
Int. J. Advanced Networking and Applications
Volume: 13 Issue: 04 Pages: 5016-5023(2022) ISSN: 0975-0290

5016

A Comparative Study on Load Balancing
Techniques in Software Defined Networks

Moinul Islam Sayed

Department of Computer Science and Information Technology, Patuakhali Science and Technology University,
Bangladesh

Email: sayed.pstu11@gmail.com
Sajal Saha

Department of Computer and Communication Engineering, Patuakhali Science and Technology University, Bangladesh
Email: sajal.saha@pstu.ac.bd
Ibrahim Mohammed Sayem

Department of Computer and Communication Engineering, University of Western Ontario, Canada
Email: isayem@uwo.ca

Sarna Majumder

Department of Computer and Communication Engineering, Patuakhali Science and Technology University, Bangladesh
Email: sarna.majumder90@gmail.com

--ABSTRACT---

Software-defined networking (SDN), which decouples the control plane from data plane and provides

programmability to design the network, has been considered as a viable paradigm shift to ease the management of

conventional networks. Studies have identified that the placement of controllers heavily impacts network

performance in SDN. Many studies proposed methods regarding controller’s placement in the network to improve

the performance metrics such as propagation latency, distribution of load, failure resilience, and reliability of

network. However, network operators' main concern is always Quality of Service (QoS) when placing SDN

controllers. Because SDN controllers are responsible for providing services to the switches, controller response

time is a critical QoS criterion for network operators. In this study two different approaches of controller

placement were thoroughly examined and combined to offer a solution that minimizes the propagation delay

among nodes and maximizes the QoS of the network by maintaining better load balancing.

Keywords - Software Defined Networks, Controller Placement, QoS, Load-balance, Propagation delay.

-- -
Date of Submission: Jan 22, 2022 Date of Acceptance: Feb 05, 2022
--- --------------------

1. INTRODUCTION

SDN has been considered as a promising new paradigm

that decouples the control plane from data plane, allowing
for programmability in network configuration, to make
traditional network management more flexible.
Controller(s) in the control plane are responsible for
making routing decisions, as well as generating rules and
policies for the routers and switches in the network. The
data plane is a set of switches that forward data in
accordance with the control plane's routing decisions. The
control plane of SDN was originally designed with a
single controller. Having a single controller within a
network can be advantageous since it provides a single
view of the entire network [13]. However, because of the
massive traffic condensed at the controller, even a
medium-sized network with just a single controller suffers
from many efficiency and scalability issues [30], [29].

 As a solution to these problems, having multiple
controllers is a feasible alternative. However, the number
of the controllers and their placement has immense effect
on the network's efficiency and cost [13], [36]. As a result,
Controller Placement Problem (CPP) emerges as a hotspot
in recent SDN research. The CPP focuses on three main
points: 1) determining minimum number of controllers; 2)

finding optimum placement of controllers in the network;
and 3) distributing controllers among switches with the
aim of reducing latency cost [11], [28], enhancing
reliability [32], and optimizing energy efficiency [13].

Fig 1: SDN Architecture

Int. J. Advanced Networking and Applications
Volume: 13 Issue: 04 Pages: 5016-5023(2022) ISSN: 0975-0290

5017

The main contributions of this work are as follow:
 Several research papers have been studied for

analysing the solution to CPP. Some of the
research papers were selected to study
intensely and discussed in the following
sections.

 Two algorithms that propose solution to CPP
focusing on two different perspectives were
selected and implemented.

 Combining two novel algorithms, a new
algorithm is proposed and implemented for
comparative performance analysis.

2. RELATED LITERATURE
SDN proffers more flexibility to network vendors when
designing the network by isolating the network's control
plane and packet forwarding plane. The controllers in the
SDN control plane are responsible for prescribing network
behaviors and making routing decisions on how data
packets should be forwarded by building a routing table
with network paths. After receiving routing decisions from
the control plane, the data plane, which is made up of
switches, transmits packets to the desired destination [1],
[2]. The centralized control plane performs well in the
smaller network. One of the first SDN controllers, NOX,
can only serve 30K flow requests per second with a
response time of fewer than 10 milliseconds [3]. However,
the SDN controller confronts a fundamental difficulty in
terms of scalability and reliability when dealing with
networks with multiple flows, which we refer to as large-
scale networks [4], [5], [6]. Many researchers believe that
the solution to this problem is to develop a decentralized
control plane that can distribute the load among multiple
controllers where controllers can cooperate each other [4],
[7], [8], [9]. Conversely, using multiple controllers causes
the Controller Placement Problem (CPP), which refers to
where numerous controllers should be placed in an SDN-
enabled network [10].

 The Controller Placement Problem (CPP) has an
impact on network performance parameters like latency
(flow setup latency/time and route synchronization
latency), throughput, network availability, controller load
balances, and energy consumption. It is suggested that in
order to address the CPP problem, it is necessary to define
not only the minimum number of controllers, but also their
placements [11], [12]. Furthermore, multiple constraints
must be met, including minimizing packet propagation and
controller processing latency between switches and
controllers, intensifying resilience and reliability, and
reducing the cost of placing controllers, linking controllers
to switches, and connecting controllers together, resulting
in an NP-Hard problem [10], [13], [14]. However, in
recent years, many researchers have proposed several
solutions addressing the CPP where some of them are
based on specific constraints like the total delay of the
network or load balancing or reliability as well as
scalability [15], [16] and while some other provides
solutions which addressed multiple constraints [11], [17],
[18].

 Yao et al. [19] describe CPP with load constraints and
propose an efficient scheduling algorithm that reduces the
number of controllers required to balance loads. Bari et al.
[20] propose an Integer Linear Programming (ILP)
heuristic approach to address the dynamic controller
provisioning problem, which decreases flow setup periods
and controller workload by dynamically altering the
amount and position of controllers. Zhao and Wu's [21]
simulation findings suggest that a heuristic-based
technique produces superior results than integer linear
program outcomes. Zhang et al. [22] presented and
compared a min-cut based controller placement method
that increases reliability with a greedy based approach. Hu
et al. [23] try to concentrate on the reliability-aware
controller placement problem and propose the expected
percentage of control path loss, where control path loss
refers to broken control paths caused by network failures.
Sallahi et al. [13] consider the cost of installing
controllers, the loads on the controllers, and the path setup
latency when developing a mathematical model for
optimal controller location. Hock et al. [27] use the Pareto-
based Optimal Controller-placement (POCO) framework
to compute resilient placements by considering several
variables such as network reliability, controller load, and
propagation latency. According to Lange et al. [24] Some
parameters, such as controller-switches latency, controller-
controller latency, controller load, and network failures,
are significant in identifying the number and placement of
required controllers in a large-scale network. Optimal
solution can be achieved found from [23], [24] but their
computational cost is much higher than other proposed
method.

 In [26] Liao et al. proposed Density-Based Controller
Placement (DBCP), in which a huge network is reduced to
a small network and the overall latency is reduced based
on the nodes' local density. Moreover, it provides better
result for CPP compared to Lange [24]. Wang et al. [25]
introduced an improved K-means network partitioning
algorithm, in which a network is partitioned using the K-
means algorithm and controllers are placed in the
partitioned networks. Heller et al. [11] was the first to
bring up the controller placement problem. The aim of this
research is to reduce the average latency between switches
and controllers. Since the Figure 2.1: Basic architecture of
SDN. Page 4 of 20 average and maximum latency cannot
be optimized simultaneously, a greedy K-median method
was adopted for the optimal placement that minimizes
average latency, and a greedy k-center method was used to
reduce the maximum latency. However, this approach is
restricted to particular topologies and ignores the
controller's constraints in capacity, making it unsuitable
for real-world networks. Singh et al. [35] proposed an
algorithm based on optimization that minimizes the total
average latency. This study also concluded that
optimization-based solution shows better performance
when compared to solutions based on clustering. When it
comes to capacitated CPP, the load of controller is taken
into account. Yao et al. [36] suggest dynamic scheduling
techniques for managing controllers that seek to balance

Int. J. Advanced Networking and Applications
Volume: 13 Issue: 04 Pages: 5016-5023(2022) ISSN: 0975-0290

5018

the loads based on varying flows. [33] also considers the
load distribution and communication time for the
controllers when mapping the control plane., To balance
the load of the controllers, Liao et al. [34] proposed to
partition the whole SDN into smaller clusters based on the
density of nodes and with each cluster having one
controller.

 In [27], failure tolerance is taken into account when
positioning controllers in the network. This study found
that while one controller is sufficient in terms of latency,
further controllers are needed to satisfy reliability
requirements. In addition, inter-controller latency,
balancing load of the controllers, and the trade-off
between failure tolerance and latency were also considered
in the study. Multiple algorithms for reliability-aware
controller positioning were proposed by Hu et al. [32].
Cheng et al. [31] considered QoS parameters for the
network when devising solution for CPP. In this study the
loads of the switches have been an influential parameter in
computing positions for the controllers in the network.
Sallahi et al. [13] suggest a mathematical model for
optimum controller positioning that takes into account
installation costs, controller loads, and route setup latency.

 From the studies mentioned above, the following
determinants found for consideration when designing
solution for CPP.
• Latency: The amount of time required for packet
transfer between nodes in the network. This includes
switch to switch, controller to switch, and controller to
controller latency. the lion's share of the previous research
has attempted to solve the CPP issue by minimizing
switch-to-controller latency while ignoring inter-controller
latency and network complete latency. However, [29]
proposed a degree-based clustering method that
considered the inter-controller latency.
• Load balance: Switches need to manage a limited
number of outgoing and incoming requests (receiving
packets or sending packets). The packets can be dropped if
the switch is overloaded. As a result, packet loss can
reduce the SDN performance.
• Inter-controller communication: If a large number of
controllers are needed to handle a network, the inter-
controller communication complexity would rise, but the
network's overall efficiency would improve.
• Capacity of the controller: Because of scarce resources
such as memory and cpu, an SDN controller can only
manage a certain number of switches.

3. METHODOLOGY

Several methods to solve the CPP have been introduced in
recent years, some of which focus on optimizing a single
constraint such as latency or efficiency, while others use a
compound metric to solve two or more constraints. Two
innovative solutions to CPP have been chosen for analysis
and implementation. Then a novel algorithm is proposed
based on these two-reference algorithms, combining some
of its methods to maximize the performance metrics.

3.1 Degree-based Balanced Clustering (DBC)

[29] proposed this algorithm that minimizes the flow-setup
latency, route synchronization latency and also optimize
the loads of the controllers. Here flow setup latency is the
new path setup delay that occurred when a packet is
received by a switch for which no corresponding path
exists. Route synchronization involves delay in updating
the routes in network. This algorithm divides the whole
SDN into several smaller clusters and selects one
controller for each cluster. Switches in a cluster are
selected based on their connection configurations. Mostly
connected and nearer (minimum intra-cluster distance)
switches remain in the same cluster. However, for the load
balance, this algorithm tends to assign equal number of
switches in each cluster. Then a controller is selected in
the cluster based on inter-controller and intra-cluster
connection and the distances of these connections. As one
goal of this algorithm is to minimize the intra-cluster
distances in clusters, it would select controllers with
higher degrees of connections. However, in practical,
nodes with higher degrees of connections incline to remain
in the same locality of the network. As a result, most
controllers may remain in the dense part of the network. It
can result in misdistribution of the clusters. To solve this
problem, it uses a threshold value Td, which maintains an
optimum distance from each cluster heads. This algorithm
firstly selects K number of cluster heads with higher
degree and maintaining the threshold distance. Then to
form cluster, each cluster head expands its boundary,
initially from one hop count then increasing the number of
hope count until the total nodes in a cluster exceeds the
number |S|/K. Then in each cluster, it selects a controller
from all nodes in that cluster such that it minimizes the
intra-cluster and inter-controller latency. This algorithm
returns k number of clusters and controllers from a given
network (switches and connections). First it selects k
number of cluster heads based on the degree and edge
distances. If it cannot select k cluster heads in this way, the
remaining cluster heads are filled by the nodes with higher
degrees. As there are k number of cluster heads, all the
switches are assigned to one of these clusters. Then it
selects one controller based on the edge distances.
Therefore, this algorithm correctly gives output of k
number of clusters. Here all the for loops iterate through
each switch. The only while loop has a condition “limit <
(|S|=k)”. The value of limit is guaranteed to be increased.
Therefore, this algorithm has nothing to be stuck into, this
has to terminate. This algorithm has a for loop with
another nested for loop. All the loop statement in this
algorithm can iterate maximum N times (number of
nodes). Therefore, a for loop with another nested for loop
will iterate at most NxN number of times. Therefore, the
time complexity is: O(N2). The maximum length of any
data structure used here is to store the corresponding value
for all the switches. As there are N number of switches,
the space complexity is: O(N2).

Int. J. Advanced Networking and Applications
Volume: 13 Issue: 04 Pages: 5016-5023(2022) ISSN: 0975-0290

5019

3.2 QoS-Guaranteed Incremental Greedy Algorithm

(QGIG)

[31] Proposed this algorithm that takes into account the
QoS and optimize the loads of the controllers. Here the
algorithm finds the required minimum number of
controllers and their placement based on the response time
of the controllers so that the SDN is optimized for the
QoS. The algorithm uses a heuristic algorithm named as
incremental greedy algorithm that iteratively select
controller candidates that can serve maximum number of
switches until all switches are assigned to a controller.
One unique idea made this solution novel that, this
algorithm considers the requests and loads from the
switches to determine the clusters. For every node in the
network, this algorithm computes the clusters considering
the node as a controller. It keeps adding the closest nodes
in the cluster until it reaches the maximum load. In every
iteration, the cluster with maximum number of switches is
selected. Then it does the same in the further iterations
until every node is assigned to a controller. Here, S
denotes number of switches, L denotes the links, δ denotes
response time bound, Xi,j denotes ith switch that is served
by the jth controller, R represents the remaining switches,
C represents set of controller candidate sites and Sj
represents the set of switch that are served by jth controller.
This algorithm returns optimum number of clusters and
controllers from a given network (switches and
connections). First it finds closest set of switches within
maximum load limit for every node. Then it keeps only
one cluster with maximum nodes. It continues until all the
nodes are assign to a cluster. It will terminate when there
is no switch that is not assigned to any of the clusters. If
there are N numbers of switches, there are three nested
loops, and each have potential to iterate N times.
Therefore, the time complexity is O(N3). The maximum
length of any data structure used here is to store the
corresponding value for all the switches. As there are N
number of switches, the space complexity is: O(N).

3.3 Proposed QoS-Guaranteed Degree-based Balanced

Clustering

Degree based Balanced Clustering is a novel solution that
focus on reducing the intra-cluster and inter-cluster
latency. The controllers are selected based on the degree
of connections. Switches with higher degree have more
potential to be selected as controller. However, this
algorithm allows more switches in the cluster in the dense
area. As a result, controllers in the dense area may
encounter more loads than capacity and controllers in
sparse area may encounter less loads than usual. On the
other hand, Incremental Greedy Algorithm focuses on the
load distribution of the controllers. This algorithm
computes cluster combination for every unserved switch in
every iteration. This raises the complexity for the
algorithm to install and maintain large scale SDN. Also,
for selecting controllers, this algorithm considers the
maximum number of switches that can be served by any
controller with cumulative load remain in the limit of
maximum load. Therefore, intra-cluster and inter-cluster
latencies for the controllers are not taken into account.

Addressing the gap between two novel algorithms, a new
algorithm is proposed that ensures the QoS of the SDN by
maintaining load balance among controllers and at the
same time the algorithm considers clusters and controllers
that minimize the intra-cluster and inter-cluster latencies.
We assume the network to be a bi-directional graph G =
(S, L), with the nodes S representing the switches and the
edges L representing the connections between them.
According to the demands, the edges might be weighted or
unweighted. We divide the graph G into sub-networks,
each of which has a disjoint collection of switches. There
can't be a common switch between two sub-networks, thus
all of the network's switches must be divided into sub-
networks, each with its own controller. Our proposed
algorithm splits the network into n-clusters and allocates a
switch to each cluster as a controller. The clustering
method aims for equal load on controllers and the shortest
possible intra-cluster distances between nodes. This
technique uses more clusters in the denser portion to
distribute loads evenly across the controllers. To reduce
the latency in a cluster, the node with the highest
connectivity to the other switches in the cluster is chosen
as the controller. This method initially chooses n-nodes as
cluster heads. Cluster heads are chosen from nodes with a
greater degree of connection. However, in a real-world
scenario, nodes with greater degrees are discovered in the
same network location. Therefore, a certain spacing
between the cluster heads is required, we defined as
ThrDis. The average degree AvgDegree can be calculated
as (2x Links)/ Switches as each link increases the degree
of two switches by one. Limit holds the maximum allowed
number of switches in clusters. initially it is made up of
the cluster head and its immediate neighbours which is 1 +
AvgDegree. We termed the switches on the cluster's
outskirts as Boundary. Limit is increased by Boundary for
each ThrDis increment. The limit is raised until the
number of switches per cluster is fewer than the average.
The switches are ordered by degree from greatest to
smallest so that the cluster head may be chosen from the
nodes with the highest degree. Following the selection of
the initial cluster head with the highest degree, further
cluster heads with higher degrees and a distance of at least
ThrDis from the other cluster heads are chosen. However,
higher-degree nodes prefer to stay in the same or close
vicinity of the network. As a result, ThrDis should be
modified for the network's dense and sparse parts. We
used ThrDis to multiply the ratio of the maximum degree
to the degree of current switch, such that ThrDis is lower
in dense areas and higher in sparse areas. If n clusters
cannot be chosen in this fashion, this approach simply
adds the nodes with higher degrees while ignoring ThrDis
to fill the n-clusters.

Algorithm 1: QoS Guaranteed Degree-based

Balanced Clustering

1: procedure QGBC
2: input: n, Switches, Links

3: Initialize AvgDegree ← (2x Links) / Switches

4: Initialize Boundary ← AvgDegree

5: Initialize Limit ← 1 + AvgDegree

Int. J. Advanced Networking and Applications
Volume: 13 Issue: 04 Pages: 5016-5023(2022) ISSN: 0975-0290

5020

6: Initialize ThrDis ← 0

7: Initialize SortedSwitches ← Switches sorted by
degree (largest to smallest)

8: Initialize ClstrHeads ← Ø

9: Initialize MaxLoad ← Σ Loadi / Switches

10: while Limit < (Switches / n) do

11: Boundary ← Boundary x (AvgDegree-1)

12: Limit ← Limit + Boundary

13: ThrDis ← ThrDis + 1
14: for each switch s in Switches do

15: AdjustedThrDis ← ThrDis x (maximum
degree / degree of s)

16: if ClstrHeads = Ø then
17: ClstrHeads.add(s)
18: else if ClstrHeads.size = n then break
19: else if MinDistance(s, ClstrHeads) <

AdjustedThrDis then continue
20: else ClstrHeads.add(s)
21: if ClstrHeads.size < n then
22: while ClstrHeads.size < n do
23: for each switch Si in SortedSwitches do
24: if Si not in ClstrHeads then
25: ClstrHeads.add(Si)
26: break
27: Initialize Clusters C1, C2, …, Cn as Ø
28: Initialize Cluster Loads L1, L2, …, Ln as 0
29: for each i in (1 to n) do
30: Ci.add(ClstrHeadsi)

31: Li ← Li + LoadOf(ClstrHeadsi)

32: Initialize Controllers ← Ø
33: for each s in Switches do

34: SortedClusters ← ClstrHeads sorted by
distance from s (smallest to largest)

35: for each ClstrHead in SortedClusters do

36: C ← corresponding Cluster for ClstrHead
37: if (LC + Load of s) < MaxLoad then
38: C.add(s)
39: LC = LC + LS
40: break
41: for each clusters Ci do
42: for each s in Ci do
43: Compute Ds = Σ Distances from nodes in Ci
44: Controllers.add(switch with min(Ds))

 45: Output: Controllers

Initially cluster heads are the first element in every cluster.
To populate these clusters, this method starts with each
switch and sort the cluster heads by the distance in
ascending order. Each switch is added to the cluster with
minimum distance and the clusters’ load is increased by
the switch load. If the cluster is full, or if adding the load
of the current switch to the load of the cluster exceeds the
maximum permitted load, the switch moves to the next
clusters in the sorted list and initiate likewise procedure
until it is added to any cluster. After finishing populating
these clusters, in each cluster for each switch the total
distance from all the other nodes in the same cluster is
computed and switch with the minimum distance is
selected as the controller in a cluster.

4. RESULT AND DISCUSSION

The proposed algorithm is implemented along with the
other two reference algorithm: DBC in [29] and QGIG in
[31]. All these three algorithms were provided with 200
switches with exact same connections and the distances of
these connections were identical. For simulation, each of
the 200 switches were associated with random loads. In
order to compare these algorithms in terms of inter-
controller distance, intra-cluster distance, node distribution
among clusters and comparative load distribution, we
specified 8 clusters for 200 switches.

 The proposed algorithm, DBC and QGIG were very
similar in the range of numbers of switches for individual
clusters. 30 was the highest number of switches in any
cluster for QGIG. For DBC and the proposed algorithm,
the highest number of switches in any cluster is 25. QGIG
also has the lowest number of switches in any cluster,
which is 16. The lowest number of switches in any cluster
for DBC and proposed algorithm are 19 and 22
respectively. The range of numbers of switches for
individual clusters is minimum for the proposed algorithm.
Therefore, the proposed algorithm provides slightly
uniform distribution of switches among clusters. Fig 2
shows the detail distribution of switches among clusters.

 Intra-cluster distance is the sum of distances from each
switch to every other switch in a cluster. If the intra-cluster
distance is less, then switches can communicate among
themselves with minimum time and cluster become cost-
efficient. Among all these three algorithms, though
proposed algorithm shows the lowest 36.25 total intra-
cluster distance, this is very similar to the DBC algorithm
which shows 36.5 total intra-cluster distance. However,
QGIG shows highest 41 total intra-cluster distance.
Therefore, the proposed algorithm and DBC exhibit better
results in terms of intra-cluster distance. Fig 3 shows the
distribution of intra-cluster distance for the proposed
algorithm as well as other two reference algorithm.

Fig 2: Distribution of nodes among clusters

Int. J. Advanced Networking and Applications
Volume: 13 Issue: 04 Pages: 5016-5023(2022) ISSN: 0975-0290

5021

Fig 3: Distribution of intra-cluster distance

Inter-controller distance is the sum of distances from each
controller to every other controller. The lesser the value
for inter-controller distance the easier for the clusters to
communicate. Thus, lesser value for inter-controller
distance is appreciated. The proposed algorithm and DBC
show similar inter-controller distances. However, QGIG
algorithm shows bigger values for inter-cluster distance.
Fig 4 shows the cluster-wise inter-controller distances for
all the three algorithms.

 For QoS of the SDN, load balance is one of the crucial
performance metrics. Uniform distribution of loads among
clusters makes the SDN more balanced and QoS efficient.
In this simulation every switch was associated with a load.
For comparison, we calculate the sum of loads in every
cluster. Then we calculate the average load for the clusters
in each of the three algorithms. Lasty, we calculate the
difference between average load and cluster’s total load.
Fig 5 shows the difference between average loads and total
load for every cluster in each algorithm. The results
indicate impressive performance from the proposed
algorithm, having most uniform hence most balanced
distribution of loads among clusters. For the difference
between average load and cluster’s total load, the proposed
algorithm has range of values from 1.375 to 24.375. In this
case the range for DBC is from 40.25 to 147.75 and for
QGIG is from 28.125 to 340.875. It is evident that the
proposed algorithm outperformed other two reference
algorithms in terms of load balancing.

Fig 4: Cluster-wise inter-controller distances.

Fig 5: Differences between average load and

cluster’s total load.

 The proposed algorithm returns k number of clusters
and controllers from a given network (switches and
connections). First it selects k number of cluster heads
based on the degree and edge distances. If it cannot select
k cluster heads in this way, the remaining cluster heads are
filled by the nodes with higher degrees. As there are k
number of cluster heads, all the switches are assigned to
one of these clusters based on edge distances and cluster
loads. Then the controller is selected from each cluster
based on intra-cluster and interclassed distances.
Therefore, this algorithm correctly gives output of k
number of clusters. Here all the for loops iterate through
each switch. The only while loop has a condition “limit <
(|S|=k)”. The value of limit is guaranteed to be increased.
Therefore, this algorithm has nothing to be stuck into, this
has to terminate. This algorithm has two for loops with
another nested for loop inside. All the loop statement in
this algorithm can iterate maximum N times (number of
nodes). A for loop with another nested for loop will iterate
at most NxN number of times. Therefore, the time
complexity is O(N2). The maximum length of any data
structure used here is tos store the corresponding value for
all the switches. As there are N number of switches, the
space complexity is O(N2). DBC has similar time and
space complexity. However, QGIG exhibits O(N3) time
complexity. So, in terms of complexity analysis the
proposed algorithm and DBC show better results than
QGIG.

5. CONCLUSION
Decision makers face various obstacles while designing
the control plane of an SDN-based network. Even though
the needed number of components in the abstracted
control plane is determined, the positions of those
components have a significant impact on the system's
performance. This paper looks at the controller placement
problem in terms of a variety of significant metrics,
including intra-cluster and inter-cluster latencies, load
distribution, and quality of service (QoS). Previously the
methods that addressed controller placement problem,
either focused on latencies and load distribution, or quality
of service (QoS). Our proposed algorithm: QoS

Int. J. Advanced Networking and Applications
Volume: 13 Issue: 04 Pages: 5016-5023(2022) ISSN: 0975-0290

5022

Guaranteed Balanced Clustering focuses on all the
metrics, and the proposed approach outperforms the other
two reference algorithm discussed in this study, by a little
margin, according to simulation results.

REFERENCES

[1]. Diego Kreutz, Fernando M.V. Ramos, and Paulo
Verissimo. 2013. Towards secure and dependable
software-defined networks. In Proceedings of the
second ACM SIGCOMM workshop on Hot
topics in software defined networking (HotSDN
'13). Association for Computing Machinery, New
York, NY, USA, 55–60.

[2]. Cabaj, Krzysztof, et al. "SDN Architecture
Impact on Network Security." FedCSIS (Position
Papers). 2014.

[3]. Tavakoli, Arsalan. Exploring a
centralized/distributed hybrid routing protocol for
low power wireless networks and large-scale
datacenters. University of California, Berkeley,
2009.

[4]. Hu, J., Lin, C., Li, X., & Huang, J. (2014).
Scalability of control planes for Software defined
networks: Modeling and evaluation. 2014 IEEE
22nd International Symposium of Quality of
Service (IWQoS).
doi:10.1109/iwqos.2014.6914314

[5]. Advait Dixit, Fang Hao, Sarit Mukherjee, T.V.
Lakshman, and Ramana Kompella. 2013.
Towards an elastic distributed SDN controller.
SIGCOMM Comput. Commun. Rev. 43, 4
(October 2013), 7–12.
DOI:https://doi.org/10.1145/2534169.2491193

[6]. Yeganeh, Soheil Hassas, Amin Tootoonchian,
and Yashar Ganjali. "On scalability of software-
defined networking." IEEE Communications
Magazine 51.2 (2013): 136-141.

[7]. A. S. -. Tam, Kang Xi and H. J. Chao, "Use of
devolved controllers in data center networks,"
2011 IEEE Conference on Computer
Communications Workshops (INFOCOM
WKSHPS), 2011, pp. 596-601, doi:
10.1109/INFCOMW.2011.5928883.

[8]. M. Al-Fares, S. Radhakrishnan, B. Raghavan, N.
Huang, and A. Vahdat, “Hedera: Dynamic flow
scheduling for data center networks.” in Nsdi,
vol. 10, 2010, pp. 19–19.

[9]. Aglan, M. A., Sobh, M. A., & Bahaa-Eldin, A.
M. (2018). Reliability and Scalability in SDN
Networks. 2018 13th International Conference on
Computer Engineering and Systems (ICCES).
doi:10.1109/icces.2018.8639201

[10]. Wang, Guodong, et al. "The controller
placement problem in software defined
networking: A survey." IEEE Network 31.5
(2017): 21-27.

[11]. Heller, B., Sherwood, R., & McKeown, N.
(2012). The controller placement problem.
Proceedings of the First Workshop on Hot Topics

in Software Defined Networks - HotSDN ’12.
doi:10.1145/2342441.2342444

[12]. Singh, A. K., & Srivastava, S. (2018). A survey
and classification of controller placement
problem in SDN. International Journal of
Network Management, 28(3), e2018.
doi:10.1002/nem.2018

[13]. Sallahi, Afrim and M. St-Hilaire. “Optimal
Model for the Controller Placement Problem in
Software Defined Networks.” IEEE
Communications Letters 19 (2015): 30-33.

[14]. Li, T., Gu, Z., Lin, X., Li, S., & Tan, Q. (2018).
Approximation Algorithms for Controller
Placement Problems in Software Defined
Networks. 2018 IEEE Third International
Conference on Data Science in Cyberspace
(DSC). doi:10.1109/dsc.2018.00043

[15]. Sood, K., Yu, S., & Xiang, Y. (2016). Software-
Defined Wireless Networking Opportunities and
Challenges for Internet-of-Things: A Review.
IEEE Internet of Things Journal, 3(4), 453–463.
doi:10.1109/jiot.2015.2480421

[16]. Zhang, Y., Cui, L., Wang, W., & Zhang, Y.
(2018). A survey on software defined networking
with multiple controllers. Journal of Network and
Computer Applications, 103, 101–118.
doi:10.1016/j.jnca.2017.11.015

[17]. J. H. Cox, J. Chung, S. Donovan, J. Ivey, R. J.
Clark, G. Riley, and H. L. Owen, “Advancing
software-defined networks: A survey,” IEEE
Access, vol. 5, pp. 25 487–25 526, 2017.

[18]. K. Sudheera, M. Ma, and P. Chong, “Controller
placement optimization in hierarchical distributed
software defined vehicular networks,” vol. 135,
pp. 225–239, Apr 2018.

[19]. L. Yao, P. Hong, W. Zhang, J. Li, and D. Ni,
“Controller placement and flow based dynamic
management problem towards sdn,” in
Communication Workshop (ICCW), 2015 IEEE
International Conference on. London, UK: IEEE,
Jun 2015, pp. 363–368.

[20]. Bari, M. F., Roy, A. R., Chowdhury, S. R.,
Zhang, Q., Zhani, M. F., Ahmed, R., & Boutaba,
R. (2013). Dynamic Controller Provisioning in
Software Defined Networks. Proceedings of the
9th International Conference on Network and
Service Management (CNSM 2013).
doi:10.1109/cnsm.2013.6727805

[21]. Zhao, Z., & Wu, B. (2017). Scalable SDN
architecture with distributed placement of
controllers for WAN. Concurrency and
Computation: Practice and Experience, 29(16),
e4030. doi:10.1002/cpe.4030

[22]. Ying Zhang, Beheshti, N., & Tatipamula, M.
(2011). On Resilience of Split-Architecture
Networks. 2011 IEEE Global
Telecommunications Conference - GLOBECOM
2011. doi:10.1109/glocom.2011.6134496

[23]. Y. Hu, W. Wendong, X. Gong, X. Que, and C.
Shiduan, “Reliabilityaware controller placement

Int. J. Advanced Networking and Applications
Volume: 13 Issue: 04 Pages: 5016-5023(2022) ISSN: 0975-0290

5023

for software-defined networks,” in Integrated
Network Management (IM 2013), 2013
IFIP/IEEE International Symposium on. Ghent,
Belgium: IEEE, May 2013, pp. 672–675.

[24]. Lange, S., Gebert, S., Zinner, T., Tran-Gia, P.,
Hock, D., Jarschel, M., & Hoffmann, M. (2015).
Heuristic Approaches to the Controller Placement
Problem in Large Scale SDN Networks. IEEE
Transactions on Network and Service
Management, 12(1), 4–17.
doi:10.1109/tnsm.2015.2402432

[25]. Wang, G., Zhao, Y., Huang, J., Duan, Q., & Li,
J. (2016). A K-means-based network partition
algorithm for controller placement in software
defined network. 2016 IEEE International
Conference on Communications (ICC).
doi:10.1109/icc.2016.7511441

[26]. Liao, J., Sun, H., Wang, J., Qi, Q., Li, K., & Li,
T. (2017). Density cluster based approach for
controller placement problem in large-scale
software defined networkings. Computer
Networks, 112, 24–35.
doi:10.1016/j.comnet.2016.10.014

[27]. Hock, D., Gebert, S., Hartmann, M., Zinner, T.,
& Tran-Gia, P. (2014). POCO-framework for
Pareto-optimal resilient controller placement in
SDN-based core networks. 2014 IEEE Network
Operations and Management Symposium
(NOMS).

[28]. Aoki, H., & Shinomiya, N. (2016, February).
Controller placement problem to enhance
performance in multi-domain SDN networks. In
Proc. ICN (p. 120).

[29]. Aziz, T. I., Protik, S., Hossen, M. S.,
Choudhury, S., & Alam, M. M. (2019, April).
Degree-based Balanced Clustering for Large-
Scale Software Defined Networks. In 2019 IEEE
Wireless Communications and Networking
Conference (WCNC) (pp. 1-6). IEEE.

[30]. Bo, H., Youke, W., Chuan'an, W., & Ying, W.
(2016, October). The controller placement
problem for software-defined networks. In 2016
2nd IEEE International Conference on Computer
and Communications (ICCC) (pp. 2435-2439).
IEEE.

[31]. Cheng, T. Y., Wang, M., & Jia, X. (2015,
December). QoS-guaranteed controller placement
in SDN. In 2015 IEEE Global Communications
Conference (GLOBECOM) (pp. 1-6). IEEE.

[32]. Hu, Y. N., Wang, W. D., Gong, X. Y., Que, X.
R., & Cheng, S. D. (2012). On the placement of
controllers in software-defined networks. The
Journal of China Universities of Posts and
Telecommunications, 19, 92-171.

[33]. Jimenez, Y., Cervello-Pastor, C., & Garcia, A. J.
(2014, June). On the controller placement for
designing a distributed SDN control layer. In
2014 IFIP Networking Conference (pp. 1-9).
IEEE.

[34]. Liao, J., Sun, H., Wang, J., Qi, Q., Li, K., & Li,
T. (2017). Density cluster based approach for
controller placement problem in large-scale
software defined networkings. Computer
Networks, 112, 24-35.

[35]. Singh, A. K., Maurya, S., & Srivastava, S.
(2020). Varna-based optimization: a novel
method for capacitated controller placement
problem in SDN. Frontiers of Computer Science,
14(3), 1-26.

[36]. Yao, G., Bi, J., Li, Y., & Guo, L. (2014). On the
capacitated controller placement problem in
software defined networks. IEEE
Communications Letters, 18(8), 1339-1342.

Authors Biography

Moinul Islam Sayed received his Bachelor
of Science in Computer Science and
Engineering from Patuakhali Science and
Technology University, Patuakhali,
Bangladesh. Currently, he is doing as a
faculty member in the Department of
Computer Science and Information

Technology, Patuakhali Science and Technology
University, Patuakhali, Bangladesh. His research
experience includes E-health, Security and Privacy, and
Geographic Information Systems.

Sajal Saha received bachelor’s degree in
computer science & Engineering from
Patuakhali Science and Technology
University (PSTU) and Master of Sciene
in Information Technology from
Jahangirnagar University. Currently he is
working as a faculty member of

Computer Science & Engineering faculty in PSTU. His
research interest includes computer network, machine
learning, and deep learning.

Ibrahim Mohammed Sayem received his
Bachelor of Science in Computer
Science & Engineering from the
University of Chittagong in 2018. He is
currently a Masters’s student at the
Department of Computer Science of the
University of Western Ontario. His

research interest lies in the areas of network security,
Machine Learning, and Intelligent networks.

Sarna Majumder received bachelor’s
degree in computer science &
Engineering from Patuakhali Science and
Technology University (PSTU) and now
doing her Master of Science in Electrical
and Electronics Engineering. Currently
she is working as a faculty member of

Computer Science & Engineering faculty in PSTU. Her
research interest includes data mining, sentiment analysis,
machine learning, and deep learning.

	1. introduction
	2. RELATED LITERATURE
	3. METHODOLOGY
	4. Result and Discussion
	5. Conclusion
	References

