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ABSTRACT  

The paper presents theoretical research conducted for the optimization of the working process of variable 

width ploughs. Thus, were determined multivariable regression functions for the traction force of the plough 

with variable working function of the control parameters: working depth, working width and working speed. The 

use of these theoretical considerations of the optimal points sought lead to the opportunity of making 

assessments on the possibilities to conduct their experimental validation. Conditions for an experimental plan 

were formulated to highlight such optimal points and the theoretical results were validated through 

experiments. 

 

ABSTRACT  

Lucrarea prezintă cercetări teoretice realizate pentru optimizarea procesului de lucru al plugurilor cu lățime 

variabilă. Astfel, au fost determinate funcțiile de regresie multivariabilă pentru forța de tracțiune a plugului cu 

lățime de lucru variabilă în funcție de parametrii de control: adâncimea de lucru, lățimea de lucru și viteza de 

lucru. Utilizarea acestor considerații teoretice ale punctelor optime căutate duce la oportunitatea de a face 

evaluări cu privire la posibilitățile de efectuare a validării lor experimentale. Condițiile pentru un plan 

experimental au fost formulate pentru a evidenția astfel de puncte optime, iar rezultatele teoretice au fost 

validate prin experimente. 

 

INTRODUCTION 

 Tillage is the primary and most energy consuming operation in farming operations. The purpose of 

tilling the land is to ensure favourable soil conditions by cutting and turning the soil for further seeding or 

transplanting (Mouli et al., 2018). Tillage involves the operations starting from cutting and breaking, followed 

by turning or moving the top layer of soil, this normally being performed in a single pass. The aim is to create 

a desired final state from the initial conditions of the soil by mechanical manipulation. This mechanical 

operation requires a significant amount of energy, not only because of the large amount of the soil mass that 

must be moved but also because of the selection of the tillage tool and the fixation of its depth and speed of 

work (Ibrahimi et al., 2017). 

 The mouldboard plough is normally the most used tillage equipment in the world. The variable width 

plough is a very useful farm equipment for performing the tillage work, being directly mounted on the tractor’s 

PTO. It works on both the left and right side having a bilateral turnover mechanism that automatically reverses 

the plough position (Yin et al, 2018). The mechanical function of ploughs is to cut the soil layer and turn it to 

the side. Thus, it is possible to incorporate and mix fertilizers and plant residues in the soil. The use of ploughs 

in wet seasons will prepare the soil for good ventilation, will help retain water and create furrows resistant to 

erosion (Luo et al., 2019, Zhu et al., 2016). 

 Researches were conducted by numerous researchers in the field, regarding the optimum working 

conditions for soil processing machinery (ploughs, chisels, loosening equipment) in the last years, from 2007-

2016, studying the use of ante-mouldboard in the construction of ploughs (Biriş S.Şt. et al., 2007), soil particles 

kinematics during the tillage working process using ante-mouldboard tools (Biriş S.Şt. et al., 2008), determining 

the stress distribution that appears on the lamellar surface of the mouldboards for modelling and optimization 

(Bungescu S. et al., 2008), nonlinear friction and resistance, generating sources of optimal points in the energy 

field of agricultural aggregates working process (Cârdei P. et al., 2017), or the determination of subsoilers drag 

force influenced by different working depths and speed (Croitoru Şt. et al., 2016). 
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 Many attempts have been also made to have a better understanding of the complex nature of the 

tillage process using conventional or reversible ploughs (Abbaspour-Gilandeh M. et al., 2020; Akbarnia et al., 

2014; Godwin et al., 2007; Irshad Ali et al., 2015; Lortz et al., 2021). 

 
MATERIALS AND METHODS 

The processing of experimental data is made in order to obtain multivariable regression functions of 

polytropic or polynomial form that allow the appreciation of the functional, energetic and qualitative indices of 

the plough with variable working width. During the experimental tests, independent variable elements were 

modified: travel speed, working depth and working width. 

It was set out to determine the multivariable regression functions for the traction force of the plough with 

variable working width, dependent of slippage of the tractor's drive wheels, variation of working depth, variation 

of working width and variation of the working speed. 

For their calculation, the analytical expressions of some multivariable functions will be determined, 

defined as a function of the type: 

y=f(xi,a0,ai,aii,aij)      (1) 

 

expressing the dependence of the function y on the independent variables xi and on the constants a0, ai, aii, aij.. 

Due to the complexity of solving the problem, it is necessary to go through several stages: drawing up an 

adequate program for organizing experiments; determining the values of the constants; testing the significance 

of variables, testing the adequacy of the function’s form (Constantinescu I., 1980). 

The stages of a statistical program for organizing experiments are: 

• formulating the problem and establishing the objectives of the experimental program; 

• choosing independent variables that influence the dependent variable; 

• establishing the range of variation (possible technologically) for each independent variable; 

• choosing, in certain intervals, some values (called levels) that the independent variables will have; 

• determining the size of the experimental error by repeating several experiments in the central point; 

• execution of specific experiments in the program in a random order; 

• measurement of the dependent variable for each experiment; 

• statistical analysis of data and obtaining functional relationships between independent and dependent 

variables; 

• interpretation of results of the statistical analysis. 

The experimental research programs used to determine the function y are structured according to the 

following elements: 

• the number n* of experiments performed for different values of the independent variables, necessary 

for determining the regression coefficients;  

• the number of experiments performed for identical values of the independent variables, necessary to 

determine the experimental error; 

• levels of independent variables; 

• the content of the experiments. 

The total number of experiments is: 

n=n*+n0                     (2) 

where n0 is the number of identical experiments required to determine the experimental errors. 

The number of levels is calculated using the relation (Constantinescu A., 2011):  

N≥ √n*
m1                    (3) 

 

where m1  is the total number of independent variables contained by the function. 

Following is presented the calculation algorithm used to determine the regression coefficients using 

the least squares method.  

To determine the values of the unknown regression coefficients, denoted generically with ki, through 

linear mathematical regression, the functionals of the form T(ai,xj) were formed, as a sum of the squares of the 

differences between the values obtained by applying the mentioned equations and the real values measured 

in experiments where i = 1 ÷ n, n being the number of unknown coefficients and j = 1 ÷ m, m being the number 

of measured quantities.  

T=∑(y(xi)-yi)
2                                                         (4) 
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where yi is the vector of the independent variable measured in the experimental tests, and y(xi) is the vector 

of the independent variable calculated. 

To determine the coefficients by mathematical regression, the least squares method was used, 

imposing the condition that the function T be minimal. 

The minimum of the function T  in relation to ai is obtained by cancelling the partial derivatives of Tq 

with respect to the same coefficients, namely 
∂T

∂ai
=0 

The partial derivatives of the functional T were determined according to each of them and the unique 

determined system was created, of n equations with n unknowns:  

 {
∂T

∂ai
=0,    i=1÷n                                                                    (5) 

To solve it numerically, the equations of the system were explained and the constants were eliminated 

to obtain the equivalent form that can be written as a matrix product: 

ZY=X                                                                                   (6) 

 

where: Z is the matrix of the system, X is the matrix of free terms and Y is the matrix of unknown coefficients 

ai, Y=(ai). 

 The determination of the vector Y formed by the unknown coefficients, was done by the numerical 

solving by mathematical regression of the equation (6) through the inverse matrix method, using the data 

strings obtained from the experiments. 

            Y=Z-1X                                            (7) 

 To solve equation (6), a matrix calculation program in Mathcad was used. By replacing the coefficients 

in the analytical formulas, resulted the numerical forms of these functions. 

 Testing the significance of the coefficients is done using the Fischer Test which is a parametric test 

that verifies the equality of the dispersions of two normally distributed independent variables. To test the 

significance of the coefficients using the Fisher test, the sum of the squares of the experimental errors is 

calculated: 

Se = ∑ (yi + ∑
yi

no

n
i=n∗+1

)
2

n
i=n∗+1

                        (8) 

The sums for the coefficients are: 

So=n∙bo
2                         (9) 

Sj=aj
2∑ Xij

2n
i=1 , j = 1, 2, 3,…m1        

 

The ratios are calculated: 

Fo=
So(no-1)

Se
               (10) 

Fj =
Sj(no−1)

Se
  j = 1,2,3, … . , m1  

If F0    F (1-, 1, no - 1) and Fj    F (1-, 1, no - 1) coefficient a0 respectively coefficients aj are significant. If this 

condition is not met, for one or more coefficients, the respective coefficients are equal to zero. Critical values 

F (P = 1 -  ,  k1= 1,   k2= no - 1) are given (Reich R., 1978) for a level of significance  = 0.95. 

 To test the adequacy of the form of the function with the Fisher test, the ratio is calculated: 

 

F =
(S−Se)(no−1)

Se(n−no−m1)
< F(1 − α, n∗ −m1, n0 − 1)             (11) 

 

where n* represents the number of different experiments, and m1 is the number of function coefficients (without 

the coefficient a0). If the condition is met then the form of the function is adequate (Popescu & Badescu, 2000). 

 
RESULTS 

Expression of traction force by multivariate polynomial functions  

 In order to determine the coefficients of the multivariable functions, the independent variables that 

influence the dependent variable and their variation interval were chosen: 

• Working depth: a = 0.1 – 0.3 m; 

• Working speed: v = 0.9 – 1.9 m/s; 

• Working width: B=0.8 – 1.2 m, which corresponds to a working width of the plough body, b = 0.2...0.4 m. 
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The experimental test program for determining the multivariable functions for the traction force is 

presented in table 1. 

Table 1 

Experimental results for determining the traction force 

Sample 
no. 

Slippage 

coefficient δi [%] 
Working 

width B [m] 
Working depth ai 

[m] 

Speed vi  
[m/s] 

Average traction 
force Ft [N] 

1 13.80 0.80 0.10 0.938889 17150 

2 15.20 0.83 0.12 1.569444 17560 

3 16.70 0.83 0.13 1.886111 17590 

4 14.40 0.83 0.20 0.908333 20960 

5 16.50 0.83 0.22 1.347222 21170 

6 17.70 0.83 0.23 1.816667 22100 

7 15.80 0.82 0.30 0.886111 23530 

8 17.20 0.83 0.33 1.25 23850 

9 18.80 0.83 0.32 1.469444 24130 

10 14.60 1.01 0.10 0.891667 18240 

11 15.80 1.04 0.12 1.472222 19150 

12 17.90 1.03 0.13 1.861111 19970 

13 15.20 1.04 0.20 0.877778 21760 

14 17.70 1.04 0.21 1.294444 22060 

15 18.30 1.04 0.23 1.733333 22950 

16 16.20 1.04 0.30 0.805556 23560 

17 20.40 1.04 0.31 1.188889 24320 

18 23.70 1.04 0.32 1.597222 24480 

19 15.70 1.20 0.10 0.869444 20980 

20 18.00 1.23 0.12 1.447222 21160 

21 19.10 1.23 0.11 1.741667 21440 

22 16.80 1.23 0.20 0.875 24280 

23 18.90 1.23 0.21 1.269444 24320 

24 19.80 1.22 0.20 1.694444 24720 

25 17.40 1.23 0.30 0.797222 26240 

26 21.20 1.23 0.31 1.138889 26840 

27 24.20 1.23 0.30 1.744444 28130 

 

The matrix of the correlations of the process parameters measured during the experiments is given in 

Table 2. It was constructed by calculating the correlation coefficient for each pair of data strings representing 

the columns of Table 1. 

Table 2 

Matrix of correlation coefficients of the parameters measured during the experiments 

 F [N] a [m] b [m] v [m/s] δv [%] 

F [N] 1.000 0.839 0.486 -0.073 -0.717 

a [m] 0.839 1.000 0.000 -0.223 -0.504 

b [m] 0.486 0.000 1.000 -0.061 -0.449 

v [m/s] -0.073 -0.223 -0.061 1.000 -0.487 

δv [%] -0.717 -0.504 -0.449 -0.487 1.000 

 

The values of the elements of the correlation matrix led to very important conclusions for the analysis 

of experimental data. 

• The traction force is strongly correlated (directly) with the working depth and is significantly 

correlated (directly) with the working width, and strongly correlated (inversely) with the skidding; 

• The traction force is not significantly correlated with the working speed, at least in the 

experimental interval. 

The first form of the traction force function is the Goreachkin function (12), in which the values of 

coefficients f, k and ε, which are considered to be constant, will be numerically determined. Also, G, the weight 

of the plough-tractor unit used in the experiments, is constant. 

Ft=fG + kaB + εaBv
2                                                            (12) 

where: Ft the draft force, f is a coefficient of friction between metal and soil, k is a coefficient that characterizes 

the specific deformation resistance of the soil, a is the working depth, B = nb is the plough working width where 

n is the number of mouldboards, ε is a coefficient that depends on the surface of the active shape of the 

mouldboard and to the soil properties, and v is the working speed. 
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To determine the values of the coefficients f, k and ε by linear mathematical regression, the functional 

T(f, k, ε, G, ai, Bi, vi) was formed as a sum of the squares of the differences between the values obtained by 

applying equation (1) and the real values measured during experiments ai, Bi, vi from Table 1. 

 

T=∑ (F-Fi)
2=∑(fG+kaiBi+εaiBivi

2-Fi)
2→min                 (13) 

 

 To determine coefficients f, k and ε, by mathematical regression, the condition was imposed that T 

expressed by equation (13) be minimal. 

The minimum of the function T in relation to f, k and ε is obtained by cancelling the partial derivatives 

of T in relation to the same coefficients, namely 
∂T

∂f
=0, 

∂T

∂k
=0 and 

∂T

∂ε
=0. 

The partial derivatives of the functional T were determined according to each of them and the unique 

determined system was created, of 3 equations with 3 unknowns: 

 

{
 
 

 
 

∂T

∂f
= 2∑(fG + kaiBi + εaiBivi

2 − Fi)G = 0

∂T

∂k
= 2∑(fG + kaiBi + εaiBivi

2 − Fi)aiBi = 0

∂T

∂ε
= 2∑(fG + kaiBi + εaiBivi

2 − Fi)aiBivi
2 = 0

                                (14) 

 
For the numerical solving of the system, the constants were eliminated and the equivalent form was 

obtained which can be written as a matrix product:  

 

{

f∑G2 + k∑GaiBi + ε∑GaiBivi
2 = ∑GFi

f ∑ GaiBi + k∑ai
2Bi

2 + ε∑ai
2Bi

2vi
2 = ∑ FiaiBi

f ∑ GaiBivi
2 + k∑ai

2Bi
2vi

2 + ε∑ai
2Bi

2vi
4 = ∑ FiaiBivi

2

↔ ZY = X          (15) 

where: 

Z = (

∑G2 ∑GaiBi ∑GaiBivi
2

∑GaiBi ∑ai
2Bi

2 ∑ai
2Bi

2vi
2

∑GaiBivi
2 ∑ai

2Bi
2vi

2 ∑ai
2Bi

2vi
4

)                      (16) 

𝑋 =

(

  
 

∑𝐺𝐹𝑖

∑𝐹𝑖𝑎𝑖𝐵𝑖

∑𝐹𝑖𝑎𝑖𝐵𝑖𝑣𝑖
2
)

  
 

 

Y=(
f
k
ε
) 

 

 The determination of the vector Y formed by the unknown coefficients (f, k, ε) that need to be calculated, 

was done by numerical solution through mathematical regression of equation (16), obtained from the matrix 

equation (15) by the inverse matrix method, using the data strings obtained from experiments. 

 

Y = Z−1X                                               (17) 

 

 Table 1 shows the values of the independent and dependent variables used in the mathematical 

regression operation performed using a calculation program in Mathcad. 

 The weight of the plough-tractor unit G was constant, 49830 N, corresponding to a mass of the tractor 

of 4480 kg and of the plough of 600 kg. 

 Using a calculation program in Mathcad, from equation (12) and the experimental data from table 1, 

coefficients (f, k, ε) were determined, resulting in the mathematical model (13) of the function. 

 

   Ft = 0.317G + 27850aB + 1188aBv2                                 (18) 

where Ft represents the traction force. 

The deviations of the calculated values from the experimental ones for the traction force are calculated 

with the relation: 
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A =
|Fti−Fci|

Fti
 ∙ 100,        [%]                                                  (19) 

 

where Fci is the vector of traction forces calculated using relation 13 

Table 3 shows the values of the traction force measured during the experiments and the values of the 

traction force calculated using relation (19) and the deviation. 

Table 3 

Deviations of the calculated values from the experimental ones for the traction force 
 

Sample 
no. 

Average measured 

traction force, Fi [N] 

Average calculated 

traction force, Fci [N] 

Deviation 

A [%] 

1 17150 18108.655 5.59 

2 17560 18862.062 7.415 

3 17590 19257.692 9.481 

4 20960 20582.413 1.801 

5 21170 21275.614 0.499 

6 22100 21861.364 1.08 

7 23530 22876.921 2.776 

8 23850 23932.717 0.347 

9 24130 23874.419 1.059 

10 18240 18705.061 2.55 

11 19150 19593.696 2.317 

12 19970 20076.665 0.534 

13 21760 21779.665 0.09 

14 22060 22313.546 1.149 

15 22950 23311.649 1.576 

16 23560 24725.883 4.949 

17 24320 25316.234 4.096 

18 24480 26072.942 6.507 

19 20980 19246.519 8.263 

20 21160 20274.505 4.185 

21 21440 20052.263 6.473 

22 24280 22871.204 5.802 

23 24320 23484.382 3.436 

24 24720 23423.814 5.243 

25 26240 26351.243 0.424 

26 26840 27002.596 0.606 

27 28130 27406.275 2.573 

 

The maximum deviation thus determined between the experimental data and the calculated data was 

9.481%, resulting in a good accuracy of the proposed model. The correlation coefficient calculated using 

formula (12) in which the string X was replaced with Fi and the string Y with Fci was 0.946, demonstrating a 

very strong correlation between the two strings. 

If conditions are imposed that include some of the variables of the traction force, conditions from which 

a variable is removed, then, in some cases, functions that have extreme values depending on some of the 

remaining variables result. This was achieved using as an objective function the traction force (Goriachkin 

variant) and the condition to reach a given productivity. 

Thus, we have the traction force resulting from the interpolation of the experimental data using the 

least squares method, as well as function (18) and the additional condition: 

W = B ∙ v = const                                                                        (20) 

 

By eliminating the working speed between relations (18) and (20), a traction force function is obtained 

depending on the working width of the plough with variable width and on the working depth. 

 

Ft = 0.317G + 27850aB +
1188aW2

B
                                               (21) 

 

Figure 1 shows the variation of the traction force depending on the working width, for three fixed 

productivities and the working depth a = 0.3 m in the case of the plough with variable working width. 
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Fig. 1 - Variation of traction force with working width, for three productivities 

 

It is observed that the minimum points of the traction force move with the increase of the programmed 

productivity, in the sense of increasing the optimal working width and, obviously, the optimal force. 

The values of the optimal widths of the traction force and of the working width of the plough are 

calculated with relations: 

 

Fopt = fG + 2aW√kε      (22) 

 

Bopt = W√
ε

k
      (23) 

 

For the three productivities used (fig. 1), the optimal points are obtained with the coordinates given in table 4. 

Table 4 

Coordinates of the optimal points of the curves in Fig. 1 

Productivity 

W [ha/h] 

Optimal width 

Bopt [m] 

Optimal traction width 

Fopt [N] 

0.75 0.596 19391 

1.00 0.794 20453 

1.25 0.993 21516 

  
 Figure 2 shows in an orthogonal coordinate system the variation of the traction force as a function of the 
working width for the required working productivity. 

 
 
 

 
Fig. 2 - Variation of the traction force depending on the working width for the required productivity 

 

As can be seen, the dependence of the traction force on the required productivity is not linear. It can 

also be seen see that there is a linear dependence between the working width and the traction force. 

Further, the traction force is presented as a second-degree polynomial function, dependent on working 

depth and width, working speed and slippage: 

Ft = c0 + c1a + c2B + c3v + c4δ + c12aB + c13av + c14aδ + c23Bv + c24Bδ + c34vδ + c11a
2 + c22B

2 + c33v
2 + c44δ

2     (24) 

where:  

c0, …, c44 are the regression coefficients; 
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a = 0.1 – 0.3 m is the working depth; 

B = 0.8 – 1.2 m is the working width; 

δ = 13.8 – 24.2 % is the coefficient of slippage of the tractor's drive wheels; 

v = 0.9 – 1.9 m/s is the working speed. 

 

 Table 1 shows the values of the independent variables and the dependent variable used in the 

calculation program in Mathcad, to determine the regression coefficients. After calculating the regression 

coefficients, the following multivariable polynomial function was obtained: 

 

Ft = 39949.216 + 20545.854a − 37064.489B − 13259.116v − 102.292δ − 77361.486aB − 23654.742av +

10539.344aδ − 6712.583Bv + 2861.022Bδ + 1512.639vδ − 143852.709a2 + 10965.706B2 − 136v2 −

205.411δ2                                  (25) 

 

Next, the deviation of the traction forces calculated using relation (25) in relation to the traction forces 

measured in the experimental tests was calculated. Table 5 shows the values of the traction force measured 

during the experiments, the values of the traction force calculated using the relation (25) and the deviation. 

The maximum error between the experimental data and the calculated data was 2.442%, thus resulting in 

a good accuracy of the proposed model. The correlation coefficient calculated in which the string X with Fi and 

the string Y with Fci were replaced is 0.998, demonstrating a very strong correlation between the two strings. 

The coordinates of the optimal point of the interpolation function (22), isolated (which is not located on 

the boundary of the definition domain), were identified by solving the linear system of equations obtained by 

cancelling the partial derivatives of the function. 

Table 5 

Measured traction forces, calculated traction forces and deviation 
 

Sample 
no. 

Average measured traction 

force Fi [N] 

Calculated average traction 

force Fci [N] 
Deviation [%] 

1 17150 17109.91 0.234 

2 17560 17475.559 0.481 

3 17590 18019.533 2.442 

4 20960 21005.634 0.218 

5 21170 20997.827 0.813 

6 22100 21958.025 0.642 

7 23530 23400.92 0.549 

8 23850 23815.723 0.144 

9 24130 24261.806 0.546 

10 18240 18406.683 0.914 

11 19150 19015.664 0.701 

12 19970 19567.746 2.014 

13 21760 21938.222 0.819 

14 22060 21813.508 1.117 

15 22950 23081.479 0.573 

16 23560 23831.905 1.154 

17 24320 24358.785 0.159 

18 24480 24502.542 0.092 

19 20980 20762.76 1.035 

20 21160 21512.473 1.666 

21 21440 21371.511 0.319 

22 24280 24278.629 0.006 

23 24320 24424.82 0.431 

24 24720 24821.678 0.411 

25 26240 25983.627 0.977 

26 26840 26867.11 0.101 

27 28130 28055.923 0.263 

 

The second-degree polynomial function for the traction force, which interpolates the experimental data, 

can, however, be minimized in order to find an optimal point through a constraint minimization operation.  

The function arguments are restricted in the experimental working range or at most in a slightly wider 

range, in the vicinity of an experimental point (sample 14: a=0.21 m, B=1.04 m, v=1.29 m/s, δ = 17.7 %). The 

optimal coordinate point is obtained: aopt = 0.2 m, Bopt = 1m, vopt = 1.7333 m/s, δopt = 18.33, Fopt = 20380.55 N. 



Vol. 65, No. 3 / 2021  INMATEH – 

 

 137  

This optimal point is acceptable, but moving the starting point away from the experimental points may 

cause unacceptable results. 

For the skidding of the tractor’s motor wheels of 15%, the working speed v=1.4 m/s and three values of 

the working depth, were calculated the traction forces with relation (25), the data being presented in table 6. 

 

Table 6 

Values calculated for the traction force 

Working width 
B [m] 

Traction force [daN] 

a = 0.1 m a = 0.2 m a = 0.3 m 

0.8 16238.6 20286 21456.4 

0.85 16579.1 20239.7 21023.3 

0.9 16974.4 20248.2 22655 

0.95 17424.6 20311.6 22499.4 

1 17929.6 20429.8 22398.6 

1.15 19773.6 21113.4 22425.2 

1.2 20497.9 21450.9 22543.8 

 

Using the data from Table 6, the graph of the variation of the traction force, depending on the working 

width of the plough was represented (fig. 3). 
 

 
Fig. 3 - Variation of the traction force depending on the working width B, for the speed v = 1.4 m/s  

and for three values of the working depth: a = 0.1m (series 1), a = 0.2m (series 3) and a = 0.3 m (series 4) 

 

Figure 3 shows that the traction force increases when increasing working depth and working width of 

the plough. The relations shown in figure 3 allow the calculation of the traction force for one of the working 

depths for any value of the working width B = 0.8 - 1.2 m. 

 

 

CONCLUSIONS 

The main results obtained consist in demonstrating that there are own optimal points in the working 

process of the tractor – plough with variable working width aggregate. In addition, the optimal points found 

have as abscissa not only the working speed, but also the working width, a parameter whose control defines 

this type of ploughs. Also, the optimality criteria used are natural, namely they have an intuitive meaning. From 

a physical point of view, the parametric structure of the coordinates of the optimal points leads to interesting 

conclusions, facilitated by the fact that these coordinates were found analytically and not numerically. Optimum 

points are confirmed in terms of working speed and working width in reference works in the field of agricultural 

machinery operation.  

It is noted that of the four optimal operating points found, only one has an optimal working width as an 

abscissa, which minimizes the traction force (22) under conditions of a fixed productivity (21). 
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