositoryOptions 

dataDescription privacyOptions 

generalizationTrees?; 

 

 

repositoryOptions  

        : 'Relational' 

relationalRepositoryOptions 

        | 'CSV' csvRepositoryOptions 

        ; 

 

relationalRepositoryOptions 

        : 'Connection String:' 

STRING_LITERAL; 

 

csvRepositoryOptions : 'Path:' 

STRING_LITERAL; 

 

dataDescription : NAME entities; 

 

entities : entity ( entity* ); 

 

entity : NAME '[' attributeList ']'; 

 

attributeList : attribute ( ',' 

attribute )*; 

 

attribute : attributeValue 

attributeTree?; 

 

attributeTree : '::' NAME; 

 

attributeValue : '@' NAME   | '&' 

NAME 

                | '~' NAME   | NAME 

; 

 

privacyOptions : 'Prevent from:' '[' 

attackModelList ']'; 

attackModelList : attackModel ( ',' 

attackModel )*; 

 

attackModel: attackModelName 

attackModelParameters?; 

 

attackModelParameters: '<' NAME '=' 

NUM (',' NAME '=' NUM)* '>'; 

 

attackModel : 'recordLinkage' | 

'attributeLinkage' 

            | 'tableLinkage'. | 

'probabilisticAttack' 

            ; 

 

generalizationTrees : 

generalizationTreeHeader+; 

 

generalizationTreeHeader  

    : '+' NAME ('as' NAME)? 

generalizationTree+ 

    ; 

 

generalizationTree 

    : '+' NAME generalizationTree{2,} 

    | '>' STRING_LITERAL ':' 

setOfValues 

    | '>' STRING_LITERAL ':' range; 

 

setOfValues 

    : '{' STRING_LITERAL (',' 

STRING_LITERAL)* '}' ; 

 

range : (']' | '[') NUM? ',' NUM? (']' 

| '[') ; 

 

 

NAME : [a-zA-Z][-_a-zA-Z0-9]*; 

NUM  : [1-9][0-9]*; 

STRING_LITERAL:   '"' (~["\\\r\n])* 

'"'; 

Listing 1. PrivasL DSL BNF definition - extended AntLR 
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When anonymizing the repository, the algorithms can transform the value in different ways. 

When a generalization occurs, Privas has two types of generalizations already built-in: 

 For numbers and dates, as they are continuous values, Privas offers out-of-the-box 

generalization in ranges between values. The number ranges are built from the values. 
The date ranges start by generalizing the month and can go through the year part. 

 For every other value not specified, Privas treats them as strings. So, when generalizing 

two values Privas tries to join the values with `~' (e.g. 'value1~value2'). When more 

than two values are involved, Privas generalizes to a more generic form to avoid 

disclosing much information while helping the generalization process: `*' character. 

Besides these built-in generalizations, and to allow a better and more adapted to the domain 

context generalization, Privas also offers the user the possibility of defining generalization trees. 

This tree should be composed by different levels. Each level represents a possible generalization 

and holds its value. In the leaves it will be the raw values present in the repository. Figure 4 

depicts a generalization tree for a numerical value (votes for instance a price attribute. Listing 2 

contains the tree represented in PrivasL description. 

 

Figure 5. Example of a tree generalization for a 

price attribute Listing 2. Generalization of Price attribute 
written in PrivasL

By using the PrivasL, the user of the tool provides all the information (type of information 

present in the data repository and attack to prevent from) required and desired in a uniform way, 

making this configuration confined to a unique entry point. 

3.3 Implementing Anonymization Techniques 

The Anonymization techniques are contained in a component reserved for such (Figure 3). The 

user specifies through PrivasL descriptions the types of privacy attacks to protect the 

repositories from. And, an available and appropriate model and its techniques is chosen and 

applied, transforming the repository in a new repository with data anonymized. 

The tool implements four privacy models: the k-anonomity model, the l-diversity model, 

the t-closeness model, and the e-differential privacy model. With these models, and as seen 

in Table 1, in conjunction, Privas cover all of the attack models. 

The k-anonomity model is implemented through the generalization and suppression 

techniques. k-anonomity model guarantees that for each QID present, there are at least k entities 

with the same value, making them indistinguishable. As seen in Table 1, this privacy model 
protects the repository against Record Linkage attacks. The algorithm chosen to implement the 

k-anonomity model was Mondrian. Mondrian is a Top-down greedy data anonymization 

algorithm for relational dataset, proposed by Kristen LeFevre in (LeFevre, DeWitt and 

+ Price 

  > Low: [0, 0.5[  

  + Medium 

    > ‘Medium Low’: [0.5, 1[  

    > ‘Medium High’: [1, 2[  

  > High: [2,[  
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Ramakrishnan, 2006). The algorithm is based on the concept of data partitioning that is a clear 

connection with the sections that are so characteristic of Pietre Mondrian work arts. 

Figure 6 instantiates the Figure 2 for the k-anonymity and shows this privacy model and the 

surrounding concepts that are tied to it. 

 

Figure 6. k-anonymity privacy domain context 

The l-diversity model was conceived as an extension of the k-anonymity model and as 

such, it inherits all the properties of the latter model including the protection against Record 

Linkage. Besides these properties it also ensures that each anonymous group contains  
at least l different values of the sensitive attribute value – preventing against Attribute Linkage. 

Therefore, even if an adversary can identify the group of an individual it still would not be 

possible to find out the real value of that individual's sensitive attribute with certainty.  

To implement l-diversity the algorithm followed was adapt the Mondrian base algorithm 

and adapt it to achieve l-diversity. The required changes to achieve l-diversity with Mondrian 

were 1) modify the function that validates the partitions to include the diversity and 2) modify 

the split function to produce partitions that are diverse (if possible). 

Like l-diversity, t-closeness model extends the k-anonymity model but it offers different 

characteristics when applying the privacy preservation. The concept behind t-closeness is that 

the statistical distribution of the sensitive attributes’ values in each k-anonymous group is 

“close” to the overall distribution of that attribute in the entire repository. This property prevents 

against the identification of the individual in the privacy resulting dataset and it prevents against 
Attribute Linkage as it ensures the closeness between different entities and against Probabilistic 

Attack as it not discloses disperse information.Typically, the closeness between two elements 

can be measured using different mathematic formulas, here it was opted for the Kolmogorov-

Smirnov distance. To implement t-closeness the chosen algorithm was also the Mondrian 

adapted to this model. The changes to the algorithm to achieve this were 1) modify the function 

that validates the partitions to include the diversity against global data and 2) use the 

Kolmogorov-Smirnov distance to obtain the diversity validity.  

The e-differential privacy model works differently from the previous privacy models 

implemented. It limits the knowledge gain between repositories that differ in one individual. 

This property offers this model prevention against Table Linkage and Probabilistic Attack. The 

way this limit is done is by replacing the individual's values for some value (mean of values for 
example) that dilutes the presence of different individuals. For example, if the value being 
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anonymized is the salary, one could replace the salary values by the mean of all salaries. This 

imply that adding or removing a new salary would not impact the mean value. Because of its 

nature and how e-differential privacy works, its utilization is best suited to statistical databases. 

The e parameter is sometimes referred as the privacy-loss budget, meaning that greater the  
e value less privacy will exist, and more information will be on the repository.  

In (Domingo-Ferrer and Soria-Comas, 2015), the authors reached a conclusion that the privacy 

model t-closeness when 𝑡 = 𝑒𝑥𝑝 
𝑒

2, yields e-privacy. And for these reasons, to implement this 

technique, the t-closeness was used with the tweak in the t parameter. 

The Privas tool encloses all these privacy models and automatically chooses and applies 
them when different type of attacks is chosen. To allow an advanced configuration about the 

models being applied, the tool also offers the possibility of specifying values of the parameters 

(k, l, t and e, depending on the privacy model being applied).  

3.4 Measuring the Information Loss Percentage 

Knowing the impact, the privacy transformation caused on the data is crucial to take better 

decisions on what type of attacks to prevent from, and if the information chosen to be sensitive 

can be more relaxed. This metric can also give the Data Publisher a strong indicator if it makes 

sense to publish its data. 

Privas also produces this output after transforming the data. For each entity transformed  

(a table in case of Relational Databases), a % of the information loss is displayed. This 

information loss percentage is calculated by knowing how much the privacy has affected the 

entity. 

Each entity has N attributes (columns in case of a table) and L lines. To calculate the 

information loss percentage is required to calculate and sum the information loss percentage for 

each attribute. For each attribute, the information loss percentage of its elements (specific line 

in an attribute), must be added. The information loss percentage of each element depends on if 
it suffered suppression (all the information loss) or if it suffered #g generalizations, meaning it 

lost 
#𝑔

1+#𝑔
, between 0 and 1 of information. The following formula calculates the information 

loss percentage for each entity: 

%𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝐿𝑜𝑠𝑠𝑒𝑛𝑡𝑖𝑡𝑦 =
100

𝑁 ∗ 𝐿
∗ ∑   ∑   {

1, 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑖 ,𝑗  𝑠𝑢𝑓𝑓𝑒𝑟𝑒𝑑 𝑠𝑢𝑝𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

#𝑔

1 + #𝑔
,    𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑖,𝑗  𝑠𝑢𝑓𝑓𝑒𝑟𝑒𝑑 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝐿

𝑗=1

𝑁

𝑖=1

 

3.5 Web Platform 

To reach multiple and different types of users to use Privas to transform their repositories, a 

Web Platform was designed and implemented. This web platform was built as a Single Page 

Application, using Interaction Design Patterns (to help having a more natural user experience).  

The platform contains all the configuration information present in the PrivasL and described 

in Section 3.3. It works by helping build the information about the repository incrementally and 

in the end generate a description in PrivasL language. Figure 7 depicts the Web Platform main 
page where all the description options can be seen. 



IADIS International Journal on Computer Science and Information Systems 

52 

 

Figure 7. Web platform (SPA) that generates PrivasL descriptions 

4. SAKILA CASE STUDY 

Relational databases are widely used and well-suited in knowledge extraction processes due to 

their strong structuring of data. Because of its widely adoption and usage in the real world we 

chose a relational database as a case study of the Privas tool. The database chosen was Sakila 

database - a MySQL relational database (https://dev.mysql.com/doc/sakila/en/). The Sakila 

sample database was initially developed by a former member of the MySQL documentation 

team and aims to provide a standard schema easily available to all. This database is a nicely 

normalized schema modelling a DVD rental store, featuring things like films, actors, film-actor 

relationships, and a central inventory table that connects films, stores, and rentals. 

Because of type of information it contains, it has several tables with interesting attributes to 

be analyzed at the privacy level (such as customer information, staff, payments, etc). 

To apply Privas tool to the Sakila database we simulate the use of Privas by a regular user:  

1. We analyzed all the tables individually to identify if the table needed some kind of 
privacy transformation - this was done by classifying each information with either ID, 

QID, SA or NSA; 

2. After visiting every table and classifying its information, we collected the tables’ 

names and its attributes with the information classification and described in PrivasL; 

3. We added the rest of information needed to PrivasL description (database connection 

and type of attacks we are preventing the repository from). 

The list of tables in the repository is: actor, address, category, city, country, customer, film, 

film_actor, film_category, film_text, inventory, language, payment, rental, staff, and store. 

From the analysis of all tables and from the information classification we concluded that 

tables like actor, category, city, country, film, film_actor, film_category, film_text, inventory, 

language, and store, do not have privacy transformation needs given that all the information 
present, besides database domain value like primary keys or foreign keys, is classified as Non-

Sensitive Attribute. 

https://dev.mysql.com/doc/sakila/en/
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4.1 PrivasL Applied 

On Listing 2 one can see the PrivasL description for the Sakila database. We can conclude that 

from 16 tables, 5 have privacy needs, and from those a minor part of its attributes has privacy 

concerns.  
 

Relational 

    Connection String: “jdbc:mysql://localhost:3306” 

 

sakila 

    address [ &address, &district, &postal_code, @phone ] 

    customer [ &first_name, &last_name, @email ] 

    payment [ &payment_date ] 

    rental [ &rental_date, &return_date ] 

    staff [ &first_name, &last_name, @email, @username ]  

 

Prevent From: [ recordLinkage ] 

Listing 3. PrivasL description to apply Privas to Sakila database 

From the analysis we concluded that no attribute has sensitive information that should be 

taken care. As an example, for this type of attribute would be the staff table having salary 

information of each staff member. This information almost certainly would not be a  

Quasi-Identifier but would be the type of information that is sensitive and should be classified 

as such. 

4.2 Results Obtained 

After running the Privas Tool with the specified PrivasL description (Listing 2), we obtained a 

new privacy transformed database. With Record Linkage to prevent from, Privas applied the  

k-anonymity. Figure 4 represents three examples of Sakila tables and its transformation. 

On the upper part is the original data and, on the right-bottom part the table with privacy 
transformation. It is clear from the data transformed for each entity that all the information 

classified as Identifier or Quasi-Identifier has been processed. The algorithm applied guaranties 

that at least 2 lines (k = 2) have the same values of Quasi-Identifiers in each table, preventing 

the attacker of knowing what entity holds that information. 

The staff table, for example, even though first_name and last_name were chosen as  

Quasi-Identifiers, its generalization (due to the need of k =2) behaved as the columns were 

suppressed. 
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Figure 8. Three examples of Sakila tables before and after Privas process  

4.3 Discussion 

Some of the conclusions that are directly extracted is that the type of information present is not 

so rich and definitely its transformation had an impact on the information present in the table. 

The information lost percentage was calculated with the algorithm presented before (Section 

3.4). For each table of the Sakila’s database the values can be consulted in Table 2. 

Table 2. Information loss percentage for each table of Sakila relational database 

Table Information Loss 

address 34.41% 

customer 33.33% 

payment 7.44% 

rental 14.76% 

staff 40.00% 

 

 

The quantity of information loss is not far from what was expected: the tables with more 

Identifiers and Quasi-Identifiers by total number of columns, have a higher Information Loss 
percentage value. One factor that also weights to the information loss is the natural distribution 

of the data. If data already contains little values that make the entities identification impossible 

the need to anonymize it would be lower and the information loss would have a low value.  

The table staff, that has the higher number of Identifiers identified (values that are 

suppressed) is also the table with the higher value. Table payment, on the other hand, has the 

lower value, which can also be explained because it only has one Quasi-Identifier identified. 

With this information loss values calculated, if there were different techniques to apply that 

guaranteed the user with the same prevention for the requested attack, the algorithm that selects 

and applies the techniques could select the best suited technique for this use case. This is 
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something that Privas was built to support from its foundations since it allows the existence 

multiple models to solve the same attack privacy threads. 

Even with the information loss percentage calculated, the data publisher should always look 

into the output produced. For example, in Figure 4, one can see that the information remaining 
in the table staff is not that useful, due to the privacy transformed table only contains suppressed 

attributes and references to other tables. 

5. CONCLUSION 

Due to the technological evolution that has been observed in the last decades, the data and the 
information of individuals have gained more and more value. Data is a high value asset for all 

types of organization and is exploited for various purposes. No matter the purpose, all these 

exploration processes share some steps and actors; they have a common flow. This work 

focusses in the data publishing phase, where the most relevant user is the Data Publisher. 

Though the information and knowledge discovered by the exploration and use of data can 

be very valuable in many applications, people are increasingly concerned about the other side 

of the coin: the privacy threats that these processes bring. With the methodology based on the 

role of the user, it is considered that the Data Publisher should assume the main responsibility 

of protecting confidential data. Therefore, it must follow techniques that anonymize the original 

data so that it is not possible to identify the owner of the data. These techniques are categorized 

under the privacy-preserving on data publishing techniques (PPDP). The current problem is that 

the Data Publisher’s role is performed by the Data Collector or Explorer, that already has other 
concerns. Ideally, Data Explorer should receive the data with no sensitive information in it, that 

was treated by the Data Publisher. 

Although there is already a lot of information and many techniques in the bibliography, the 

Data Publisher in order to implement them has to do it as an ad-hoc process: analyze tables, 

attributes, data types, choosing technique, algorithm, apply rule by rule and repeat. Till the 

moment, it was not found any automatic approach to do so. So, Privas can be considered a 

valuable contribution in this field. 

Privas, using language processing techniques, allows to apply PPDP techniques to a 

repository. The tool produces a new repository with the privacy assured to some level. The 

architecture of this tool has been developed in a way to be divided into several components, 

which allows to easily add new techniques and new types of repositories in order to evolve the 
tool. One of the main components is PrivasL that allows to specify all the information that the 

user will have to provide: type of repository, entities to apply the privacy, the attributes and their 

types in PPDP format. The DSL is the only point of entry of inputs which makes the process 

simpler, because the user just has to write a textual description or fill the fields in a web interface. 

Privas tool, and the PrivasL, along with the web platform were successfully tested with 3 

case studies: 1) Sakila relational database presented in Section 4, 2) An U.S. census dataset, and 

3) an Employees relational DB (a large database with more than 4 million records with sensitive 

information). The required time for the transformation in each repository was not significant. 

Each technique has its advantages and limitations, so it is important that the tool behaves 

and offers several technical options to the user. No technique is ideal, and data privacy and 

utility are inversely proportional, so when gains occur in privacy it means utility has suffered 
some loss. Therefore, in the end, there is the need to provide the user with metrics that will allow 



IADIS International Journal on Computer Science and Information Systems 

56 

to analyze the trade-off between data utility and data privacy. As presented in this paper, Privas 

already automatically prevents against all types of attacks by having four privacy model 

implemented (k-anonymity, l-diversity, t-closeness, and e-differential privacy). The next steps 

could be to increase the number of repositories that Privas supports, increase the number of 
models and algorithms implemented, and enhance the decision engine to offer a better 

performance when deciding which technique to apply. 

A completely automatic tool that is able to discover the sensitive attributes and to choose the 

most probably attack model that should be avoided would be a big challenge. Data mining 

applied to databases could be used to take this kind of decisions. Still, by focusing on the attack 

prevention and not on specific techniques, Privas eases and automates the anonymization 

process. The automatic choice of what technique to apply saves the user from having to have a 

deep knowledge in privacy domain while also sparing a lot of time when compared to the 

completely manual application of the privacy techniques. 
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