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Abstract

Introduction

Every day, human body regenerates by replacing about 
0.4% of old or demaged cells out of the estimated 37.2 
trillion cells in the human body.(1) Some tissues have 
a higher turnover than other tissues and therefore need a 
higher clearance rate of apoptotic cells (ACs) through 
a process termed as ‘efferocytosis’. When the clearance 
of death cells is efficient and high in capacity, the ACs 

are scarce, and the homeostasis is well-balanced, as 
well as the restoration of homeostasis related disease.
(2,3) Efferocytosis is mechanisms different from those of 
classic phagocytosis, either in term of morphologically or 
mechanistically. In phagocytosis,  the process of clearance 
requires a set of phagocyte expression signals and receptors, 
reorganize the phagocyte cytoskeleton to engulf cell-bound 
ACs and induce phagosome–lysosome fusion to degrade 
AC cargo.(4,5) When the number of ACs are much higher 
than available classical phagocytes, such as those after acute 
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R E V I E W  A R T I C L E

BACKGROUND: Millions of cells in multicellular 
organisms regenerate every day to replace aged and 
died cells. Effective cell clearance (efferocytosis) is 

critical for tissue homeostasis, as the human body recycles 
its cellular components. We summarize what is known 
about the mechanisms of efferocytosis and how it impacts 
the physiology of the organism, effects on inflammation and 
the adaptive immune response, as well as the consequences 
of defects in this critical homeostatic mechanism in this 
review.

CONTENT: Cell death is the process by which the human 
body replaces aged or damaged cells with new ones. It can be 
triggered by genetically encoded machinery or regulated cell 
death, or by specific pharmacologic or genetic interventions, 
resulting in accidental cell death. Dying cells release 
signals that entice phagocytes to engulf them in a process 

known as efferocytosis. Efferocytosis is a multistep process 
involving the release of “find me” and “eat me” signals  and 
destruction of death cells by phagocytes. Different types of 
cell death including apoptosis and necroptosis can express 
pro- or anti-inflammatory signals via macrophage activity 
modulation.

SUMMARY: Failed or ineffective efferocytosis can result 
in disruption of tissue homeostasis, which can contribute 
to the development of chronic inflammatory diseases 
such as atherosclerosis, obesity, diabetes, and heart 
failure. Therefore, any therapeutic strategy that enhances 
efferocytosis will have a beneficial effect on the treatment 
of these metabolic disorders.

KEYWORDS: apoptosis, necroptosis, phagocytosis, 
efferocytosis, macrophage.
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inflammatory responses, phagocytes have to able to ingest 
ACs in a short time, known as continual efferocytosis. In 
this setting, macrophages reduce inflammation to mediate 
tissue repair and resolution.(3,4) However, in a defective 
efferocytosis, such process is failed wich can often lead the 
disruption of tissue.
	 Phagocytes undergoing continuous AC uptake face 
a number of challenges.(5) We summarize what is known 
about the mechanisms of efferocytosis and how it impacts the 
physiology of the organism, effects on inflammation and the 
adaptive immune response, as well as the consequences of 
defects in this critical homeostatic mechanism in this review.
(6) Understanding these facets of efferocytosis may shed 
light on the critical physiological and pathophysiological 
facets of efferocytosis.(5)

Regulated Cell Death

In general, cell death can be classified as regulated cell 
death (RCD) and accidental cell death (ACD).(7-11) 
Programmed cell death (PCD) is RCD that are entirely 

Figure 1. Modes of programmed cell 
death.(6) (Adapted with permission from 
Springer Nature).

physiological. Importantly,  stress-driven  RCD  is  a 
technique for maintaining biological equilibrium, similar 
to adaptive stress responses. Adaptive stress responses, 
however, operate at the cellular level (which, by implication, 
facilitates the preservation of homeostasis at the organism 
or colony level), while RCD operates directly at the 
organism or colony level despite cellular homeostasis.(7) 
This homeostatic role includes the ability of dying cells to 
reveal or release molecules that warn the organism or colony 
about a potential threat, as well as the removal of useless 
or potentially harmful cells, referred as damage-associated 
molecular patterns (DAMPs) or alarmins.(12-15)
	 There are various modes of RCD as described in 
Figure 1, each with its own triggering stimuli and signalling 
moieties that are presented to the phagocyte, resulting in 
efferocytosis and a number of physiological outcomes, 
namely apoptosis, necroptosis, pyroptosis, and ferroptosis.
	 Apoptosis can be triggered by the intrinsic pathway 
occurs when the mitochondrial pathway is activated by 
cellular stress, and the extrinsic apoptosis occurs when 
death receptors on the cell surface are activated. The death 
receptor leads to the recruitment of pro-caspase 8 to the 
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intracellular region via the adaptor protein FADD (FAS 
associated via death domain). The intrinsic pathway release 
of cytochrome c and activation of the initiator caspase 
9. Both apoptotic pathway assemble upon activation of 
caspase 3 and 7. The activation of caspases during apoptosis 
release ‘find-me’ signals that that indicate their presence to 
mobilization apoptotic cells towards phagocytes.(5)
	 Extrinsic apoptotic receptors may also cause 
necroptosis, which is a controlled type of necrosis. The 
activation of Receptor Interacting Serine/Threonine 
Kinase (RIPK)1, which binds to and activates RIPK3 after 
autophosphorylation.(16) This causes activation of the 
pseudo-kinase mixed-lineage kinase domain-like (MLKL) 
which translocates to the cell membrane, and release 
of damage-associated molecular patterns (DAMPs) to 
recognize by phagocytes.(6)
	 Pyroptosis is triggered as response to infection, such as 
lipopolysaccharide on intracellular gram-negative bacteria 
was recognized by inflammatory caspases includes caspase 
1, 4, 5 and 11.  Activation this caspases cleave gasdermin D 
(GSDMD) resulting cell lysis. Pyroptosis and necroptosis 
leading to secretion of pro-inflammatory cytokines.(6)
	 Ferroptosis is programmed cell death dependent on 
iron. Through the Fenton reaction, free cytosolic iron can 
spread lipid peroxidation, and promote ferroptosis, indicated 
by membrane rupture caused by excessive amounts of lipid 
peroxides.(6)
	 Efferocytosis is important in RCD to maintain 
organisms  homeostasis,  and  allows  multicellular  organisms 
to recycle cellular components.(16-19) Autophagy-
dependent cell death (20-23), on the other side is a form 
of RCD that is dependent on the autophagic machinery or 
its components. Autophagic responses (which are tightly 
regulated  at  the  transcriptional  and  post-translational 
levels)  are often found at the center of stress adaptation 
(20,24-30), mediating cytoprotective (rather than cytotoxic) 
effects (31-36). 

Phagocytosis of Apoptotic Cells in 
Homeostasis

The process of creating and sustaining a multicellular 
functioning organism is marked by the unceremonious 
formation and destruction of billions of cells, even from 
our earliest developmental stages.(37) Different tissues 
switch over differing numbers of apoptotic cells as part 
of normal homeostasis, with some tissues experiencing an 
impressively high rate of renewal. Such as hematopoiesis 

which generates billions of cells every day, because most of 
them have short lifespans (such as neutrophils); epithelial 
cells in the gastrointestinal tract, which occupy a region the 
size of a tennis court, are replaced every 4-5 days.(38) In 
certain cases, small parts of cells (rather than entire cells) 
are phagocytosed, such as those during neuronal pruning. 
There are also times when the rates of apoptosis in a given 
tissue exceeds the normal rates, such as those during 
infection or acute tissue injury.(39) Apoptosis, necroptosis, 
and pyroptosis are active mechanism that perform the 
cellular turnover as a continuous, genetically programmed 
operation, and it is critical to remove these unwanted and 
unneeded cellular corpses.(40)
	 Tissue-resident and recruited phagocytes play 
important roles in the clearance of cellular corpse. Under 
homeostatic circumstances, tissue-resident phagocytes 
mediate the clearance of the cellular "corpse." Both local 
and recruited phagocytes mediate increased cell death due to 
infection (such as during lung infection) or chronic "sterile" 
inflammation (for example atherosclerotic plaques). Failure 
to remove apoptotic cells at an early stage of death and 
development to a secondary necrotic state might cause 
tissue inflammation due to the loss of cellular contents or 
the exposure of previously buried intracellular compounds.
(41) The cell-clearance machinery makes the crucial 
‘decision' on whether or not to activate an immune response 
to the dying cell in response to molecules released by and/or 
exposed on the dying cells. Then the phagocyte role in final 
decision to induce or suppress the inflammation.(41,42)
	 Professional, non-professional, and specialized 
phagocytes in our tissues are charged with clearing dying 
cells. Macrophages are the best professional phagocytes. 
Every tissue has sub-differentiated resident macrophages 
with their own name.(39) For instance, liver has kupffer 
cells to clear aged red blood cells (43); lungs have alveolar 
macrophages to clear apoptotic airway epithelial cells; 
and CNS has microglia for dying neurons clearance (44). 
Non-professional phagocytes are other types of resident 
cells, such as epithelial cells and fibroblasts, which may be 
a misnomer since these cells play an important role when 
professional phagocytes (the monocytes, macrophages, 
neutrophils, tissue dendritic cells and mast cells) are scarce, 
as in the mammary gland or intestinal epithelium.(45)
	 If we consider that one million adult human cells 
die every second, we will appreciate the enormity of the 
task that phagocytes face.(46) Furthermore, since this is a 
recurrent and natural occurrence in an organism's lifetime, 
the process of dead cell clearance must take place in a quiet 
manner so that the immune system is not overly alerted.(47) 
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Efferocytosis is important in immune modulation, as well 
as the effect of various forms of cell death on the immune 
response.
	 Phagocytosis is a simple yet complex process for 
ingesting and eliminating pathogens, but it's also vital for 
removing apoptotic cells, making it essential for tissue 
homeostasis. The identification of the target particle, 
signaling to activate the internalization machinery, 
phagosome development, and phagolysosome maturation 
are the four key steps in phagocytosis. The use of modern 
molecular biology and microscopy techniques has given 
new insights into the cellular mechanisms of phagocytosis 
in recent years.(48)
	 The composition of the local ‘clearance crew' 
influences the homeostatic removal of cellular ‘corpses' 
within a tissue. Professional and non-professional 
phagocytes have been identified as phagocytes that consume 
apoptotic cells. We propose a third group based on existing 
evidence: specialized phagocytes. A beautiful series of 
studies now suggests that stem cells originating from the 
embryonic yolk sac colonize most tissues and contribute to 
the resident macrophage pool.(49,50) During infection or 
injury, circulating monocytes may be recruited in addition 
to resident phagocytes. Recruited phagocytes may work 
together (or compete against) resident phagocytes to 
influence the immune response.(51)
	 Engulfment of apoptotic cells takes distinct phases, 
according to studies by several groups. To attract and/or 
activate the phagocytes, the dying cell first sends out ‘find-
me' signals. The phagocytes then use unique engulfment 
receptors to differentiate the apoptotic cell from healthy 
living cells, recognizing ‘eat-me' signals on the dying cell. 
Later the phagocytes will rearrangement the cytoskeletal to 
able to internalize the cellular "corpses". The ingested cargo 
is processed, and unique phagocyte responses are elicited, 
primarily the secretion of anti-inflammatory mediators that 
help dampen the local immune response.(51)
	 Inflammatory and/or homeostatic contexts have shown 
a plethora of apoptotic cell–recognition and engulfment 
receptors, including scavenger receptors, immunoglobulin-
containing proteins, seven-transmembrane proteins, and 
tyrosine kinases. The fact that there are so many different 
types of engulfment receptors and how they operate is not yet 
understood. In certain respects, the diversity of engulfment 
receptors resembles that of accessory proteins involved 
in T cell-antigen-presenting cell interactions. Although 
the exposed phosphatidylserine (PtdSer) may have a role 
similar to a large histocompatibility complex molecule 
on an antigen-presenting cell, the difference between the 

phagocyte-apoptotic cell interaction and the T cell-antigen-
presenting cell interface is the absence of a phagocyte 
antigen receptor. Instead, the receptor's role appears to be 
shared among the various engulfment receptors.(39)
	 Understanding the function of specific receptors 
is the first challenge in determining how apoptotic cell 
clearance controls tissue homeostasis. It's unclear if there's 
a 'preference' for using specific engulfment receptors or 
clearance mechanisms to distinguish between homeostatic 
apoptotic cell turnover and inflammatory apoptotic cell 
turnover. The anti-inflammatory responses are another 
challenge. Phagocytosis of apoptotic cells differs from 
other (such as bacteria or pathogens) because it is generally 
non-immunogenic and the mediator released is actively 
reduce inflammation in the local tissue milieu. However, 
how the molecular processes in phagocytes cause specific 
downstream effects are not yet identified.(52,53)

The Dynamic of Apoptotic Cell Clearance

The constant replacement of damaged or aged cells 
with new ones is needed to maintain tissue health and 
function. In reality, the average healthy adult is expected 
to lose 150 billion cells every day to apoptosis (out of the 
estimated 37.2 trillion cells in the human body), or around 
0.4 percent of the body's cellular mass.(1) Efferocytosis, 
or the phagocytic clearance of apoptotic cells corpses, 
is essential for embryonic growth, organogenesis, tissue 
repair, and immunity. Furthermore, abnormal interstitial cell 
clearance is gradually being recognized as both a cause and 
a consequence of many diseases' pathobiology.(2,41,54-56) 
Macrophages, monocytes, and dendritic cells networks 
serve not only as immune sentinels for infection and tissue 
damage, but also essential mediators in the clearance of dead 
cells.(57-62) Professional phagocytes, on the other hand, 
are vastly outnumbered by non-phagocytic cells in most 
tissues. As a result, the location of these phagocytes inside 
a tissue is possibly critical for optimizing their interaction 
with dying cells.
	 The essence of the cellular environment and tissue 
function tend to be highly dependent on the interstitial 
positioning of macrophages and DC for engulfment of 
nucleated cells. In the case of lymphocyte growth and 
activation, a high number of leucocytes are die due to 
subsequent constriction of immune effector cells (63-65), 
thus macrophages and DC approach these tissue due to 
the signal from dead cells. During an adaptive immune 
response, stainable body macrophages are located near the 
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light/dark boundary of the germinal centers in the spleen 
and lymph nodes, where they capture growing B cells that 
are experiencing apoptosis due to poor affinity or self-
reactivity. During an adaptive immune response, stainable 
body macrophages are located near the light/dark boundary 
of the germinal centers in the spleen and lymph nodes, 
where they capture growing B cells that are experiencing 
apoptosis due to poor affinity or self-reactivity.(66-68) T 
lymphocyte production in the thymus results in a significant 
number of apoptotic T cells, while thymic macrophages are 
limited <1% of total thymic cells, and DCs are even less 
in number. However, they provide efferocytosis throughout 
the organ, in a form of tiny cluster.(58,59,69) The CD169+ 

macrophages, which make up the majority of efferocytes in 
the bone marrow, are found in dense cellular regions near 
the sinuses.(70) These macrophages tend to be in the best 
position to multitask when it comes to engulfing apoptotic 
B cells, aged neutrophils, and erythrocytes.(2)
	 Apoptotic cells undergoing many morphological 
changes to be recognized by phagocytes which facilitate 
them to recognize and remove the apoptotic cell. Professional 
phagocytes such as macrophages and dendritic cells appear 
to phagocytose their targets as whole as shown when they 
engulf apoptotic thymocytes or neutrophils.(71,72) Other 
cells  such as fibroblasts and epithelial cells appear to engulf  
whole AC in a similar manner as those of macrophages and 
dendritic cells.(45,73) However, under certain situations, 
a phagocyte is unable to fully engulf the dying target, 
presumably due to a size gap between the phagocyte and 

the target. Inflamed adipose tissue, for example, multiple 
macrophages appear to surround dying adipocytes by 
forming ‘crown-like structures' around a single adipocyte, 
turn them into a “bite size” and ingesting smaller fragments 
of the dying cell.(74) The same case observed in the 
clearance of dying cells by fibroblasts when macrophages 
is absent.(71) In order to fragment dying cells into apoptotic 
bodies, a set of signalling  process was needed, starting 
from cleavage and activation of the RHO-associated protein 
kinase 1 (ROCK1) by caspase 3 which then phosphorylates 
myosin light chain. This phosphorylation promote 
actomyosin contraction, and membrane blebbing  resulting 
smaller sizes of apoptotic cell fragments known as apoptotic 
bodies (Figure 2).(75,76) 
	 Apoptotic cells release “find-me” signal for example 
nucleotides or CX3C chemokine ligand 1 (CX3CL1) and 
intercellular adhesion molecule 3 (ICAM3) before or during 
the onset of apoptosis to recruit phagocytes. Nucleotides 
are released from apoptotic cells through caspase-activated 
pannexin 1 (PANX1). Parallel with released “find-me” 
signal, apoptotic cells release “eat-me” signal (such as 
phosphatidylserine (PtdSer) and calreticulin (CRT) to 
detect by phagocytes for engulfment process. This process 
accompanied by CD31 as “don’t eat-me” signal to mediate 
their recognition by phagocytes. Phagocytes cell surface 
receptors engage “eat-me” signals through brain-specific 
angiogenesis inhibitor (BAI-1) and CD91, or indirectly 
through ridging molecules (such as milk fat globule-EGF 
factor 8 (MFG-E8).(77)

Figure 2. Phases of apoptotic cell clearance.(41) (Adapted with permission from Springer Nature).
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	 PtdSer is one key phagocytic uptake signal found in 
inner-membrane lipid surface.(77) Recent research suggests 
that phospholipid scramblase’s (PLSCRs) calcium-
dependent and calcium-independent activities in apoptotic 
pathway disrupt the plasma membrane's aminophospholipid 
asymmetry. This activity  encourage PtdSer exposure during 
apoptosis (78-80), suggests that PtdSer exposure is needed 
in certain level for  detection by phagocyte (81).
	 Finally, the immunological result can be influenced 
by the timing of cell death and the length of apoptotic cell-
derived signals. As a result, depending on the circumstances 
under which the cell dies, apoptotic cells can promote 
immunity or tolerance. It's also worth noting that, in some 
cases, apoptotic cells can help with tissue growth and 
repair, as shown by myoblast fusion and wound healing.
(41) The vastness of ways to mediate immune suppression 
and enforce tissue homeostasis is shown by our common 
knowledge of old and new phagocyte roles after apoptotic 
cell phagocytosis.(82)

The definition of apoptosis as a programmed mechanism 
of cell death resulted in a dichotomous view of cell death: 
apoptosis (programmed cell death) or necrosis (passive cell 
death) in response to overwhelming chemical or physical 
insult. The morphological hallmarks of apoptosis and 
necrosis were initially used to characterize the processes: 
Necrotic  cells  swell  and  rupture,  while  apoptotic  cells 
shrink and show nuclear condensation and membrane 
blebbing.(16)
	 As the initial step toward identifying the molecular 
processes that lead to necrosis-like cell death, RIPK1 is 
required for caspase-independent cell death in response 
to FAS ligand (FASL, also known as CD95L), TNF-
related apoptosis-inducing ligand (TRAIL; also known as 
TNFSF10), and TNF7 (Figure 3). Following that, RIPK1 
was discovered to be the target of necrostatin-1 (Nec-1), a 
small-molecule inhibitor that prevented cell death caused by 
caspase inhibition.(83,84) Thus, the term "necroptosis" was 
coined to describe a necrosis-like cell death mode that is 
dependent on RIPK1 kinase activity.
	 The initiator of receptor-mediated apoptotic cascade 
is caspase 8. Knocking out FADD, and caspase 8 paralogue 
FLICE-like inhibitory protein (FLIP; or CFLAR or c-FLIP) 
induce unexpected death about embryonic day 10.5 (E10.5) 
of development, followed by excessive cell death.(85-88)

Necroptocys in 
Inflammation and Disease

FLIP is an uncommon apoptotic factor causes a switch in 
the catalytic activity of caspase 8 from apoptosis activation 
to necroptosis suppression, and un-cleaved caspase 8 
suppresses necroptosis without activating apoptosis. 
Genetic experiments demonstrated unequivocally that 
ablation of both RIPK3 and FADD, which inhibit both 
apoptotic and necroptotic signaling, was the only way 
to save FLIP-deficient animals' embryonic lethality.(89) 
The processes that govern necroptosis, on the other hand, 
include variables that alter the stability of RIPK1–RIPK3-
containing complexes as well as the inhibitory effect of the 
FADD-caspase 8-FLIP complex.
	 TNF-induced necroptosis is associated with a 
powerful burst of ROS production, which has been shown 
to be partially inhibited by the antioxidant butylated 
hydroxyanisole (BHA).(90-93). For a decade, it was assumed 
that unregulated ROS production was the mechanism 
by which necroptosis was carried out, with JUN amino-
terminal kinase (JNK) signaling (94), NADPH oxidase 1 
(NOX1) (95) and abnormal mitochondrial metabolism all 
being implicated (96).
	 Cells will release DAMPs during necroptosis, leading 
to the presumption that necroptosis is pro-inflammatory. 
In all of the experimental models studied, necroptosis was 
followed by significant inflammation. However, the release 
of DAMPs is just one way for RIPKs to cause inflammation, 
and new research suggests that the necrosome also plays 
a part in the direct development of pro-inflammatory 
cytokines.(16) Since RIPKs are involved in inflammation, 
cell survival, and cell death in a variety of tissues and 
cell types, they are expected to be involved in a variety of 
pathologies, as supported by research in a variety of disease 
models in animals.(16)
	 Apoptosis is a “clean” way for a cell to die. It doesn’t 
induce any inflammation or immunology disorders. Dying 
cells were degraded into apoptotic body and then cleaned 
by phagocytes.(97-103) On the other hand, necroptosis and 
pyroptosis, are a much "dirtier" way. Both necroptosis and 
pyroptosis mediated by Mixed Lineage Kinase Domain 
Like Pseudokinase (MLKL), cause the plasma membrane 
to "burst," release their intracellular contents all together 
into the surrounding milieu and stimulate immune system 
pro-inflammatory responses. As a result, while apoptosis 
is anti-inflammatory, necroptosis and pyroptosis are pro-
inflammatory.(104-106)
	 Necroptosis' in vivo has been proposed to play a 
role in a number of diseases, including atherosclerosis, 
pancreatitis, inflammatory bowel disease, and some cancers 
(107–109). The ability of necroptosis to target a specific cell 
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Figure 3. Apoptosis, necroptosis and inflammation can all be triggered by the same stimulus, such as TNF.(16) (Adapted with 
permission from Springer Nature).

death pathway has tremendous therapeutic promise and will 
likely be important as a therapy for inflammatory illness.
(110)

Cell shrinkage prior to cell death was related to a non-
inflammatory mechanism of cell clearance in early 
studies, while cell swelling prior to death was linked 
to an inflammatory response.(111-113) Each type has a 
significant impact on the biological consequences of cell 
death. Dying cells, release molecular signals to phagocytes 
and guide them to phagocyte the dying cells and to induce 
immune response. Despite its resemblance to phagocytosis, 
efferocytosis is a distinct mechanism involving complex 
receptors, bridging molecules, and downstream signaling 
pathways.(115,116) 
	 Efferocytosis resembles macropinocytosis in its 
engulfment of apoptotic cells.(117) It is different from regular 
phagocytosis in term of its mediators, and its intracellular 

The Clearance of Dead Cells by 
Efferocytosis

signalling pathways once an apoptotic cell is engulfed by 
phagocytes. During efferocytosis, GTPases Rac1 controls 
the engulfment of the apoptotic body, and the formation of 
a large phagosome called an efferosome that surrounds the 
newly swallowed apoptotic cell. A new GTPases known as 
Rab-17 seems to be involved in efferosome maturation in 
which. the end result is identical to phagocytosis: a series of 
lysosome fusion events delivers hydrolytic enzymes to the 
maturing efferosome. This, combined with its progressive 
acidification, creates harsh conditions that eventually kill 
the apoptotic cell.(118,119)
	 Efferocytosis is a highly regulated process that starts 
with the presence of an apoptotic cell. The exposure of PtdSer 
to the exofacial leaflet of the phospholipid membrane during 
the early stage of apoptosis(120,121), provides a “find me” 
signal for chemokine release to recruit macrophages into the 
site of cell death. The macrophages then induce the bridge 
molecules and receptors expression to leash the “catch me” 
signals and the dying cells later engulfs by the macrophages 
while generates the large spacious efferosome in the "eat me" 
process, such as generate interleukin (IL)-10, transforming 
growth factor (TGF)-b, and Prostaglandin E2 (PGE2) during 
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the engulfment of apoptotic cells, making efferocytosis 
anti-inflammatory.(122-125) Efferocytosis is critical for 
inflammatory resolution not only because it eliminates dead 
cells, relieves tissue obstruction, and prevents the release 
of phlogistic cellular contents, but also because it promotes 
tissue repair and wound healing.(126,127) 
	 The cell releases soluble signals into the environment 
during apoptosis to attract macrophages and activate their 
scavenging ability. The “find me” signals are changed, such 
as lysophosphatidylcholine (LPC) (128) and sphingosine 
1-phosphate (S1P); and nucleotides, such as ATP and UTP 
(129); and chemokines, such as CX3CL1 (also known 
as fractalkine) (130). The signal is depend on the type of 
phagocyte and the number of dead cells.(131) Furthermore, 
the variety of find-me signals indicates that dead cells are 
recognized specifically by macrophages due to intrinsic 
redundancy.
	 Apoptosis-specific “find-me signals” LPC and S1P 
Caspases 3 cleaves and activates calcium-independent 
phospholipase A2, which then synthesizes LPC from 
phosphatidylcholine throughout apoptosis.(128) While some 
other activated protein kinases SPK1 and SPK2 (132,133), 
and phosphorylate the membrane lipid sphingosine to 
produce S1P. LPC is released following the activation of 
ATP-binding cassette transporter 1 (ABCA1).(134)
	 Non-apoptotic cell death compromises plasma 
membrane integrity, and surrounding cells are exposed to 
inflammatory signals released by the ruptured, dying cells, 
in comparison to apoptosis. On non-apoptotic cell death, 
pathogen-associated molecular patterns (PAMPs) was 
released when cells infected with intracellular pathogens, 
while DAMPs are produced by cells and can be released 
when they die. DAMPs cause inflammatory responses and 
may also function as macrophage chemoattractants. DAMPs 
include genomic and mitochondrial DNA, nuclear proteins 
(high-mobility group protein B (HMGB), histones), and 
other metabolically diverse individuals (135), cytoplasmic 
proteins (S100), cytokines (IL-1α, IL-33, IL-36) and other 
small molecules (ATP, UTP, uric acid crystals) (136). 
Furthermore, during pyroptosis, inflammasome-mediated 
caspase 1 activation produces the inflammatory cytokines IL-
1b  and  IL-18,  leading  to  inflammatory  immune  activation 
after cellular death.(137) While dying cells display ‘eat-me’ 
signals on their cell surface, healthy neighbours  cells bear 
‘don’t-eat-me’ signals to be recognized by phagocytes.(6) 
	 A common feature of all kinds of cell death is the loss 
of phospholipid asymmetry in the plasma membrane. The 
inner leaflet of the plasma membrane of most stable cell types 
contains phosphatidylethanolamine and PtdSer, whereas the 

outer leaflet has phosphatidylcholine and sphingomyelin. 
In healthy cells, the ATP-dependent activity of the flippase 
ATP11, which limits PtdSer to the plasma membrane's  inner  
leaflet  and  inhibits  its  lateral  movement, is required for 
the creation and maintenance of membrane lipid asymmetry.
(138) The tdSer exposure on the surfaces of apoptotic cells 
during apoptosis is promoted by caspase 3 cleavage of 
ATP11 coupled with caspase 3-dependent activation of the 
scramblase XK-related protein 8 (XKR8).(80)
	 Exposed lysophoshatidylcholine (LPC) on dying cells' 
plasma membranes may bind to IgM, which then binds to 
fragment crystallizable (Fc) receptors on phagocytes, such 
as macrophages.(139) As a result, LPC is frequently used as 
a find-me and eat-me signal. Proteins located in the lumen 
of the endoplasmic reticulum, such as calreticulin, may be 
exposed at the plasma membrane of dying cells and function 
as an eat-me signal in the absence of don't-eat-me signals.
(140) Calreticulin is identified by phagocytes via the LDL 
receptor-related protein 1 (LRP1; also known as CD91), 
which collaborates with complement component C1q and 
mannose-binding lectin to identify it (MBL).(140,141)
	 Each stage of efferocytosis is regulated by molecular 
mechanisms that enable the engulfed cell to be rapidly 
broken down and the phagocyte to be recovered. Two 
primary mechanisms for actin reorganization exist during 
efferocytosis, and both of them converge on the central 
regulator, which is the RHO family small GTPase RAC1. 
The first system mediates RAC1 activation. The second one 
induce RAC1 activation via guanine nucleotide exchange 
factor (GEF) DOCK180, the phagocytic regulatory protein 
engulfment, and cell motility protein (ELMO).(142) The 
SH3 domain of DOCK180 is then able to interact with 
ELMO.(143) The DOCK180–ELMO complex acts as a 
GEF for RAC1, causing it to be activated. RAC1 can then 
direct localized actin polymerization necessary to coat 
or grab the cargo by activating WASP family nucleation-
promoting proteins SCAR and WAVE, which recruit the 
ARP2/3 complex and work together to create an actin 
nucleation center after being activated by either method.
(48) The ARP2/3 complex not only forms a nucleation 
center for de novo actin polymerization, but it also binds 
to existing actin filaments, enabling new actin synthesis 
while retaining actin networking and branching, which are 
essential for phagosome formation.(144)
	 Macrophages are professional phagocytes that play 
a role in innate immune responses, but they also play a 
role in homeostasis and disease. Detection of PAMPs by 
macrophages during infection results in the development of 
cytokines and chemokines, which promote the recruitment 
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of other cells and initiate an immune response. Macrophages 
can promote or maintain adaptive immunity by degrading 
pathogen-derived antigens and presenting them to T cells.
(145) Furthermore, macrophages sterilize tissue, resolve 
inflammation, and avoid further immune system activation 
by engulfing and degrading bacteria.(146)

An effective efferocytosis assert three outcomes including 
the elimination of the inflammatory response, proposing self-
tolerance, and then activating the pro-resolving pathways. 
All these three outcomes will prevent secondary necrosis 
and the damaging release of pro-inflammatory mediators. 
However, when efferocytosis is disrupted, these functions 

Defective Efferocytosis in Chronic 
Inflammation Diseases: 
Therapeutic Implication

Figure 4. Mechanisms of impaired efferocytosis in disease.(5) (Adapted with permission from Springer Nature).

are jeopardized, resulting in increased inflammation, 
slowed disease resolution, and disease progression.
(82,100,103,131,147) 
	 Pathogen invasion often results in host cell death, 
while the pathogens are survive in these dying cells. This 
pathogen may induce secondary necroptosis and spread 
the infection. Rapid efferocytosis in this case will depend 
on many factors such as the type of pathogen, and infected 
cells, the efferocytes involved, and also the host genetic 
polymorphism.(146,148)
	 The fact that efferocytosis has so much redundancy in 
the identification of dying cells emphasizes its significance 
in pathophysiology, as seen in Figure 4. For example in 
glomerulonephritis autoimmune disease losing milk fat 
globule-EGF factor 8 (MFG-E8) as a bridging molecule to 
binding with phagocyte lead efferocytosis impairment. The 
other factors affecting this impairment may involve losing 
levels of the efferocytosis receptor MER proto-oncogene 
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tyrosine kinase (MERTK) or impairment of the efferocytosis 
bridging molecule C1q by peroxisome proliferator-
activated receptor-δ (PPARδ).(148) Reduced levels of 
MERTK not only contribute to efferocytosis impairment 
in autoimmune disease, but also inflammation disease such 
as atherosclerosis and diabetes. Losing MERTK as results 
by cleavage by disintegrin and metalloproteinase domain-
containing protein 17 (ADAM 17) in atherosclerosis also 
plays an important role in this impairment. But in obesity 
and diabetes MERTK cleavage is driven by ADAM9 due to 
downregulation of miR-126. The MERTK cleavage product, 
soluble MER (sMER) may also play a role to worsening 
the efferocytosis impairment due to compete for the binding 
with growth arrest-specific protein 6 (GAS6) that is by 
apoptotic cells. Efferocytosis impairment in atherosclerosis 
may contributed by decreased levels of cell-surface LRP1 
by epsin-mediated internalization of the receptor. In obesity 
and diabetes, reduction levels of both EPO and the EPO 
receptor also impairs efferocytosis efficiency due to direct 
to PPARγ expression. However, more research is needed to 
find out all these factors in these disease.(149)
	 Lipoxins, resolvins, protectins, and maresins are 
examples of specialized pro-resolving mediators (SPMs) 
that regulate inflammation resolution.(150) SPMs regulate 
inflammation and facilitate tissue repair without jeopardizing 
host defense.(150-152) Efferocytosis is an important cellular 
process in the resolution of inflammation. The absorption of 
ACs improves the biosynthesis of SPMs, and SPMs, in turn, 
promote the clearance of ACs in a feed-forward manner.
(149-154) Defective efferocytosis and SPM biosynthesis are 
linked to chronic diseases such as atherosclerosis and cause 
the large necrotic cores to rupture easily.(155,156) 
	 Necroptotic  cells  (NCs)  have  recently  been  identified 
as a major driver of atherosclerotic plaque necrosis.(157-
159) Since necroptosis is a pro-inflammatory type of cell  
death  (18,160),  the  accumulation  of  NCs  in  tissues  
may be harmful. NCs tend to be cleared in a different and 
less effective  manner  than  ACs,  according  to  previous 
research.(159,161) Any effective pharmacologic treatments 
which improve efferocytosis will correct the atherosclerosis.
(162-164) 
	 Efferocytosis may be amenable to pharmacological 
targeting as a pathogen clearance and inflammation 
suppression mechanism. In reality, the idea of encouraging 
efferocytosis  as  a  way  to  reduce  plaque  formation  
is already being discussed by the atherosclerosis field 
(127). Using the body's own pathogen-killing and 
immunoregulation processes to fight disease is an appealing 
strategy (147).

	 Efferocytosis malfunction causes significant illness, 
whereas efferocytosis activation, in combination with 
apoptotic cell clearance and LAP machinery activation, 
promotes immune silence by generating anti-inflammatory 
signals. Activating LAP and efferocytosis to promote an 
inflammatory response may be useful in the treatment 
of different cancers, since current data suggests that 
efferocytosis and LAP engagement are favorable in a variety 
of situations. Therapeutics targeting components of these 
pathways might augment existing cancer treatments such 
as checkpoint inhibition by increasing the immunogenicity 
of apoptotic tumor cells. As the science of efferocytosis 
and associated molecular pathways continues to grow, new 
insights into the activation and regulation of the response 
to dying cells are expected to lead to the creation of novel 
therapy paradigms for cancer, autoimmunity, dementia, and 
beyond.(6)

Conclusion

Efferocytosis, or the removal of apoptotic cells by 
professional, non-professional and also specialized 
phagocytes, is essential for tissue homeostasis. Multiple 
forms of cell death have been studied, each which has its 
own mechanism with a different pathway depending on 
the environment. Clearing dead cells and their associated 
cellular debris is important in the physiology as billions of 
cells die during mammalian embryogenesis as part of organ 
development and in adult to maintain tissue homeostasis.. 
The connections between efferocytosis and the resolution of 
inflammation will shed a great impact in health and disease.
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