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Abstract

Introduction

Homeostatic processes determine an organism's capacity 
to maintain healthy function during adulthood. Adult tissue 
stem cells play a critical function in tissue maintenance and 
regeneration in this multicellular organisms’ homeostasis. 
Thus, stem cell activities reduction has a part of 
responsibility for the tissue homeostasis imbalance during 
the post-reproductive lifetime, and is linked to an increase 
in illness incidence and is caused.(1) 
	 The renewal and differentiation capacity of our 
tissue stem cells were determined by their specific niches 
which maintains the stem cells’ ability to develop into the 
cell types of the organ in which they live, and they play 

a role in the regeneration and homeostasis of almost all 
tissues throughout life. The stem cell function declined as 
we age, and different forms of cell-intrinsic damage, as 
well as changes in the niche and circulating blood, have 
been shown to contribute to this age-related decline. As 
multicellular animals' longest-living proliferative cells, 
adult stem cells are at a higher risk of accumulating DNA 
mutations and epigenetic changes, which can compromise 
gene expression fidelity.(1) DNA repair mechanisms in stem 
cells are not typically more active than in other cells, but 
the G0 and G1 stages of the cell cycle where more stem 
cell resides, can be much more error prone.(2,3) These 
repair mechanisms include metabolic activity suppression 
to decrease toxic metabolite synthesis within the cell and 
maintaining a state of quiescence to prevent replication-
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R E V I E W  A R T I C L E

BACKGROUND: Aging tissues lose their 
homeostatic and regenerative capacities, which has 
been linked to the degeneration of the stem cells 

such as the tissue-specific stem cells, the stem cell niches, 
and systemic cues that regulate stem cell activity.

CONTENT: The maintenance of tissue homeostatic and 
regeneration dependent on its tissue-specific stem cells, 
that —long-lived cells with the ability to self-renew and 
differentiate into mature cells. Understanding the molecular 
mechanisms that governs stem cell survival, self-renewal, 
quiescence, proliferation, and commitment to specific 
differentiated cell lineages is critical for identifying the 
drivers and effectors of age-associated stem cell failure. 

Such understanding will be critical for the development 
of therapeutic approaches that can decrease, and possibly 
reverse and repair the age-related degenerative process in 
aging tissues.

SUMMARY: The exact mechanisms and reasons of aging 
process were not fully elucidated until now. Stem cells is one 
of the keys for maintaining tissues heath and understanding 
how stem cell decline with age will give us opportunities to 
find strategy in increasing somatic stem cells regenerative 
capacity and delay the aging process.
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Stem Cells and Healthy Aging

Figure 1.	Common pathways contributing to stem cell loss and dysfunction in the aging process.(6) (Adapted with permission from 
Nature Springer). GDF11: growth differentiation factor 11; CCL11: C-C motif chemokine ligand 11; ROS: reactive oxygen species; NAC: 
N-acetylcysteine; NAD+: Nicotinamide adenine dinucleotide.

associated DNA damage.(4) Most tissue-specific stem cells, 
with some notable exceptions, exit quiescence to enter the 
cell cycle only in response to an increased demand such as 
in the setting of tissue injury. 
	 Recent data supports a unique theory that stem cell 
epigenome alterations are caused by accumulated cell-
intrinsic damage and cell-extrinsic changes in ageing stem 
cell niches. These accumulated epigenetic changes in 
stem cells might be the source of developmental pathway 
dysregulation noticed as people age. As a result, mutant and 
epigenetically drifted stem cells with altered self-renewal 
and activities may gain a selective advantage, contributing 
to the development of age-related organ malfunction and 
diseases.(1)

they are particularly vulnerable to cellular damage, which 
can eventually lead to cell death, senescence, or loss of 
regenerative ability. Indeed, stem cells in a variety of tissues 
have been discovered to experience significant changes as 
they age, including decreased response to tissue damage, 
dysregulation of proliferative activities, and decreased 
functional capabilities. In older species, both in animals 
and plants, these alterations result in less efficient cell 
replacement and tissue regeneration.(6)
	 Recent studies on dynamic interplay between stem 
cell-intrinsic, environmental and systemic signals showed 
a possibility for reversibility of aging processes by resetting 
the genetic or epigenetic ‘memory’ of aged stem cells and 
their differentiated cells.(6) This, means to conserve the 
accumulated DNA damage, proteostasis, toxic metabolites, 
extracellular signaling and epigenetic remodeling, 
mitochondrial dysfunction, proliferative exhaustion, which 
affect the organismal lifespan (Figure 1).
	 Although stem cells have features (such as a high 
turnover rate and a specific niche) that may shield them 
against aging insults, studies also show that stem cells degrade 
as they get older.(7) Accumulating toxic metabolites and 
non-autonomous stressors produced by extracellular signals 
can induce DNA and protein damage which contribute to 
stem cell function decrease and stem cell pool depletion. 
Furthermore, any defects in stem cells may be passed down 
to differentiated cells, resulting in tissue aging. In some 

Tissue-specific differentiation patterns are common in stem 
cells, and their capacity to maintain a balance of quiescence 
and proliferative activity appears to be important for their 
survival and maintenance of adequate physiological and 
regenerative responses.(5) Quiescence has been regarded 
as a dormant, low-activity state, however current data 
suggests it is a state of stem cell “idle” and active restraint, 
anticipate for activation, proliferation, and differentiation. 
However, stem cells live for a long time in the body, and 
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circumstances, aging phenotypes including sarcopenia, 
heart failure, and neurodegeneration can be reversed, and 
the facts that stem cell aging can be reversed have sparked 
interest in the development of ‘rejuvenating' therapies that 
might help people live longer and healthier lives.
	 As  human  lifespans  increased,  improving  the 
quality of life of seniors becomes increasingly important, 
even minor improvements might substantially reduce the 
burden of the health care system and economy for the aging 
population.(6)

Stem cells, which reside in specific microenvironments 
known as niches, maintain tissue homeostasis and wound 
healing. Each niche is specifically designed to accommodate 
the tissue's regeneration demands. Multiple stem cell niches 
exist in some tissues, such as the epithelium of the skin, or 
hair follicle, each with its own duty for cellular equilibrium 
within its domain.(8)
	 Hematopoiesis is a continuous process of blood cell 
generation that occurs in the bone marrow through the 
coordinated proliferation, self-renewal, and differentiation 
of hematopoietic stem cells (HSCs), followed by the 
outflow of mature offspring into the circulating blood.(9-12) 
All blood cells lineage develop from HSC differentiation.
(13) The quiescence, proliferation, and differentiation 
of HSCs are all regulated by a tightly controlled local 
microenvironment, found inside the bone marrow.(14) 
Within the niche, regulatory signals come from neighboring 
cells in the form of bound or released chemicals, as well 
as vital signs including body temperature, pulse rate, 
respiration rate, and blood pressure.(12,15,16) HSCs are 
dormant during homeostasis (17), but any stress such as 
interferon-mediated signaling will activated it (18-20). 
Figure 2 shows various cell types responsible in promoting 
HSC maintenance. 
	 A  study  tried  to  restore  a  hematopoietic  milieu 
inside  an  ossicle  model,  where  stromal  cells  are  
seeded  onto  a  transplanted  biomaterial  scaffold  showed 
that the bone marrow 'stroma' may begin and maintain 
hematopoiesis.(22,23)  Much  progress  has  been  made  
in determining the niche's cellular makeup. Perivascular 
cells expressing the melanoma-associated cell adhesion 
molecule (MCAM, also  known  as  CD146)  have  been  
identified   as   stromal progenitors in the human bone 

marrow (Figure 2).(24) Platelet-derived growth factor 
receptor-α (PDGFR-α), CD51 (also known as Integrin alpha 
V (ITGAV)), and the intermediate filament protein nestin 
are expressed by a minority of CD146 cells in humans and a 
substantial percentage of perivascular stromal cells in mice.
(25,26)
	 Endothelial cells line blood arteries, connect blood 
and tissues in the bone marrow, and help HSCs maintain 
and regenerate following injury.(27,28) Endothelial cells 
are veiled with pericytes or adventitial reticular cells.(29) 
Endothelial cells and hematopoietic cells may share a 
similar multipotential progenitor cell, the hemangioblast, 
according to studies in embryoid bodies (30,31), but there 
is no evidence that endothelial cells may develop into 
pericytes (32).
	 Macrophages also noted as one important niche-
regulating cells because of their ability to enhance HSC 
retention by stimulating the C-X-C motif chemokine 12 
(CXCL12)  production  in  nestin-expressing  niche  cells 
via an unidentified cytokine.(33,34) In comparison to 
sympathetic  nerves,  macrophages have been demonstrated 
to play a parallel and opposing role.(33) Granulocyte 
colony-stimulating  factor (G-CSF)  is  one  treatment  to 
stimulates  the bone marrow microenvironment and mobilize 
HSCs from bone marrow to the circulation, depletes both 
macrophages and osteoblastic  cells  (34,35)  and  activates 
sympathetic neurons to release norepinephrine (36).
	 While controlling stem cell maturation and 
differentiation, the stem cell niche must maintain its 
characteristics.(37,38) HSC maintenance is mediated by a 
complex milieu of factors, and the interactions with other 
cellular niche elements.(21) Several signaling pathways 
linked to homeostasis was associated to regeneration, which 
is regulated in part by the bone marrow vasculature.
	 One study on aging model (Figure 3) showed that 
the extrinsic control mediated by the niche causes a shared 
myeloid progenitor bias, rather than effects induced by age-
specific intrinsic HSC alterations.(39) In aged mice, HSCs 
have been found to localize nearer to the bone surface and  
farther away from the endosteum, compared to young mice, 
indicating a microenvironmental balance and potentially 
affecting their ability to remain quiescent.(40) Similarities 
between the intestinal crypt, hair, and skin, and other stem 
cell niche-containing tissues (41-43), may allow us to 
conclude  the  advantages  of  hematopoietic  maintenance 
and  regeneration,  and  will  open  up  intriguing  new  
avenues for better regenerative treatments and rejuvenation 
methods (21).

Stem Cell Niche Maintenance During 
Homeostasis and Regeneration
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Figure 2. HSC maintenance is mediated by a complex milieu of factors. perivascular stromal cells, endothelial cells, macrophages, 
CAR cells, sympathetic neurons and nonmyelinating Schwann cells are promoting HSC maintenance while adipocytes gives 
negative impact on it.(21) (Adapted with permission from Springer Nature). NFAT: nuclear factor of activated T-cells; FMI: Flamingo; 
FZD8: Frizzled 8; IFN-g: interferon-g; Ca2+: calcium; TGF-b: transforming growth factor b; TGF-bR: TGF-b receptor EC: endothelial 
cells; NG2+: Neural/glial antigen 2; HSC: hematopoietic stem cell; CXCL12: C-X-C motif chemokine 12; CXCR4: C-X-C chemokine 
receptor type 4; TIE2: the endothelial-specific receptor, tyrosine kinase with immunoglobulin-like loops and epidermal growth factor 
homology domains-2; ANGPT1: angiopoietin 1; CAR: chimeric antigen receptors; SCF: stem cell factor.

Some fractions of adult stem cells can remain in a dormant 
condition for quite long period of time. While quiescence 
is not a necessary feature of stem cells, its dysregulation 
and the loss of its self renewal and differentiation activity 
frequently can lead to an imbalance in progenitor cell 
populations, which eventually leads to stem cell depletion. 
As a result, tissue replacement during homeostasis and after 
injury is hampered.(44,45)
	 Subpopulations of stem cells are dormant until they 
are triggered by extrinsic signals, where they started the 
cell cycle. During G1, a cell's destiny is determined, and 
cells differentiate, become senescent (stopped proliferating 
and have been removed from the cell cycle permanently), 

Geriatric Stem Cells Switch Reversible 
Quiescence Into Senescence

or return to a quiescent state.(46) Opposite to quiescence, 
senescence is a degenerative process ensuing a certain cell 
death.(47) 
	 Senescent cells, unlike apoptotic cells, survive despite 
“an essentially permanent halt of cell division”.(48) In 
general, senescent cells upregulate cell cycle inhibitors 
such as p53/p21 and p16INK4a (also known as Cdkn2a) 
(49), and produce bioactive mediators such as degradative 
enzymes, inflammatory cytokines, and growth factors, 
which may contribute to stem cell failure as people age 
(50). The p16INK4a dysregulation results in stem cells to 
lose their ability to enter reversible quiescence and become 
"pre-senescent" such as in geriatric’s satellite cells.(51) 
Thus, silencing p16INK4a restores their quiescence and 
regeneration capacity, suggesting that this pre-senescent 
condition may be reversible.(51) Old p16INK4a-/- HSCs 
also have greater cell cycle activity and engraftment (52), 
despite of the risk of a higher rate of malignancy.
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Figure 3. Aging negative effect on HSC both intrinsic and extrinsic mechanisms, lead to reduced hematopoietic activity.(21) 
(Adapted from Springer Nature). AhR: Ah receptor; HSC: hematopoietic stem cell; CDC42: cell division control protein 42 homolog; ROS: 
reactive oxygen species; TGF-b1: transforming growth factor b1; CMP: common myeloid progenitor; CLP: common lymphoid progenitor; 
RANTES: regulated upon activation, normal T cell expressed and presumably secreted; EC: endothelial cells.

	 Senescence may have a role in preventing the 
development of malignant tumors.(46) Senescent cells 
secretes many proinflammatory factors such as senescence-
associated secretory phenotype (SASP), and their 
accumulation in aged tissues causes tissue damage (53),  
while removing these cells may slow tissue aging (54). 
	 Adult mammalian stem cells have special capability of 
reversible quiescence, especially in relatively stable tissues 
with low turnover rate.(55) Sarcopenic muscle in geriatric 
and progeric mice has an aberrant satellite cell fate due 
to poor maintenance of the homeostatic quiescence state, 
which instead flips to a pre-senescence state, inhibiting 
muscle regeneration potential. In the absence of regeneration 
need, quiescence appears to be a straightforward means of 
effectively sustaining the stem-cell population throughout 
life, particularly in tissues with low turnover, such as 
skeletal muscle. Sarcopenia, is the most often characteristic 
found related to aging, especially in geriatrics and people 
with progeria syndromes.(56) One of the primary causes of 
physical incapacitation and loss of independence in the older 
population is the failure of sarcopenic muscle's regeneration 
mechanism to replace damaged myofibres.(57-59) Satellite 
cells, a population of muscle-specific Pax7-expressing adult 

stem cells that are typically dormant, are required for skeletal 
muscle homeostasis and regeneration.(5) These G0-arrested 
satellite cells are triggered and enter the cell cycle (R1) when 
provoked by injury or stress, allowing them to proliferate and 
produce new fibers or self-renew to replenish the satellite 
cell (Figure 4).(60,61) In normal circumstances, satellite 
cell preserves its quiescence by inhibiting irreversible cell-
cycle withdrawal and so preventing senescence.(51) In old 
age, the stem cells protective mechanism is failed and enter 
the cell cycle.(5,60,62,63). 
	 An imbalance of stem cell quiescence and proliferation 
may potentially contribute to stem cell fatigue. Studies in 
the Drosophila intestine, as well as HSCs and neural stem 
cells from p21-null animals (64-66), have shown that 
maintaining this equilibrium is critical for sustaining the 
stem cell pool across several rounds of tissue regeneration. 
Excessive proliferation induced by a lack of cell cycle 
control causes these stem cell pools to quickly deplete. 
Increased fibroblast growth factor 2 (FGF2) signaling in 
the old satellite cell niche causes these cells to lose their 
quiescence, resulting in decreased muscle regeneration 
ability.(67) Changes in reactive oxygen species (ROS) levels 
inside HSCs and perhaps other adult stem cells may also 
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Figure 4. Somatic cells are reversible 
when they are in G1 (senescent or 
differentiated) to G0 state (quiescent), 
and become irreversible once they 
touched R point then committed to the 
next round of the cell cycle.(5) (Adapted 
with permission from Springer Nature).

influence the balance between quiescence and proliferation.
(68) Quiescence and stem cell maintenance need low 
levels of ROS, but in the other side ROS also stimulate 
proliferation and differentiation processes.(69) Therefore, 
this offers  a plausible explanation for how stem cells lose 
their quiescence and become deficient in older tissues since 
ROS levels rise with age.
	 The quiescent stem cells in many tissue compartments 
are rare, since stem cells are tend to exit their “idle” state 
and proliferate or differentiate. Low RNA content, absence 
of cell proliferation markers, and label-retaining cells (LRC) 
capacity as an indicator of low turnover have all been used 
to identify quiescent stem cells.(70-72) 
	 The stem cell niche (the stem cells microenvironment 
which has significant regulatory roles) together with the 
intrinsic processes is necessary for stem cell maintenance 
and their quiescence.(73) Recent breakthroughs in genetic 
methods and high-throughput studies of diverse stem cell 
subpopulations have yielded significant insights into the 
molecular markers of quiescent stem cells in many tissue 
compartments. These results opened up possibilities for 
discovering and defining regulatory pathways, networks, and 
drivers of the quiescent state.(5) Although transcriptional 
and epigenetic profiling may be useful for identifying 
molecular signatures of quiescent stem cells and identifying 
pathways involved in the induction or maintenance of the 
quiescent state, each pathway must be tested in vivo in 
stem cell quiescence studies to determine its functional 
relevance.(5) Some transcriptional regulators such as RB, 
cyclin-dependent kinase inhibitors (CKIs) and p53, and 
post-transcriptional mechanisms can block quiescent cells 
to differentiate as described in Figure 5. While Differential 
mRNA processing alters the susceptibility of mRNAs to 
miRNA regulation and increasing the protein expression. By 

knowing these factors it is possible to manage the quiescent 
state of adult cells.
	 Environmental stress (for example, oxidative stress 
induced by the buildup of ROS) can cause harm to long-
lived, non-dividing quiescent stem cells (74), and damage 
the cellular components, including DNA. This is a process 
that has been hypothesized to underpin cell and tissue 
ageing and lifetime limitation.(75,76) As a result, it appears 
that quiescent stem cells have developed specialized 
mechanisms to adapt to external stressors in order to preserve 
cellular integrity and ensure long-term survival. Quiescent 
cells rely on autophagic processes for survival, which is 
consistent with their capacity to perceive and respond to 
environmental signals related to metabolic status, and 
autophagy induction appears to be crucial in the control of 
stem cell activation. Autophagy is a lysosomal degradation 
mechanism involved in cytoplasmic organelle recycling, 
which helps cells maintain their health by eliminating 
damaged components.(77) This means that autophagy is 
required for HSC quiescence maintenance.(78) Autophagy 
is also increased in HSCs with Lkb1 knockout, indicating 
that autophagy may function as a compensatory mechanism 
to alleviate metabolic stress in these mutants. Understanding 
stem cell quiescence and the inherent processes by which 
these cells detect and respond to external cues will definitely 
assist the development of novel treatment methods focused 
on improving stem cell activity.(5)
	 Another problem in geriatric quiescence is autophagy, 
an evolutionary conserved process in which autophagosomes 
self-degrade cellular components (organelles, cytosol 
portions, and misfolded proteins) and deliver them to the 
lysosomal machinery, preventing waste accumulation.
(79,80) In mice, basal autophagy is required to maintain the 
stem-cell quiescent state.(79-82) Senescence is triggered by 
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Figure 5. Molecular regulation to keep stem cells 
quiescence.(5) (Adapted with permission from Springer 
Nature). RB: retinoblastoma protein; CKI: cyclin-
dependent kinase inhibitors; RBP-J: recombination signal 
binding protein for immunoglobulin kappa J region; 
mRNP: messenger ribonucleoprotein; MYF5: myogenic 
factor 5.

a loss of proteostasis, increased mitochondrial dysfunction, 
and oxidative stress in physiologically aged satellite cells 
or genetically impaired autophagy in young cells, resulting 
in a reduction in the function and quantity of satellite cells. 
In geriatric satellite cells, restoring autophagy reverses 
senescence and restores regenerative capabilities.(83)

Metabolism and Epigenetics Roles in 
Stem Cell Aging

Metabolic signal pathways have been found to be 
substantially linked to aging. Evidence shows that reduced 
nutritional signaling can increase lifetime, while anabolic 
signaling speeds up aging; and pharmaceutical treatment 
of metabolic pathways can enhance organismal lifespan.
(84,85) Furthermore, new data shows that cellular metabolic 
pathways can modify epigenetic states, which can impact 
organismal aging and lifespan.(86,87)
	 It has recently been proposed that mitochondrial 
stress-mediated lifespan regulation is linked to epigenetic 
processes that alter genome function, resulting in an increase 
in longevity.(88-91) Another study, on the other hand, has 
discovered that unfolded protein response (UPRmt) is 

insufficient for Caenorhabditis elegans lifespan extension, 
and that it may also be involved in the maintenance and 
propagation of mutant mitochondrial genomes.(92,93) 
Furthermore, in mice, decreases in nicotinamide adenine 
dinucleotide (NAD+) concentration are associated to 
mitochondrial dysfunction and muscle fiber integrity 
throughout natural aging. Supplementing with the NAD+ 
precursor nicotinamide riboside can also help to reverse 
increasing muscle dysfunction.(94) Finally, it has recently 
been discovered that exercise protects against age-related 
secondary damage by preventing mitochondrial respiration 
decreases.(95) These findings imply that both mitochondrial 
activity maintenance and mitochondrial function 
rejuvenation might be effective strategies for delaying aging 
and increasing longevity.
	 Another evidence suggesting epigenetics plays a 
key role in organismal aging.(96-100) The basic structural 
units of chromatin are nucleosomes, which are made up of 
DNA wrapped around a group of histone proteins. Gene 
expression was dynamically regulated by the interaction of 
transcription factors and epigenetic modifiers. Furthermore, 
aging of human adult stem cells has been linked to a variety of 
epigenetic changes, including worldwide loss of H3K9me3, 
de-condensation of centromeric heterochromatin, physical 
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Potential Strategies to ‘Reverse’ 
Stem Cell Aging

Because  epigenetic  processes  are  reversible,  these 
pathways hold promise as therapeutic targets for age-
related decline and illness.(97) Calorie Restriction (CR) 
and rapamycin therapy has been shown to impact the 
lineage determination of stem cells in different organs, 
including MSCs, in recent research. They reduce the mTOR 
signaling capacity and other growth factor pathways.
(116,117) The NAD+-dependent deacetylase Silent mating 
type information regulation 2 homolog 1 (SIRT1), and 
AMP-activated protein kinase (AMPK), may be two key 
mediators of CR. Both SIRT1 and AMPK appear to play key 
roles in the cell fate determination of mesenchymal stem 
cells (MSCs), according to increasing evidence.(116) 
	 Short-term fasting has a similar impact as CR, since it 
enhances haematopoiesis and reverses the myeloid bias of 
aged HSCs via inhibiting protein kinase A.(118) Surprisingly, 
this impact was linked to enhanced HSC function as well 
as faster HSC proliferation in transplantation trials, two 
characteristics that are normally adversely connected.(17) 
SIRT and antioxidant defenses against ROS are directly 
induced by CR, which also activates fatty acid β-oxidation 
(FAO) and enhances oxidative phosphorylation (OXPHOS) 
efficiency by decreasing oxidative damage.(119-121) 
As a result, although CR raises mitochondrial counts and 
OXHPOS in mice, it also activates SIRT1 and FOXO3, 
improving muscle stem cells levels and muscle regeneration 
directly.(122) Antioxidant therapies have demonstrated 
limited capacity to improve the health or longevity of model 
organisms, despite the fact that N-acetylcysteine (NAC) can 
successfully repair some HSC abnormalities linked with 
unregulated ROS levels.(123) These findings imply that, 
rather than adjusting ROS levels or metabolic pathways, 

telomere attrition, and changes in the nucleolus organizer 
region related to ribosomal DNA (NOR-rDNA).(101-
109) Many of the same processes that control aging and 
proteostasis also control stem cells.(110,111) Because 
deletion of either Atg7 (78) or Fip200 (112), both of which 
are required for autophagy, increases ROS levels and 
depletes HSCs, autophagy is believed to be crucial for HSC 
maintenance. FoxO, which increases lifespan and stem cell 
function, regulates aging by transcriptionally activating 
the expression of various protein-folding chaperones.(113-
115) There is still a lot of work to be done in order to fully 
comprehend the processes that control stem cell aging. 

mitochondrial control and redox state mitigation may be 
a more effective method for stem cell rejuvenation. It's 
also been suggested that rapamycin or CR's life-extending 
benefits are due to the activation of autophagy (123), which 
reduces ROS levels by eliminating defective or damaged 
mitochondria. As mitochondrial quality control diminishes 
with age, such a system would be very useful in the aging 
body.(124) Finally, the potential that these treatments 
enhance cellular health by reversing age-related epigenetic 
alterations over time should be considered.(125,126)
	 Skeletal muscle stem cells undergo a metabolic switch 
from fatty acid oxidation to glycolysis during the shift from 
quiescence to proliferation. Increased H4K16 acetylation 
and activation of muscle gene transcription result from 
this reprogramming of cellular metabolism, which lowers 
intracellular NAD+ levels and the activity of the histone 
deacetylase SIRT1. Increased H4K16 acetylation and 
unregulated activation of the myogenic pathway in 
SCs occur from selective genetic deletion of the SIRT1 
deacetylase domain in skeletal muscle. Their findings show 
how metabolic signals may be converted into epigenetic 
changes that control the biology of skeletal muscle stem 
cells in a mechanistic way.(127)
	 Another strategy is cell replacement treatment, 
which has a lot of potential in terms of restoring tissue 
homeostasis. However, before cell treatments may be used 
successfully and safely in clinical settings, aging-related 
functional degradation and neoplastic change following 
transplantation must be addressed.(48,128-130) Enhanced 
techniques need to be formulated to give a stronger 
regeneration abilities of stem cells with  a lower risk of 
cancer.(131,132) At the specified concentrations, oltipraz, 
metformin, and resveratrol promoted the proliferation of 
pre-senescent Werner Syndrome human MSCs (hMSCs) 
(Figure 6). These three compounds are all known to activate 
the nuclear factor erythroid-2-like 2 (NRF2) pathways, 
which is interesting. Furthermore, NRF2 protein abundance 
was reduced in Werner syndrome or replicative senescent 
hMSCs. These findings suggest that increasing NRF2 
activity might improve hMSC function and longevity.(108)
	 SIRT6-NRF2-HO-1 axis regulates stem cell redox 
homeostasis and serves as a transcriptional coactivator. 
This adds our understanding of SIRT6's role in hMSC redox 
homeostasis, and might help explain the mechanisms behind 
a variety of SIRT6-related biological events, such as genomic 
instability, cellular senescence, cellular transformation, and 
metabolic dysregulation. SIRT6 is a critical gatekeeper 
for human adult stem cell homeostasis, implying that the 
SIRT6-NRF2 pathway might be a promising new target 
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for avoiding aging-related stem cell attrition and, perhaps, 
treating aging-related diseases.(133) 
	 Metabolic and epigenetic factor can be the possible 
way to develop any strategies to sway the aged stem cell 
from senescence to quiescence  and preserve the youthful 
cellular function, combat the age-related phenotypes in 
dysfunction old tissues, and ameliorating organismal age-
related phenotypes.(134)

Figure 6. Pharmacological and non-pharmacological potential strategies for the amelioration of stem cell aging.(134) (Adapted 
with permission from Elsevier Ltd). IGF-1: Insulin-like growth factor 1; MSCs: mesenchymal stem cells; NRF2: nuclear factor erythroid-
2-like 2; AMPK: AMP-activated protein kinase; SIRT1: sirtuin 1; mTOR: mammalian target of rapamycin; NAD+: nicotinamide adenine 
dinucleotide. 

Conclusion

Degenerative diseases are frequently caused by a 
dysregulation of stem cell activity and a loss in regenerative 
potential because of aging. The development of methods 
to preserve stem cell activity and control is thus a viable 
path for treating a variety of age-related illnesses. The 
significance of genetic, epigenetic, and metabolic pathways 
in the control of stem cell activity has been discovered in 
many species. Treatments that affect cellular metabolism 
have long been recognized as effective life-extension 
strategies. How these can be connected with environmental 
stress to keep stem cells in a state of homeostasis, as well 
as how environmental stimuli affects stem cell activity will 

open opportunities for the development of rejuvenation 
therapeutic strategies.
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