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R E S E A R C H  A R T I C L E

BACKGROUND: The interaction of carbamazepine 
(CBZ) and acetaminophen (APAP) could result 
in hepatic failure and mortality. This study was 

conducted to analyzed the potential of rosemary ethanol 
extract (REE) or coenzyme Q10 (CoQ10) to alleviate the 
interactions between CBZ and APAP.

METHODS: Fourty-eight adult male rats were treated 
differently based on the assigned groups. Oxidative stress 
parameters, including malondialdehyde (MDA), glutathione 
(GSH), glutathione peroxidase (GPx), superoxide dismutase 
(SOD), catalase, and glutathione S-transferase (GST), 
and the expression levels of CYP3A4, CYP2E1, IL-6, 
TNF-α, and IL-1B in the liver were estimated. In addition, 
the histopathology of liver was examined and the plasma 
clearance rate of CBZ and APAP was estimated.

RESULTS: Combination of CBZ and APAP significantly 
elevated alanine aminotransferase (ALT) activity and hepatic 
MDA, and reduced the activities of GPx, GST, and GSH 
level in liver. The gene expression of CYP3A4 and CYP2E1 

was upregulated by CBZ and CoQ10, respectively. The 
expression of IL-6 has decreased in the groups treated with 
CBZ alone or in combination with APAP. TNF-α expression 
was significantly downregulated in the groups treated with 
CBZ, APAP, REE, CoQ10, or combination CBZ and APAP. 
The liver from CBZ and APAP combination group showed 
centrolobular degeneration and necrosis. REE and CoQ10 

were able to alleviate most of these detrimental effects. The 
combined administration of CBZ and APAP extended the 
plasma clearance time of APAP and CBZ from 6 to 24 and 
from 9 to 24 hours, respectively. 

CONCLUSION: REE and CoQ10 alleviated the detrimental 
effects of the combination of CBZ and APAP through 
enhancing the cellular antioxidant milieu, induction of 
metabolizing enzymes, reduction of the plasma half-life of 
APAP and CBZ preventing their accumulation and potential 
interaction. 
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Abstract

Introduction

Drug-drug interaction (DDI) results when the effects of 
one of the drugs are altered by another. DDIs are usually 
classified into pharmacodynamic and pharmacokinetic 
interactions. In a previous study, about 1223 patient out of 

18,820 were hospitalized due to adverse drug effects and 
one sixth of this number was attributed to DDI.(1) 
	 Acetaminophen or acetyl-para-amino-phenol (APAP) 
is considered one of the most used analgesics. Hepatotoxicity 
from APAP overdose is the most common cause of drugs-
induced liver injuries in the USA and remains as a global 
issue.(2) APAP is primarily metabolized in the liver by the 



350

The Indonesian Biomedical Journal, Vol.14, No.4, December 2022, p.329-441 Print ISSN: 2085-3297, Online ISSN: 2355-9179

sulphation and glucuronidation pathways and about 5% is 
metabolized by oxidation catalyzed by cytochrome P450s 
(CYP2E1, CYP3A4, and CYP1A2) forming N-acetyl 
p-benzoquinoneimine (NAPQI) toxic metabolite.(3) 
Administration of APAP was associated with glutathione 
(GSH) depletion, catalase activity reduction, and increase 
in lipid peroxidation and malondialdehyde (MDA).(4)
	 Carbamazepine (CBZ), one of the most administered 
drugs used for treatment of seizures, is metabolized primarily 
in the liver by CYP450 3A4.(5) Several drugs inhibit 
the metabolism of CBZ catalyzed by cytochrome P450, 
sometimes resulting in CBZ intoxication. Administration 
of CBZ for a long time causes an imbalance between 
oxidant and antioxidant systems, total protein and albumin 
reduction, and hepatotoxicity marked by elevations in the 
aminotransferases and total bilirubin.(6) CBZ induced 
oxidative stress, increased lipid peroxidation and reactive 
oxygen species (ROS) formation, an elevation in oxidized 
GSH levels, and a decrease in cellular reduced GSH.(7)
Using APAP together with CBZ results in serious side 
effects and hepatotoxicity. In 2009, a 34-year-old man on 
CBZ treatment was reported to develop acute hepatic and 
renal toxicity after treated with a therapeutic dose of APAP.
(8) Afterwards, no other reports were found on pubmed.gov 
regarding this problem. Hence it is necessary to investigate 
the possible interactions between CBZ and APAP.  
	 Rosemary is known for its properties as antioxidant, 
mainly due to the presence of several phenolic compounds. 
The hydroalcoholic extract of rosemary leaves successfully 
alleviated  the  hepatotoxicity  induced  by  APAP.(9)  Carnosic 
acid, a major component in rosemary ethanol extract, has 
been reported to induce drug-metabolizing enzymes such as 
CYP3A4, CYP2B6, and UGT1A1, in  human  hepatocytes.
(10)  Coenzyme  Q10  (CoQ10, or ubiquinone) is formed in the  
body  especially  under  stress but in insufficient quantities. 
CoQ10 administration significantly attenuated the increase 
of nitrative and oxidative stress, and inflammation and it 
acts as a powerful antioxidant.(11) Therefore, this study 
was conducted to examine the potential of hepatoprotective 
agents such as rosemary or CoQ10 to prevent interactions 
between these  drugs,  or  to  alleviate  the  expected  side  
effects.

Methods

dried in air and powdered using a blender. The obtained 
powder as much as 50 g was extracted with 1000 mL 
ethanol/H₂O (7:3; v/v) at room temperature with stirring, 
followed by filtration. The filtered extract was concentrated 
with rotary evaporator under vacuum at 40oC, giving 19.0 g 
of ethanolic extract of R. officinalis leaves. 

Experimental Design
Adult male Sprague-Dawely rats weighing 230±10 g 
were obtained from the animal house of Egyptian Drug 
Authority (EDA), Cairo, Egypt, and were kept at standard 
conditions (22±1oC and 12 h natural light/dark cycle). They 
were supplied with standard laboratory chow and water ad 
libitum. The rats were then randomly divided into 8 groups 
(n=6, each) and were treated orally as follow: 1) Control 
group received a daily dose of 5% tween 80 (ADWIC, 
Cairo, Egypt) in saline orally for 14 days; 2) CBZ group 
received a daily dose of 108 mg/kg CBZ for 14 days (12); 
3) APAP group received a daily dose of 360 mg/kg APAP 
for 10 days (13); 4) CBZ+APAP group received CBZ daily 
for 14 days and APAP for 10 days from day-5 to day-14; 5) 
REE group received 100 mg/kg REE for 10 days from day-5 
to day-14 (9); 6) CoQ10 group received 6 mg/kg CoQ10 for 
10 days from day-5 to day-14 (14); 7) CBZ+APAP+REE 
group received CBZ daily for 14 days, then starting from 
day-5 to day-14, animals were administered with APAP and 
REE with an hour interval; 8) CBZ+APAP+CoQ10 group 
received  CBZ  daily  for  14  days,  then  starting  from 
day-5  to  day-14,  animals  were  administered  with  APAP 
and CoQ10 with an hour interval. The animals were treated 
in according to the guidelines of laboratory animal care of 
the National Institute of Health (No. 86-23, revised 1985). 
The study design was approved by the Research Ethics 
Committee of Faculty of Science, Ain Shams University 
(No. 11A/10/16).

Samples Collection
Animals were sacrificed and blood samples were collected 
in non-heparinized tubes and allowed to clot at room 
temperature. Then, the blood was centrifuged at 5000 rpm 
for 10 min. Serum aliquots were stored at -80oC for further 
biochemical analyses. The liver was divided into three parts; 
the first portion was fixed in 10% formalin for histological 
examination, the second part was stored at -80°C for 
estimation of oxidative stress parameters, and the third part 
was quickly immersed in polymerase chain reaction (PCR) 
lysis buffer for gene expression of cytochrome P450-3A4 
(CYP3A4), P450-2E1 (CYP2E1), tumor necrosis factor 
alpha (TNF-α), interleukins (IL-6 and IL-1B).

Preparation of Rosemary Ethanolic Extract (REE)
Rosmarinus officinalis L. (Lamiaceae) was collected from 
The Orman Botanical Garden, Giza, Egypt. Leaves were 
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Measurement of Body Weight Changes and Relative 
Liver Weight
Body weights were measured at the beginning and at the end 
of the experiment, difference in weight and the percentage 
of weight change were then calculated. Meanwhile, the 
liver weights were measured at the end of the experiment to 
calculate the relative liver weight. 

Biochemical Analysis
Serum alanine aminotransferase (ALT) was measured using 
Spectrum kit from The Egyptian Company for Biotechnology 
(Cairo, Egypt) according to standard instruction. MDA was 
formed from the breakdown of polyunsaturated fatty acids 
and serves as an index for lipid peroxidation. MDA reacts 
with thiobarbituric acid in acidic medium to give a pink 
color that was measured at 520 nm and expressed as nmol/
mg protein. The level of MDA was measured as described 
previously.(15) The presence of superoxide dismutase 
(SOD) in the reaction medium would inhibit the pyrogallol 
autoxidation at alkaline pH 9.5 by scavenging the produced 
O2

─ with a resultant increase in the absorbance at 420 nm. 
The results were expressed as unit per milligram protein 
(Unit/mg protein). SOD activity was measured based on 
previous study.(16) The decomposition of H2O2 catalyzed 
by catalase using ethanol and Triton X-100 and the change 
in absorbance at 240 was recorded. Hence the measurement 
of catalase activity was conducted as described in previous 
literature.(17) 
	 The measurement of the glutathione peroxidase 
(GPx) activity was done according to previous study.
(18) The amount of GSH consumed per unit time was a 
measure of the catalytic activity of GPx and expressed as 

mg/min/mg protein. GSH level was determined using the 
method described elsewhere.(19) Meanwhile, the activity 
of glutathione S-transferase (GST) was measured following 
the instruction in previous literature (20), which measured 
the conjugation of 1-chloro-2,3-dinitrobenzene (CDNB) 
with GSH and increase in absorbance at 340 nm. The rate 
of the increase was directly proportional to GST activity 
in the sample. The method was depend on the reduction of 
Elman’s reagent after precipitation of protein thiols with a 
trichloroacetic acid, and the absorbance was measured at 
412 nm. 

cDNA Synthesis
The total extracted RNA (0.5-2 μg) from tissue was used 
for cDNA conversion using high-capacity cDNA reverse 
transcription kit (Cat. #K1621, Fermentas, Waltham, 
MA, USA). For the synthesis of cDNA from RNA, 
murine leukemia virus reverse transcriptase was used. 
Meanwhile, to  inhibit  the  RNase  activity,  the human  
placental ribonuclease inhibitor was used. Deoxynucleotide 
triphosphate were used for extension of primers, random 
hexamers: primers for reverse transcription of RNA 
(Stratagene, San Diego, CA, USA), diethyl pyrocarbonate 
(DEPC)-treated water, and  thermal  cycler  (Biometra,  
Jena,  Germany)  were used.

Real-time qPCR Analysis
The real-time qPCR analysis was done using SYBR Green 
I technology. In the qPCR assay, specific primer sets (Table 
1) were used for CYP3A4, CYP2E1, TNF-α, IL-1B, and IL-6 
expression. GAPDH was used as a housekeeping gene. All 
samples were run in duplicate.

Gene Symbol Primers Sequence GenBank Accession No.

5`-GCTCTTGATGCATGGTTAAAGATTTG-3`

5`-ATCACAGACCTTGCCAACTCCTT-3`

5`-CTGATTGGCTGCGCACCCTGC-3`

5`-GAACAGGTCGGCCAAAGTCAC-3`

5`-GCCTCACCACCTATGCCTTA-3`

5`-CCTGTGGAGGCTCAAAACAT-3`

5`-GCTCTTCTGGCTACCGTCAC-3`

5`-GGAACAGCGGAAAGTACTCG-3`

5`-CCTGCTGTCTGTGGCCC-3`

5`-CTGCCAGTGAGCGGTCC-3`

5`-CCCCTTCATTGACCTCAACTACATGG-3`

5`-GCCTGCTTCACCACCTTCTTGATGTC

IL-1B AB048790

IL-6 AB025230

GAPDH NM_017008.4

CYP3A4 AH005338.2

CYP2E1 AF061442.1

TNF-α AB052685

Table 1. The sequence of primers of the investigated genes.
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Table 2. Effect of CBZ, APAP, REE, and CoQ10 on body weight changes, relative weight of 
liver, and ALT activity.

Body Weight Changes, Relative Liver Weight, and Liver 
Function Results
Most of the treatments did not significantly affect the 
body weight change. The reductions reported after REE 
and CoQ10 did not achieve a statistical significance. 
The last two groups treated with CBZ+APAP+REE and 
CBZ+APAP+CoQ10 showed a significant reduction in the 
body weight change when compared to the group treated 
with CBZ+APAP (Table 2). Although all treatments (except 

	 For each sample, 1 μL for forward primer, 1 μL for 
reverse primer, 12.5 μL for Syber green mix, 5 μL for cDNA 
template, and 5.5 μL for RNAse free water were added. 
The running conditions for RT-PCR were as follows; one 
cycle at 50oC, 40 cycles of denaturation at 95oC for 15 s, 
annealing at 55-60oC for 60 s, followed by extension at 72oC 
for 60 s. The target gene expression was assessed relative to 
the reference gene and the respiratory coefficient (RQ) was 
calculated using the 2–ΔΔ Ct method.

Histopathological Examination 
Samples were taken from the liver and fixed in 10% formal 
saline for 24 h. Samples were washed in isotonic saline then 
dehydrated in serial dilutions of ethanol. Specimens were 
cleared in xylene and embedded in paraffin at 56oC in oven 
for 24 h. Paraffin bee wax tissue blocks were prepared for 
sectioning at 4 µm thickness, deparaffinized and stained by 
hematoxylin & eosin (HE) stain for routine examination by 
the light microscope. 

Determination of CBZ and APAP in Blood 
The CBZ was determined as previously described (21), by 
using a High-Performance Liquid Chromatographic (HPLC) 
system (Dionex, Sunnyvale, CA, USA). For the calibration 
curve, a series of CBZ was prepared in 100 µL plasma (0.5, 
1, 2, 5, 10 and 20 µg/mL), then 100 µL of chlorzoxazone in 
acetonitrile was added to all tubes as an internal standard 
and after deproteinization, vortex-mixed for 30 s, and 
centrifuged for 10 min at 4,500 rpm. Twenty-five µL of the 
clear supernatant was then injected into the HPLC system. 
For the samples, 100 µL of Chlo in acetonitrile were added 
to all tubes.

	 Meanwhile, APAP was determined as previously 
described (22), using HPLC system (Waters, Milford, MA, 
USA). For the calibration curve, a series of APAP (2, 5, 10, 
20, 40, 80 and 100 µg/mL) in 80 µL plasma was prepared, 
then 160 µL of theophylline (100 µg/mL) in 6% perchloric 
acid was added to all tubes as an internal standard and after 
deproteinization, vortex-mixed for 1 min, and centrifuged 
for 15 min at 4,000 rpm. Twenty µL of the clear supernatant 
was then injected into the HPLC system. For the samples, 
160 µL of theophylline in (100 µg/mL) in 6% perchloric 
acid was added to all tubes.

Statistical Analysis
The distribution of data was examined using Kolmogorov-
Smirnov test, and the results were expressed as mean±SEM. 
The statistical analyses were made using One-Way ANOVA 
followed by Tukey-HSD test for multiple comparisons using 
GraphPad InStat version 3.1 (GraphPad, San Diego, CA, 
USA). Differences were considered significant at p<0.05.

Results

Groups Body Weight 
Change (%)

Relative Liver 
Weight (%) ALT (U/L)

Control 11.87±1.39 2.79±0.10 28.0±0.9

CBZ 10.88±1.03 3.78±0.15ᵃ 51.7±2.6ᵃ

APAP 15.02±0.66 3.12±0.10 56.8±3.9ᵃ

REE   8.03±0.66 2.72±0.08 27.2±0.7

CoQ10   7.72±0.72 3.24±0.18 20.5±0.4 

CBZ+APAP 13.66±0.80 3.69±0.15ᵃ 46.2±3.2ᵃ

CBZ+APAP+REE   5.08±0.81ᵇ 3.59±0.16 23.2±1.8ᵇ

CBZ+APAP+CoQ10  -1.52±2.01ᵇ 3.49±0.11 22.2±1.1ᵇ
Data are expressed as mean±SEM (n=6). ap<0.05 compared to control group, bp<0.05 compared to 
CBZ+APAP group.
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REE alone) caused hepatomegaly, the relative weight of 
liver was significantly increased only in the groups treated 
with CBZ and CBZ+APAP compared to the control group 
(Table 2). 
	 The enzymatic activity of ALT significantly increased 
in the groups treated with CBZ and APAP alone or in 
combination compared to the control group indicating 
hepatotoxicity. This elevation in the activity level was 
abolished in the groups treated with CBZ+APAP when 
administered with REE or CoQ10 (Table 2). 

Oxidative Stress Parameters Results
MDA was measured as an indicator of lipid peroxidation. 
CoQ10 significantly decreased the hepatic MDA level, 
while treatment with CBZ+APAP significantly elevated the 
MDA level compared to the control animals. On treating 
CBZ+APAP groups with REE or CoQ10, a significant 
reduction in hepatic MDA was reported compared to the 
CBZ+APAP group. The hepatic SOD activity significantly 
decreased by APAP compared to the control group. The 
catalase activity in liver has not been affected by any 
treatment in the present study. The combined treatment 
with CBZ+APAP resulted in a significant reduction in GPx 
activity in liver compared to the control group. GST was 
the most responsive enzyme. GST activity in liver was 
significantly reduced by CBZ, APAP, and CBZ+APAP 
to varying degrees compared to the control group. When 
animals treated  with  CBZ+APAP  administered  with  REE 
or CoQ10, the reduction in GST activity was aggravated. 
The hepatic GSH content significantly decreased after 
administration of CBZ+APAP. Rats treated with REE 
or CoQ10 along with CBZ+APAP showed a significant 
elevation in GSH level compared to CBZ+APAP group 
(Table 3). 

Groups
MDA 

(nmol/mg 
protein)

GSH 
(mmol/mg 

protein)

GST 
(mmol/min/mg 

protein)

SOD 
(U/mg protein)

Catalase 
(U/mg protein)

GPx 
(mg/min/mg 

protein) 

Control 63.51±3.81 0.14±0.01 390±32 312±28 1.73±0.09 0.13±0.01

CBZ 51.05±6.46 0.15±0.01 297±6ᵃ 334±26 1.87±0.08 0.14±0.01

APAP 69.57±7.11 0.16±0.02 241±16ᵃ 150±10ᵃ 1.98±0.17 0.14±0.01

REE 55.77±7.09 0.12±0.02 331±5 332±  8 1.35±0.04 0.10±0.01

CoQ10 46.37±2.93ᵃ 0.18±0.01 328±14 214±15 1.52±0.02 0.10±0.01

CBZ+APAP 92.98±4.19ᵃ 0.08±0.01a 149±7ᵃ 291±21 1.92±0.14 0.08±0.01ᵃ

CBZ+APAP+REE 36.93±0.70ᵇ 0.15±0.01ᵇ 37±4ᵇ 232±23 1.81±0.08 0.10±0.01

CBZ+APAP+CoQ10 43.37±9.99ᵇ 0.14±0.01ᵇ 40±8ᵇ 276±11 1.62±0.10 0.11±0.01

Table 3. Effect of CBZ, APAP, REE, and CoQ10 on hepatic oxidative stress parameters.

Data are expressed as mean±SEM (n=6). ap<0.05 compared to control group, bp<0.05 compared to CBZ+APAP group. 

Genes Assesment of Pro-inflammatory Cytokines and 
Drug Metabolizing Enzymes
In this study, we measured the genes of pro-inflammatory 
cytokines, including IL-1B, IL-6, and TNF-α, as well as 
drug metabolizing enzymes, namely CYP3A4 and CYP2E1. 
The gene expression of IL-1B has not been affected by 
any treatment compared to control or CBZ+APAP groups. 
The CYP3A4 expression was elevated by CBZ only. The 
CYP2E1 expression was significantly upregulated only in 
the group treated with CBZ+APAP+CoQ10 compared to 
CBZ+APAP group. The expression of IL-6 has decreased in 
the groups treated with CBZ alone or in combination with 
APAP compared to the control group. Only REE was able to 
restore its normal expression when given with CBZ+APAP. 
TNF-α expression was significantly downregulated in the 
groups treated with CBZ, APAP, REE, CoQ10, or CBZ+APAP 
compared to the control group (Table 4).

Histological Examination of Liver Tissue 
The control (Figure 1A), REE (Figure 1E), CoQ10 (Figure 
1F), and CBZ+APAP+REE (Figure 1G) groups did not 
show any histopathological alteration and the normal 
histological structure of the central vein and surrounding 
hepatocytes in the hepatic parenchyma were recorded. 
The CBZ group (Figure 1B) showed severe dilatation in 
the central vein associated with ballooning degeneration 
in the surrounding adjacent hepatocytes. In the APAP-
treated animals (Figure 1C), there were focal inflammatory 
cells aggregation in the hepatic parenchyma with severe 
congestion in the central vein. The liver from group treated 
with CBZ+APAP (Figure 1D) showed centrolobular 
ballooning degeneration and necrosis in the hepatocytes. 
The group treated with CBZ+APAP+CoQ10 showed severe 
dilatation and congestion in the central vein (Figure 1H).
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Table 4. Effect of CBZ, APAP, REE, and CoQ10 on PCR analysis of drug metabolizing enzymes and pro-
inflammatory cytokines.

Groups CYP3A4 CYP2E1 TNF-α IL-1B IL-6

Control 1.00±0.02 1.04±0.14 1.01±0.07 1.07±0.18 1.00±0.04

CBZ 1.92±0.03ᵃ 0.95±0.03 0.42±0.05ᵃ 1.04±0.17 0.80±0.01ᵃ

APAP 0.85±0.08 1.01±0.11 0.58±0.04ᵃ 1.26±0.17 1.03±0.05

REE 0.96±0.04 0.92±0.05 0.56±0.08ᵃ 0.58±0.02 0.92±0.03

CoQ10 0.98±0.03 0.83±0.05 0.55±0.07ᵃ 0.79±0.06 0.86±0.03

CBZ+APAP 1.05±0.01 0.93±0.05 0.39±0.01ᵃ 0.85±0.10 0.78±0.02ᵃ

CBZ+APAP+REE 1.11±0.06 1.01±0.14 0.59±0.04 0.79±0.02 1.00±0.02

CBZ+APAP+CoQ10 1.22±0.09 1.54±0.14ᵇ 0.32±0.03 0.67±0.16 0.79±0.02
Data are expressed as mean±SEM (n=3). ap<0.05 compared to control group, bp<0.05 compared to CBZ+APAP 
group.

AA B C

D E F

G H

Figure 1. The histopathological alterations in the 
liver from each group. A: Control group; B: CBZ 
group; C: APAP group; D: CBZ+APAP group; E: REE 
group; F: CoQ10 group; G: CBZ+APAP+REE group; 
H: CBZ+APAP+CoQ10 group. Black bar: 200 mm; 
Yellow bar: 50 mm.

Pharmacokinetics of APAP and CBZ
The HPLC results (Figure 2A) showed that APAP was 
eliminated after 6 hours. The combined administration of 
CBZ with APAP extended the elimination time of APAP 
from the body to 24 hours. Adding REE to the combined 
treatment of CBZ+APAP helped in almost restoring the 
normal elimination of APAP and reduced it to 9 hours. The 
plasma clearance time of CBZ when administered alone was 
9 hours (Figure 2B). Similarly, this time was extended to 24 
when APAP was administered in combination with CBZ. 
In a repeated scenario, REE shortened this time to 9 hours 

when given along with CBZ+APAP. CoQ10 was devoid of 
any significant effect on the pharmacokinetic elimination 
of either APAP or CBZ when administered along with 
CBZ+APAP.

Discussion

The main goal of the present study was to investigate the 
potential of REE and CoQ10 to reduce the toxicity occurred 
due to the simultaneous administration of CBZ and APAP. 
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Figure 2. The effect of different treatments on the plasma clearance time as determinded by HPLC. A: Plasma clearance time of 
APAP; B: Plasma clearance time of CBZ. 

APAP is the most used analgesic and antipyretic all over the 
world by both adults and children.(23) The use of APAP is 
intensified during the last few years due to COVID pandemic. 
Although APAP is safe, the overdose or slow metabolism 
and hence accumulation can cause severe hepatotoxicity. 
APAP is the main cause of liver failure in the USA.(24) The 
metabolism of a therapeutic dose of APAP mainly occurs in 
the liver through glucuronidation and sulfation. Overdose 
or accumulated APAP will be metabolized into NAPQI 
resulting in depletion of GSH and antioxidants, oxidative 
stress, lipid peroxidation, and inflammation.(3,4) 
	 Administration of CBZ alone could lead to oxidative 
stress. The co-administration of CBZ and APAP at 
therapeutic levels was reported to cause acute hepatic 
toxicity.(8) REE and CoQ10 insignificantly reduced the body 
weight gain by 30 and 35%, respectively but when combined 
with CBZ+APAP, they caused significant reductions (~57 
and 113% compared to the control), and (~63 and 111% 
compared to the CBZ+APAP group). These reductions were 
not associated with any sign of toxicity; morphological, 
biochemical, or histopathological. Therefore, we think these 
reductions could be attributed to the ability of rosemary and 
CoQ10 to reduce calorie intake, induce satiety centers, and/or 
accelerate the metabolic rate. These results are in agreement 
with a previous investigation.(25) CBZ alone or combined 
with APAP resulted in hepatomegaly and increased the 
relative liver weight by 35 and 32%, respectively. This 
was manifested by the elevation of ALT activity caused 
by CBZ or APAP alone or in combination CBZ+APAP 
indicating hepatotoxicity. Similar results were previously 
reported.(6,26) This hepatotoxicity was also typified by the 
histopathological examination where the groups treated with 
CBZ, APAP, or CBZ+APAP showed severe congestion in 
the central vein associated with ballooning degeneration in 
the surrounding adjacent hepatocytes with focal aggregation 
of inflammatory cells in the hepatic parenchyma with some 

necrotic cells. These histopathological deteriorations were 
reported in rats after treatment with CBZ (6) or APAP (27). 
On treating rats with CBZ+APAP in addition to REE or 
CoQ10, the ALT activity was reduced by ~50% indicating 
the potential of both REE and CoQ10 to protect against the 
hepatotoxicity caused by CBZ and APAP possibly through 
preventing the accumulation of NAPQI. Similar effects 
were reported in rats for REE (28) and CoQ10 (14) against 
hepatotoxicity induced by APAP. 
	 The combined administration of CBZ+APAP resulted 
in depletion of GSH probably due to the accumulation 
of NAPQI. CBZ+APAP also resulted in the reduction of 
GPx and GST activities in liver and elevated the MDA 
level. GSH is an essential coenzyme needed by GPx and 
GST to remove hydrogen peroxide, lipid peroxides, and 
electrophiles.(29) Therefore, GSH reduction would reduce 
the activity of these GSH-dependent enzymes. This would 
leave  the  cell  vulnerable  to  oxidative  stress  and  would 
lead to lipid peroxidation and elevation of MDA.(30) REE 
and CoQ10 administered to the CBZ+APAP groups, were 
able  to  modulate  the  lipid  peroxidation  and  reduce  
the MDA by 60 and 53%, respectively, and elevate the 
GSH level by 88 and 75%, respectively, as in line with the 
result of previous study.(31) Administration of REE and 
CoQ10 to the CBZ+APAP groups significantly aggravated 
the reduction of GST activity in liver. The hepatic SOD 
activity in  the  current  study  was  significantly  reduced  
only  by  APAP which also caused a significant reduction in 
GST activity in agreement with a previous study.(32) GST 
was also reduced by CBZ alone. GST is responsible for the  
conjugation  of  electrophiles,  and  it  is  also  dependent 
on GSH. Interestingly, when GSH is depleted or when the 
oxidative milieu prevails in the cell, GST could directly react 
with free radicals or electrophiles protecting the cell from 
oxidative damage and exhausted during the process.(33) 
However, this could not explain the aggravation resulted 
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