

Pamukkale Univ Muh Bilim Derg, 28(5), 720-729, 2022

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi

 Pamukkale University Journal of Engineering Sciences

720

A method to improve full-text search performance of MongoDB

MongoDB'nin tam metin arama performansını iyileştirme yöntemi

Altan MESUT1* , Emir ÖZTÜRK1

1Department of Computer Engineering, Engineering Faculty, Trakya University, Edirne, Turkey.
altanmesut@trakya.edu.tr, emirozturk@trakya.edu.tr

Received/Geliş Tarihi: 20.07.2021
Accepted/Kabul Tarihi: 10.12.2021

Revision/Düzeltme Tarihi: 11.11.2021 doi: 10.5505/pajes.2021.89590
Research Article/Araştırma Makalesi

Abstract Öz

B-Tree based text indexes used in MongoDB are slow compared to
different structures such as inverted indexes. In this study, it has been
shown that the full-text search speed can be increased significantly by
indexing a structure in which each different word in the text is included
only once. The Multi-Stream Word-Based Compression Algorithm
(MWCA), developed in our previous work, stores word dictionaries and
data in different streams. While adding the documents to a MongoDB
collection, they were encoded with MWCA and separated into six
different streams. Each stream was stored in a different field, and three
of them containing unique words were used when creating a text index.
In this way, the index could be created in a shorter time and took up less
space. It was also seen that Snappy and Zlib block compression methods
used by MongoDB reached higher compression ratios on data encoded
with MWCA. Search tests on text indexes created on collections using
different compression options shows that our method provides 19 to 146
times speed increase and 34% to 40% less memory usage. Tests on regex
searches that do not use the text index also shows that the MWCA model
provides 7 to 13 times speed increase and 29% to 34% less memory
usage.

 MongoDB'de kullanılan B-Tree tabanlı metin dizinleri, ters çevrilmiş
dizinler gibi farklı yapılara kıyasla yavaştır. Bu çalışmada, metindeki
her farklı kelimenin yalnızca bir kez yer aldığı bir yapı indekslenerek
tam metin arama hızının önemli ölçüde artırılabileceği gösterilmiştir.
Daha önceki çalışmalarımızda geliştirilen Çok Akışlı Kelime Tabanlı
Sıkıştırma Algoritması (MWCA), kelime sözlüklerini ve verileri farklı
akışlarda saklar. Belgeler bir MongoDB koleksiyonuna eklenirken
MWCA ile kodlanmış ve altı farklı akışa ayrılmıştır. Her akış farklı bir
alan ismi ile saklanmış ve bunlardan benzersiz kelimeler içeren üçü
metin dizini oluşturulurken kullanılmıştır. Bu sayede indeks daha kısa
sürede oluşturulabilmiş ve daha az yer kaplamıştır. MongoDB‘de
kullanılan Snappy ve Zlib blok sıkıştırma yöntemlerinin MWCA ile
kodlanan veriler üzerinde daha yüksek sıkıştırma oranlarına ulaştığı da
görülmüştür. Farklı yöntemler ile sıkıştırılan koleksiyonlar üzerinde
oluşturulan metin dizinlerinde yapılan arama testleri, yöntemimizin 19
ila 146 kat hız artışı ve %34 ila %40 daha az bellek kullanımı
sağladığını göstermiştir. Metin dizinini kullanmayan regex aramaları
ile ilgili testler de MWCA modelinin 7 ila 13 kat hız artışı ve %29 ila %34
daha az bellek kullanımı sağladığını göstermiştir.

Keywords: NoSQL, MongoDB, Text index, Full-Text search, MWCA. Anahtar kelimeler: NoSQL, MongoDB, Metin dizini, Tam metin
arama, MWCA.

1 Introduction

NoSQL databases are generally used for storing big data. Data
compression methods are used to store such large amounts of
data on fewer disks/nodes. Since there is a large amount of data
to be added every second, compression needs to be fast so that
data can be recorded instantly. In order not to slow down the
reading speed, a fast decompression speed is also expected.
Many NoSQL databases such as MongoDB, Cassandra,
Couchbase, LevelDB store their data using the Snappy [1]
compression algorithm, which performs very fast compression
and decompression. The Zlib [2] algorithm, which compresses
data slower but has a better compression ratio, can also be used
in MongoDB. The Zstd [3] algorithm, which has a speed close to
Snappy and offers similar compression ratios as Zlib, has also
been added to compression options in MongoDB version 4.2.
Prefix compression is preferred for compressing indexes,
where queries can run directly on the compressed index
without decompressing.

NoSQL databases, which can return results faster when
searching through indexed keys, search slowly on other fields
due to their schema-independent structure. For example, a
query that finds which of the documents contains a given word
(similar to LIKE in SQL) runs slowly on a document-based

*Corresponding author/Yazışılan Yazar

database such as MongoDB. If a text index is created in the
collection and the same search is made in that index, the search
time will be significantly shortened. However, since the indexes
need to be updated when new documents are added to the
database, the delay in insertion increases with the number of
documents inserted.

When a text index is created by selecting a specific language,
stop words filtering and stemming operations are performed,
so that the index uses less space and queries run faster. As of
today, MongoDB can create text indexes specific to 15 different
natural languages (English is the default language). Therefore,
when a query such as LIKE type or Regex type is carried out on
English documents, words such as ‘the’, ‘and’, ‘of’ can be found,
but not when the query is made through the text index.

MWCA [4], a word-based compression algorithm that we
developed in a previous study, sorts all words according to their
frequencies, adds the most frequent 255 words to the D1
dictionary and encodes them as 1 byte and the next 65536
words to the D2 dictionary and encodes them as 2 bytes.
Although there have been many different studies in the field of
text compression in recent years [5]–[9], the fact that MWCA
stores dictionaries and data in different streams provides an
important advantage for this study in which only dictionaries

https://orcid.org/0000-0002-1477-3093
https://orcid.org/0000-0002-3734-5171

Pamukkale Univ Muh Bilim Derg, 28(5), 720-729, 2022
A. Mesut, E. Öztürk

721

are indexed. The advantages of indexing only the word
dictionaries created by MWCA instead of indexing the entire
documents will be explained in the fourth section.

There are some studies in the literature on the improvement of
MongoDB’s full-text search performance. Morishima and
Matsutani used the power of the GPU to speed up regex
searches in MongoDB that do not need indexes [10]. They
proposed a cache mechanism called DDB Cache (Document-
oriented DataBase Cache) to accelerate such queries by using
GPUs. To perform full-text search on the files stored on GridFS,
Kelec et al. transferred the contents of the files to MongoDB
documents, created a text index on the related collection and
found which files contained the given text by searching through
the text index [11]. Truică and Boicea proposed some methods
to build an inverted index for documents stored in MongoDB
and Oracle databases [12]. Some of these methods take
advantage of the frameworks and tools provided by the
database systems to build the index, like MapReduce
framework for MongoDB and Pipelined Table Functions for
Oracle. It was shown in the test results of the article that using
the suggested inverted index structure instead of MongoDB’s
text index structure makes text search queries up to 8 times
faster.

The inverted index structure [13] is used also in the
Elasticsearch search engine, where more complex text queries
can be performed compared to MongoDB text indexes.
Elasticsearch can also be used as a database that stores
documents. However, it is generally not preferred as a primary
database due to the lack of transactions, poor user
management, and slow add / update operations. Greca et al.
presented an application that uses MongoDB to store
agricultural data and Elasticsearch to search data [14]. In Han
and Zhu’s study, media data was first stored on MongoDB, then
the data was transferred to an Elasticsearch cluster and the
search speed was increased with the created inverted index
[15]. In the study of Lu et al., the text data obtained from the
internet was stored in MongoDB, and the performance
difference was shown by searching with both MongoDB and
ElasticSearch [16] Atlas Search, one of the new features of
Mongo DB Atlas (MongoDB’s DBaaS platform), uses the Apache
Lucene library, which is also used by Elasticsearch. With the
help of the additional features of the Lucene library and the
inverted index, Atlas Search can perform much faster and more
advanced searches than MongoDB text index [17]. Although the
method proposed in this study does not provide additional
search features, it does provide more accurate search results
(discussed in Section 4.2) and MongoDB text indexes to run at
inverted index speed.

This paper is organized as follows: Information about the
storage and indexing structures in MongoDB is given in the
second section. Brief information about the MWCA
compression algorithm used to increase search performance on
indexes is given in the third section. The advantages obtained
when indexing on MWCA model are presented with
experimental results in the fourth section. The obtained results
were evaluated in the last section.

2 MongoDB

MongoDB is the most preferred document-based database
today. It is an open-source project developed with C++. It
started to be developed by 10gen in 2007. The company later
changed its name to “Mongodb Inc.”. MongoDB has a unique
query language and is easy to scale horizontally. It has started

to close its shortcomings according to relational databases by
supporting joins in queries with version 3.2 and distributed
multi-document ACID transactions with snapshot isolation
with version 4.0. It can be used in Windows, MacOS, Solaris and
Linux distributions. The write speed of MongoDB is better than
the write speed of relational databases. This feature provides
advantages in scenarios such as storing large-scale IoT data
[18] and being used in the ETL layer of Real-Time Data
Warehousing [19].

The document-based database can be defined as a subclass of
the key-value databases. The data stored as a ‘document’ in
document-based databases consists of certain fields and can be
queried over these fields, while no meta-data is kept in the
database about the data stored as ‘value’ in key-value
databases. In document-based databases, data is usually stored
in a structured format such as XML or JSON. Results in [20]
indicate that JSON is faster and uses fewer resources than XML.

The structure containing the documents in MongoDB is called
‘collection’. This structure can be thought of as a ‘table’ that
stores records in relational databases. The biggest difference
between them is that the tables have a certain schema; that is,
all the records they contain must have the same fields in the
predefined data types. The documents in the collections are
schema independent; that is, each can have different number of
fields with different data types and different names. For this
reason, it is necessary to store the field names (meta-data) in
every document in the collection. When querying according to
a certain field, only documents containing that field name are
searched. If an index is not created on the fields included in the
query, it is obvious that the query will run much slower on this
schema independent structure than the relational database.

MongoDB automatically creates a unique key field named ‘_id’,
12 bytes in size and hexadecimal type for each document added
to the collection. The ‘_id’ field is indexed automatically, just as
the primary key is automatically indexed for each table created
in relational databases.

2.1 Indexing in MongoDB

Like many relational database management systems, B-tree
structure is used for indexing in MongoDB. Different indexing
types such as Single Field, Compound, Multikey, Geospatial,
Text and Hashed are supported. The difference of compound
indexes from single field indexes is that they are created on
more than one field. Multikey indexes, which are created on the
fields that store an array, create a separate index entry for each
element of the array, allowing documents containing the
searched element or elements to be found. Hashed indexes are
used for performing hash-based sharding. In accordance with
the scope of our study, this section will focus on text indexes.

To create a text index on one or more fields containing text data,
the “text” tag must be given in the ‘createIndex’ method. The
following command creates a text index on the ‘subject’ and
‘comments’ fields in the ‘reviews’ collection:

db.reviews.createIndex({ subject: "text",
 comments: "text" })

If the documents contain highly unstructured data, that is, if the
field names are different in each of them; with the wildcard
specifier ($**), all string type fields can be included in the text
index:

db.reviews.createIndex({ "$**": "text" })

Pamukkale Univ Muh Bilim Derg, 28(5), 720-729, 2022
A. Mesut, E. Öztürk

722

The text index stores an index entry for each unique stemmed
word in the indexed fields of each document in the collection.
Simple suffix stemming is used by discarding language-specific
stop words (e.g. in English, the, and, a, etc.). In MongoDB 4.2, a
text index can be created for one of 15 different languages. The
default text indexing language is English. If you want to create
an index according to a different language, the
“default_language” option can be used:

db.books.createIndex({ content: "text" },
{ default_language: "spanish" })

Since the index element is created according to the root of the
word while making language-specific indexing, ‘compute’,
‘computer’, ‘computation’ and ‘computing’ searches are all
searched with the ‘comput’ key and give the same result (The
Snowball stemming algorithm used by MongoDB can be tried
from: https://snowballstem.org/demo.html)

For example, suppose an English text index is created in the
‘content’ area of the ‘books’ collection. In the first query below,
the number of documents containing the word ‘computing’ is
requested using this index. Since ‘compute’ is indexed as a key,
other words derived from this word will also be included in the
result. For this reason, it will produce more results than the
second query (regex type), which searches only those
containing the word ‘computing’.

db.books.find(
 { $text: { $search: "computing" } }).count()

db.books.find(
 { content: /computing/ }).count()

Only one text index can be created for a collection. As
mentioned before, this index can contain many fields. In the
first query that searches using a text index, if different fields
were indexed besides ‘content’, the related words in those
fields would also be included in the result. Therefore, there is
no need to specify any fields when searching on text indexes.

Two main disadvantages can be mentioned for text indexes:

 They are generally large, since they contain every
unique stemmed word in the indexed fields.

 Since the index needs to be updated after each
document is added, the insertion times slow down as
the number of documents increases.

2.2 Compression in MongoDB

The WiredTiger Storage Engine of MongoDB uses Snappy
compression for all collections and prefix compression for all
indexes by default. It is also possible to store collections and
indexes without compression, but they are not preferred
because it will have a significant negative impact on storage
capacity and performance. Zlib and Zstd compression methods,
which provide higher compression rates than Snappy, can also
be used to compress the collections.

The Snappy compression library written in C++ by Google uses
a variant of LZ77 algorithm. Since it aims fast compression and
decompression rather than good compression ratio, it does not
use any entropy encoder like Huffman or Arithmetic coding [1].

The Zlib method uses the DEFLATE algorithm [21] developed
by Phil Katz for the PKZip compression tool. The DEFLATE
algorithm, also used by ‘gzip’ file format, uses a combination of
LZSS (a derivative of LZ77) and Huffman coding [22].

Zstd (Zstandard), which started to be used in MongoDB with
version 4.2, was developed on Facebook by Yann Collet in 2015.
It offers close compression ratio with Zlib while compressing
and decompressing at speeds close to Snappy. It combines LZ77
with a large search window and a fast entropy coding stage,
using both Finite State Entropy (FSE) and Huffman coding. FSE
is a new kind of Entropy encoder that is based on Jarek Duda’s
ANS theory [23] and provides precise compression accuracy
(such as Arithmetic coding) at much higher speeds. While there
can be more than 20 times speed difference between the fastest
compression mode and the slowest mode, decompression is
fast in any case; ranges between the fastest and slowest modes
by less than 20%.

3 MWCA

MWCA (Multi-Stream Word-Based Compression Algorithm) is
a word-based text compression algorithm that stores the
compressed data by dividing it into six different streams. The
current version works with a semi-static model. In the first
pass, all the different words in the text and their frequencies of
occurrence are obtained and sorted from the most frequent to
the least. The D1 dictionary is created from the most frequent
255 words and the D2 dictionary from the next 65536 words.
Since a value (0) is used as an escape character in the first
dictionary, it contains 256-1 words. Spaceless word model is
used to obtain words [24]. A hash table is used to store the word
list and provide O(1) access to this list during encoding. The size
of this hash table was determined based on the Heaps’ law [25].

In the second pass, compression is performed using
dictionaries. If the word to be encoded is found in the D1
dictionary, the index number is stored in the S1 stream as one
byte. If it is one of the words in the D2 dictionary, it is stored in
the S2 stream with two bytes. If the word to be encoded doesn’t
exist in both dictionaries, it is stored in S3 stream in an
uncompressed form. A bit vector (BV) is also created during
coding. If the encoded word is found in the D1 dictionary and
written to the S1 stream, a bit with a value of ‘0’ is added to BV,
and if it is found in the D2 dictionary and written to the S2
stream, a bit with a value of ‘1’ is added to BV. With the help of
the bit vector, the decoder can decide whether to read the next
word from the S1 stream or the S2 stream. While encoding a
word that is not found in the dictionaries, a ‘0’ bit is written to
BV and a ‘0’ byte is written as an escape character to S1. If the
decoder encounters ‘0’ in S1, it will look at the S3 stream for the
next word. At the end of the encoding, six different streams; D1,
D2, S1, S2, S3 and BV are created as output. As an example, the
streams generated during the compression of the title of this
article with MWCA are shown in Figure 1.

Figure 1. Streams generated when encoding with MWCA.

D1 D2 S1 S2 S3 BV

1 , 0 9 123 MongoDB 0

2 . … … 10 426 1

3 : 123 method 158 4972 0

4 ; … … 5 13872 1

5 - 426 improve 255 0

6 the … … 12 0

7 of 4972 search 0 0

8 and … … 1

9 a … … 1

10 to 13872 performance 0

11 for … … 0

12 on … …

… … … …

158 full … …

… … … …

255 text 65535

input: a method to improve full-text search performance on MongoDB

7 bytes

8 bytes

7 bytes

2 bytes

(11 bits)

Created in the First Pass Created in the Second Pass

https://snowballstem.org/demo.html

Pamukkale Univ Muh Bilim Derg, 28(5), 720-729, 2022
A. Mesut, E. Öztürk

723

Since the given text example is small, if only that text was
compressed, there will be only a few items in the D1 dictionary.
To address all streams, it is assumed that a text large enough to
fill the D1 and D2 dictionaries (containing 255 + 65536
different items) was compressed. In other words, while the D1
and D2 dictionaries in Figure 1 were created for a large text in
the first pass, other streams created in the second pass show
the compression of a line in that text. As can be seen in
Figure 1, punctuation marks are included in the dictionary like
words. The phrase “full-text” in our example is considered as
three different words (‘full’, ‘-’, ‘text’) and encoded as 158, 5 and
255. It is assumed that three of the other eight words (‘a’, ‘to’,
‘on’) are also in the D1 dictionary, four of them (‘method’,
‘improve’, ‘search’, ‘performace’) are in the D2 dictionary, and
the word ‘MongoDB’ is not included in both dictionaries.

The MWCA decoder first checks the BV. In our example, since
the first bit is ‘0’, it looks at the stream S1 and reads the value 9.
The word ‘a’ in the 9th position of the D1 dictionary is written
to the output. Since the second bit in BV is ‘1’, the code of the
second word is taken from the S2 stream (123) and the word
‘method’ is found from the D2 dictionary and written to the
output. The next words are found similarly and written to the
output. Normally, a space character is inserted between words
by the decoder. If a punctuation mark is to be written to the
output, no space is automatically added before or after it.
Therefore, “full-text” is not displayed as “full - text” with spaces
in the output. Because the last bit in BV is ‘0’, S1 is checked for
the code of the last word. Since the last value in S1 is also ‘0’, it
is understood that this word does not exist in D1 and D2
dictionaries and should be obtained from S3 stream.

The smaller the size of the data to be compressed, the lower the
compression rate of the compression algorithms because the
similarities will be less in the data. Using a static dictionary in
both the encoder and the decoder provides a better
compression ratio for small files, rather than adding a
dictionary next to each compressed file. It is important to use a
static dictionary suitable for the content of the data to be
compressed for a good compression ratio. For the Zstd
compression algorithm to compress small files better, a static
dictionary can be created by training according to a data set
containing similar files (Facebook Zstd, The case for Small Data
compression). Brotli compression algorithm developed by
Google also uses a static dictionary [26].

When small text files are compressed with MWCA, the total size
of D1 and D2 dictionaries will likely be more than the total size
of S1 and S2 streams. As with other compression methods,
MWCA’s success in terms of compression ratio decreases with
the size of the text to be compressed. The compression ratios of
MWCA for texts of different sizes are given in Table 1. The ratios
of the dictionaries, streams and bit vector created by MWCA
according to the total size of the compressed file are given in
Figure 2. As can be seen from the figure, S3 stream does not
exist in text files smaller than 10 MB, since the number of
different words is usually less than 65536 + 255. In even
smaller text files, such as 1-2 KB, the D2 dictionary and S2
stream do not created as the number of different words will not
exceed 255.

In this study, the benefits to be obtained by using only 3 of the
6 different streams created by the MWCA compression
algorithm in the text index are emphasized. Our goal is not to
propose an alternative to the compression methods used in
MongoDB, but to recommend MWCA as a storage model that

can be used with them. For this reason, the term MWCA Model
is used in the next sections.

Table 1. Compression ratios of texts of different sizes with
MWCA.

Text
Size

Unique
Words

Original Size
(byte)

Compressed
Size (byte)

Ratio
(%)

1 KB 132 1,024 1,021 99.71
10 KB 762 10,240 8,222 80.29

100 KB 3,852 102,400 60,181 58.77
1 MB 14,316 1,048,576 447,637 42.69

10 MB 52,053 10,485,760 3,966,916 37.83
100 MB 199,290 104,857,600 37,659,581 35.91

1 GB 627,471 1,073,741,824 382,813,279 35.65

Figure 2. Ratios of dictionaries, streams, and bit vector relative
to the total size of the compressed file.

4 Experimental results and advantages of the
MWCA model

Each of the 21405 English books obtained from the website
https://www.gutenberg.org is included as separate documents
in the collection created for the experiments. When the
collection is stored uncompressed, its total size is
10.002.726.912 bytes. MongoDB 4.2.2 Community database
built on Windows 10 Enterprise 64-bit operating system was
used in the experiments. The test computer specs: Intel (R)
Xeon (R) CPU E3-1225 v3 @ 3.20GHz CPU, 16 GB RAM, 480 GB
SSD drive.

4.1 Compression ratio advantage

Recompressing the data encoded by MWCA with another
compression algorithm may give a better compression ratio
than compression of the algorithm alone, especially when a
large text is compressed. Table 2 shows the sizes and
compression ratios when the test collection is compressed with
MWCA, Snappy, Zlib and Zstd methods and recompressed with
other methods after MWCA.

Table 2. Sizes of collections when different compression
methods are used.

Compression Size (byte) Ratio (%)

- 10,002,726,912 100.00
MWCA 5,666,115,584 56.65
Snappy 6,108,823,552 61.07

MWCA + Snappy 4,642,598,912 46.41
Zlib 3,782,737,920 37.82

MWCA + Zlib 3,453,874,176 34.53
Zstd 3,553,533,952 35.53

MWCA + Zstd 3,572,006,912 35.71

https://github.com/facebook/zstd#the-case-for-small-data-compression
https://github.com/facebook/zstd#the-case-for-small-data-compression
https://www.gutenberg.org/

Pamukkale Univ Muh Bilim Derg, 28(5), 720-729, 2022
A. Mesut, E. Öztürk

724

As seen in Table 2, using the MWCA model together with
Snappy gives 10% better results than MWCA's compression
ratio and 15% better than Snappy's compression ratio.
Although MWCA could not increase the compression ratio of
Zstd, it increased the compression ratio of Zlib by 3% and
enabling it to reach the best compression ratio. These 8
collections have been stored with different names for use in
subsequent tests. The method of creating test collections is
given in Figure 3.

4.2 Text index creation time and index size advantage

In 4 collections that do not use the MWCA model, each
document has a ‘name’ field that stores the name of the file and
a ‘content’ field that stores the content of the file. As MWCA
divides the data into 6 streams, the other 4 collections using the
MWCA model have D1, D2, S1, S2, S3 and BV fields instead of
the ‘content’ field. D1, D2 and S3 fields to be used in the text
index are stored as ‘string’ and the other 3 fields are stored as
‘binary data’.

Text indexes are created by using the createIndex({content:
"text"}) method in 4 collections containing the ‘content’ field,

and createIndex({D1: "text", D2: "text", S3: "text"}) method in the
other 4 collections. The size of these indexes, the number of
keys they contain, and their creation times are given in Table 3.
There are two phases in the creation of text indexes. The first of
these is to scan the entire collection and find the key values, and
the other is to add these keys to the index. The duration of the
first phase is given as Collection Scan Time and the duration of
the second phase as Key Insertion Time separately in the table.
As can be seen in this table, since the total size of the D1, D2 and
S3 fields is smaller than the ‘content’ field (len(content) /
len(D1+D2+S3) = 7.32), the collection scan times are completed
approximately 45% faster in each compression option.
Although the number of keys in the MWCA model is
approximately 3% less, both key insertion times and index sizes
have decreased by 10%. Compared to the total indexing times,
there was more than 40% time savings for each compression
option.

The reason why there are fewer keys in the index of collections
using MWCA model is that MongoDB's stemming algorithm
does not apply stemming to words that have an underscore
character at the end.

Figure 3. Streams generated when encoding with MWCA.

Table 3. Size, number of keys and creation times of text indexes.

Collection Name Index Size (byte) # of keys Collection Scan Time (s) Key Insertion Time (s) Total Time (s)

None 1,563,652,096 109,623,048 845 104 949
MWCANone 1,398,439,936 106,606,886 471 95 566

Snappy 1,557,426,176 109,623,048 881 105 986
MWCASnappy 1,392,726,016 106,606,886 484 95 579

Zlib 1,557,426,176 109,623,048 931 104 1035
MWCAZlib 1,392,726,016 106,606,886 524 95 619

Zstd 1,557,426,176 109,623,048 924 105 1029
MWCAZstd 1,392,726,016 106,606,886 510 95 605

MongoDB

Gutenberg books

Compress

with

Snappy

Compress

with Zlib

Compress

with Zstd

Compress

with

Snappy

Compress

with Zlib

Compress

with Zstd

Compress with MWCA

Insert

None Snappy Zlib Zstd

S1 S2 S3 D1 D2 BV

MWCA

None

MWCA

Snappy

MWCA

Zlib

MWCA

Zstd

Insert

Pamukkale Univ Muh Bilim Derg, 28(5), 720-729, 2022
A. Mesut, E. Öztürk

725

For example, EnglishStemmer produces ‘mobil’ output for the
word ‘mobile’, while it produces ‘mobile_’ output for ‘mobile_’
(it can be checked from: Demo - Snowball). The sections written
in italic in certain parts of the books on the Gutenberg.org are
given between the two ‘_’ symbols while being stored in plain
text. For example: The phrase written as ‘primum mobile’ in the
HTML version of the book “Beacon Lights of History, Volume I”
is stored as ‘_primum mobile_’ in the TXT version. If there are
adjacent punctuation marks at the beginning or end of the
word, MWCA separates them from the word and adds each one
as a different word to the dictionary. For this reason, while
‘mobil’ and ‘mobile_’ are stored as different keys in the text
index created from the ‘content’ field, there is a single key
(mobil) in the text index created from the “D1, D2 and S3” fields.
In the book mentioned, the word ‘mobile’ only exists in one
place and has ‘_’ at the end. Therefore, in collections that do not
use the MWCA model, this book can only be found by searching
‘mobile_’, it cannot be found when searching ‘mobile’. On the
collections using MWCA model, it can be said that more
accurate search results are obtained since the relevant book
can be found when this search is made without writing an
underscore.

As can be seen in Table 1, normally text files smaller than 10 MB
will not have data in the S3 stream. Although all the 21405
books in our test are below this size, only the following 2 books
have data in the S3 stream because they contain many different
numbers:

 The First 100,000 Prime Numbers
(https://www.gutenberg.org/files/65/65.txt),

 Pi to 1,000,000 places
(https://www.gutenberg.org/files/50/50.txt).

If the documents in a collection do not contain such unusual
text, S3 stream may not be required. Since the document size
that can be added to a collection in MongoDB is limited to 16

MB, in most cases it would not be a problem not to use S3 in the
MWCA algorithm or not to include it in the text index.

4.3 Search time and memory usage advantage for text
index

In Table 4, the 100 words selected for the search test are listed
according to how many different documents they exist in. As
mentioned in the previous section, collections that do not use
the MWCA model cannot find some words due to underscore
problems. The ‘+’ column shows how many more documents
are found in the collections using the MWCA model, compared
to other collections. As an example, the word ‘mobile’ is found
in 3684 documents in collections that do not use the MWCA
model, while it is found in 3684 + 113 = 3797 documents in
collections using this model. While obtaining these values, the
following statement was used:

db.[collectionName].find(
{$text:{$search: [word]}}).count()

When a query is sent to the MongoDB server, if the required
index and data (working set) are not available in RAM, they are
first copied from disk to memory. There is no setting in
MongoDB to keep an index permanently in memory. When a
word that exists in all documents in a collection is queried, a
working set covering almost the entire collection is written into
memory. Queries sent later return much faster results as they
will use the data available in RAM. To ensure that the search for
the first words in the test was not slow due to disk access, the
word ‘set’, one of the words found in all documents, was
searched before the test to transfer most of the required data to
RAM. When the server cannot find enough memory space to
process the query, it needs to clean the old data with the LRU
method, which slows down the response time. For a fair
comparison, the service was restarted before testing on each
collection. The test was carried out with a Python code that first
queries the word ‘set’, then the other 100 words in the order
given in Table 4.

Table 4. Words used in the search test.

Word Count + Word Count + Word Count + Word Count +

allows 21405 0 conclusion 16509 12 coined 10486 23 psychology 4563 24

computer 21388 0 retiring 16305 38 bowling 10391 28 Turkish 4297 19
original 21331 0 judgment 16249 5 reviews 10387 384 mobile 3684 113

turns 21187 2 description 16153 10 compete 10182 2 actress 3298 3
staff 21029 1 solely 15826 35 averaged 10167 14 Denmark 3047 25
feels 20837 5 corresponds 15505 1 knights 9796 40 Norway 2877 29
fired 20518 7 appreciation 15392 4 muscles 9790 7 Sweden 2832 30

attachment 20319 15 enables 15276 0 electrical 9631 16 anthem 2094 9
growing 20260 3 profession 15204 24 China 9533 35 broadcast 1909 2

watch 20161 17 amazing 14775 57 Italy 9345 85 Jerome 1885 19
earth 19958 4 capitalism 14742 23 Germany 8839 43 Hannah 1591 28

studied 19300 10 assembly 14510 30 Spain 8340 63 phone 1374 15
anyone 19038 0 abroad 14285 11 eventually 8118 4 rehabilitation 1164 1
quarter 18829 52 host 14146 23 champion 7885 19 spherical 1071 4

apart 18744 11 France 13744 61 Mexico 7413 26 Balkan 855 1
crowd 18450 7 characteristics 13727 8 Egypt 7338 51 Finland 842 7
ranges 18148 27 religious 13629 30 Turkey 7015 23 Bulgaria 706 2

supplies 18021 9 artist 13136 25 grandmother 6806 14 traction 557 2
accompanying 17919 8 ocean 13109 44 Holland 6404 36 ethnic 484 3

pull 17478 47 farming 12875 20 Russia 6303 24 vocalist 413 0
proposes 17245 7 achievement 12561 45 Greece 5788 54 coastal 348 0
seasons 17214 24 overlooking 12250 19 adjacent 5525 3 television 209 0
handles 17072 18 student 11989 7 voluntarily 5440 18 conceptual 156 1
grand 16984 57 divisions 11848 3 massacre 5327 17 database 64 0

England 16630 48 farmer 11242 26 devastated 4998 7 Edirne 18 0

https://snowballstem.org/demo.html
https://www.gutenberg.org/files/10477/10477-h/10477-h.htm
https://www.gutenberg.org/files/10477/10477.txt
https://www.gutenberg.org/files/65/65.txt
https://www.gutenberg.org/files/50/50.txt

Pamukkale Univ Muh Bilim Derg, 28(5), 720-729, 2022
A. Mesut, E. Öztürk

726

The results of the search test are given in Table 5. The search
time of the word ‘set’ is given in the first line. It took between
32 and 64 seconds to get the result, as the working set was
loaded into RAM with this search. Although the word ‘allows’ is
also included in all documents, the search time has been much
faster since most of the working set is in RAM. To simplify the
results, 4 of the 100 words in the test are included from the top,
4 from the middle and 4 from the end. The ‘Total’ line below is
the sum of the search times of these 100 words (not including
the time for ‘set’). The last line shows how many times the
MWCA model is faster than the currently used structure. As
seen in Table 5, the frequency of the searched word (count)
affects the query time. It is also seen that the MWCA model
provides a higher rate of time difference in words with high
frequency.

Figure 4 shows how much space the mongod service uses from
RAM during the search for both the word ‘set’ and the other 100
words. It is seen that using the MWCA model provides 40%,
37%, 34% and 34% less memory usage for None, Snappy, Zlib
and Zstd respectively.

When the mongod is started with default settings, WiredTiger
Storage Engine uses “50% of (RAM - 1 GB)” memory (MongoDB
Documentation: WiredTiger Storage Engine, Memory Use).
Since our test machine has 16 GB of RAM, it can use 7.5 GB of
memory when started with default settings. As seen in Figure 4,
collections that do not use the MWCA model need more than 8
GB of RAM. For this reason, during the search process, the
server frequently deletes the old data from RAM with the LRU
method and loads the new data from the disk. In our initial tests,
we started the mongod service with default settings and
observed that the results produced by collections not using the
MWCA model were 2 times slower than the corresponding
results in Table 5. In order not to give any advantage to the
collections using the MWCA model in this respect, while

obtaining the results given in Table 5, the mongod service was
started using the expression “--wiredTigerCacheSizeGB=10” so
that the service can use 10 GB of RAM. It is seen in Table 5 that
the combination of Snappy block compression, which is the
default storage method of WiredTiger Storage Engine, and the
MWCA model can be searched 51 times faster. This rate is more
than 100 times with other compression options. It is also an
important advantage that using MWCA model provides 34% to
40% less RAM usage. Although the Snappy algorithm has a
lower compression ratio compared to Zlib and Zstd, it is seen
that it is much faster when searching in the text index. The
result obtained with Snappy was still 3 times slower than
storage without compression. The results obtained by the
collections of MWCA model are around 3.5 seconds in each
compression option. Therefore, instead of storing it with no
compression or low compression with Snappy, when using
higher compression with Zlib or Zstd using MWCA model, there
will be no speed disadvantage in searching the text index.

The main reason for the MWCA model to achieve a high rate of
speed gain is that S1, S2 and BV fields, which store most of the
data in the documents, are stored as ‘binary data’. If these fields
are stored as ‘string’ like other fields, the search speed will be
much slower as they will be included in the working set when
searching on the text index.

4.4 Search time and memory usage advantage for regex
queries

Searching for a specific word in a collection can also be done
with regex query without using text index. The speed of this
type of search is slower because all data must be scanned. As
the total size of the D1, D2 and S3 fields is less than the size of
the ‘content’ field, the MWCA model will also be useful in
searching with regex.

Figure 4. Memory usage results of the test using text index (MB).

https://docs.mongodb.com/manual/core/wiredtiger/#memory-use
https://docs.mongodb.com/manual/core/wiredtiger/#memory-use

Pamukkale Univ Muh Bilim Derg, 28(5), 720-729, 2022
A. Mesut, E. Öztürk

727

The first of the queries below was carried out in collections that
did not use the MWCA model, and the second in collections
using it, and the results in Table 6 were obtained.

db.[collectionName].find(
{ content: {$regex: [word] }}).count()

db.[collectionName].find(
{ $or: [{D1: {$regex: [word] }},
 {D2: {$regex: [word] }},
 {S3: {$regex: [word] }}]}).count()

Memory usage in regex queries is given in Figure 5. When
Figure 4 and 5 are examined together, it is seen that the
memory usage of the collections using MWCA model is similar
in both tables. Collections that do not use the MWCA model
used slightly less memory in the regex query. The contribution
of the MWCA model in terms of memory usage was between
29% and 34% in regex queries.

This test was done with 10 of the 100 words used in the
previous test. Unlike Table 5, Table 6 also includes the ‘Count’
column, where the result values of the query are shown. Since
there is no stemming operation in regex queries, the values in
this column are different from the values of the same words in
Table 4, and collections using the MWCA model produce the
same count values. Because the entire collection is scanned,
how many different documents contain the searched word does
not affect the search time. The word ‘television’, which exist in
only 201 documents, was the slowest found in all collections.
The reason why the word ‘quarter’ is found the fastest and the
word ‘television’ the slowest is probably related to the low
frequency of the letter 'q' and the high frequency of the letter 't'
in English. As mentioned in Section 4.2, the total size of the D1,
D2 and S3 fields of all documents in the collection using MWCA
model is 7.32 times less than the total size of the ‘content’ fields
in the collection that does not use this model. The 7.8 times
search speed difference between None and MWCANone is not

surprising as it is close to the difference in the size of the
scanned data. In other collections using block compression, the
speed difference is even higher since those using the MWCA
model decompress smaller data than those who do not.

According to the time results in both Table 5 and Table 6, the
success order of collections that do not use the MWCA model is
None, Snappy, Zstd and Zlib from best to worst. The collections
using the MWCA model in both search tests gave close time
results to each other (approximately 3.5 seconds in Table 5 and
25 seconds in Table 6). Whether compression was applied to
the collection or which compression method was used did not
affect the results.

5 Conclusion

In our previous study, it was shown that words can be searched
quickly without decompression on texts compressed with the
MWCA compression algorithm [4]. Searching in D1, D2 and S3
streams instead of the entire text as we mentioned in the
section on regex queries is similar to the approach presented in
that study. In this study, we have demonstrated the advantages
of using its multi-stream structure with indexes through our
tests on MongoDB. While creating a text index in MongoDB,
instead of using the entire large text such as book content for
the index, encoding that text with MWCA and indexing three of
the six streams provides advantages from various aspects.
According to the results of our tests:

 Index creation time is reduced by approximately
40%.

 The size of the index is reduced by approximately
10%.

 In a query such as “How many documents contain a
given word”, it gives up to 150 times faster results
and uses 34% to 40% less memory.

Figure 5. Memory usage results of the test using regex (MB).

Pamukkale Univ Muh Bilim Derg, 28(5), 720-729, 2022
A. Mesut, E. Öztürk

728

Table 5. Time results of the search test on the text index (ms).

Word None
MWCA
None

Snappy
MWCA
Snappy

Zlib
MWCA

Zlib
Zstd

MWCA
Zstd

set 44286 32463 46396 32955 64488 54995 55032 41140

allows 7731.03 89.98 5623.16 86.02 11318.58 84.95 6982.75 116.09

computer 1698.65 61.23 3626.31 63 9189.04 59.1 6950 60.95

original 3004.18 63.79 3405.95 61.88 9252.1 61.96 8200.31 60.97

turns 1397.03 64.96 3167.36 63.31 8697.17 59.46 6653.19 59.94

… … … … … … … … …

China 548.17 37.98 1495.93 33.98 4567.38 35.98 3473.37 33.98

Italy 449.21 33.99 1683.12 31 4608.85 34.97 3605.28 30.98

Germany 299.85 31.41 1841.4 31.99 4593.86 31.98 3080.24 31.98

Spain 460.24 28.2 1586.14 28.66 4246.09 28.98 2951.99 28.98

… … … … … … … … …

television 4 3 25.98 4 53.96 3.01 13 3.53

conceptual 7.01 1.84 16.98 3.03 40.98 3.01 35.22 4.01

database 4.99 2 5.01 2.77 8.99 2.01 7 3.01

Edirne 2 1.72 1.01 2.01 2.01 2 3 1.59

Total 66587.44 3451.52 182287 3572.31 500731.63 3414.47 385733.56 3480.6

Speed increase rate 19.29 times 51.03 times 146.65 times 110.82 times

Table 6. Time results of the search test with regex (ms).

Word Count None
MWCA
None

Snappy
MWCA
Snappy

Zlib
MWCA

Zlib
Zstd

MWCA
Zstd

set 21405 28112 14669 29258 12216 61755 32674 49199 18101

computer 21385 20619.51 1868.51 19966.52 1921.92 26456.81 1902.47 27787.06 1902.85

quarter 18899 7938.91 969.45 14664.52 1014.49 16297.31 988.43 19960.64 982.48

description 15706 12413.66 1895.93 18326.16 1997.86 29044.45 1917.92 24133.1 1905.92

ocean 12261 18644.05 2487.58 24644.54 2630.99 36911.79 2541.55 31076.93 2504.57

farmer 10720 12260.6 1550.1 22917.07 1587.11 26923.65 1578.1 25203.07 1569.18

champion 7771 14003.71 2409.62 21919.53 2519.55 29437.34 2520.56 26247.05 2464.59

mobile 4842 15212.35 2124.31 19654.52 2198.76 33789.27 2151.39 28581.57 2123.8

anthem 2674 31750.18 4127.14 36538.55 4285.06 48292.87 4104.68 42764.67 4067.68

television 201 37030.03 4185.15 39957.46 4496.43 51652.78 4259.56 48300.5 4206.6

database 63 23244.1 3154.2 26562.6 3215.17 37852.44 3106.24 35483.43 3111.21

Total 193117.1 24771.99 245151.5 25867.34 336658.7 25070.9 309538 24838.88

Speed increase rate 7.80 times 9.48 times 13.43 times 12.46 times

All of the tests in our study were carried out on the server
machine. When queries are sent over a local client, the query
times will not increase too much, since the transmission will be
fast. If you connect to the server from a remote client, there will
be much more additional network transmission time for each
word queried. Assuming an average transmission time of 30 ms
per word, the total times given at the bottom of Table 5 will
increase by 3 seconds and the “Speed increase rate” values will
be less. When ‘name’ fields are requested from a remote client
instead of a count query, the transmission time varies
depending on the word queried (only 18 names will be sent for
the word ‘Edirne’, while 16630 names will be sent for
‘England’). If the ‘content’ fields (or 6 fields used instead of
‘content’ in the MWCA model) are requested, the transmission
time will be much longer. However, as an example, requesting
the entire content of books containing the word ‘England’ is not
a meaningful query as it requires a data transfer of GBs size. If
an application with a MWCA decoder is used on the client side
to query the books and download their contents, the data in
compressed form can be sent 2 times faster and it may be
possible to save time if the decoding time is not very long
(depending on the power of the client machine).

Apart from the advantages it provides for the text index, the
MWCA model also has advantages in the following situations:

 It gives approximately 10 times faster results in
queries made with regex method without using
index and uses 29% - 34% less memory,

 Increases the compression ratio of Snappy by 15%
and compression ratio of Zlib by 3%.

The most important factor in the success of the proposed
method is that it stores most of the data in binary type and
MongoDB does not include this part in the working set. This
structure not only increases search speed but also reduces
memory usage. If a large number of new documents (books) are
added, 10GB wiredTigerCacheSize will not be enough for
collections that do not use the MWCA model and their query
performance will decrease significantly. On the other hand,
collections using the MWCA model will be able to maintain their
performance even for much more documents as they use less
memory. It can also be said that the performance difference of
the proposed model would be much greater if we had not used
a large enough wiredTigerCacheSize for all collections in our
tests by starting the server with the default settings.

Pamukkale Univ Muh Bilim Derg, 28(5), 720-729, 2022
A. Mesut, E. Öztürk

729

6 Author contribution statements

Altan MESUT contributions: Formation of the idea, literature
review, performing the tests, evaluation of the results and
writing the article.

Emir ÖZTÜRK contributions: Literature review, obtaining data
for tests, creation of test environment and program codes.

7 Ethics committee approval and conflict of
interest statement

There is no need to obtain permission from the ethics
committee for the article prepared and there is no conflict of
interest with any person / institution in the article prepared.

8 References

[1] Qiao Y. An FPGA-Based Snappy Decompressor-Filter. MSc
Thesis, Delft University of Technology, Delft, Netherlands,
2018.

[2] Deutsch P, Gailly JL. “Zlib compressed data format
specification version 3.3”. RFC 1950, USA, 1996.

[3] Collet Y, Kucherawy M. “Zstandard compression and the
application/zstd Media Type”. RFC 8478, USA, 2018.

[4] Öztürk E, Mesut A, Diri B. “Multi-Stream word-based
compression algorithm for compressed text search”.
Arabian Journal of Science and Engineering,
43(12), 8209–8221, 2018.

[5] Habib A, Islam MJ, Rahman MS. “A dictionary-based text
compression technique using quaternary code”. Iran
Journal of Computer Science, 3(3), 127–136, 2020.

[6] Rahman MA, Hamada M. “Burrows–Wheeler transform
based lossless text compression using keys and huffman
coding”. Symmetry, 12(10), 1654-1667, 2020.

[7] Mahmood MA, Hasan KMA. “Efficient compression scheme
for large natural text using zipf distribution”. International
Conference on Advances in Science, Engineering and
Robotics Technology, Dhaka, Bangladesh, 3 May 2019.

[8] Bharathi K, Kumar H, Fairouz A, Al Kawam A, Khatri SP. “A
plain-text incremental compression (pic) technique with
fast lookup ability”. IEEE 36th International Conference on
Computer Design, Orlando, FL, USA, 7-10 October 2018.

[9] Buluş HN, Carus A, Mesut A. “A new word-based
compression model allowing compressed pattern
matching”. Turkish Journal of Electrical Engineering &
Computer Sciences, 25(5), 3607–3622, 2017.

[10] Morishima S, Matsutani H. “Performance evaluations of
document-oriented databases using GPU and cache
structure”. IEEE Trustcom/BigDataSE/ISPA,
Helsinki, Finland, 20-22 August 2015.

[11] Kelec A, Dujlovic I, Obradovic N. “One approach for full-
text search of files in MongoDB based systems”.
IEEE 18th International Symposium INFOTEH-JAHORINA,
East Sarajevo, Bosnia & Herzegovina, 20-22 March 2019.

[12] Truica CO, Boicea A, Radulescu F. “Building an inverted
index at the dbms layer for fast full text search”. Journal of
Control Engineering and Applied Informatics,
19(1), 94-101, 2017.

[13] Zobel J, Moffat A. “Inverted files for text search engines”.
ACM computing surveys (CSUR), 38(2), 1-56, 2006.

[14] Greca S, Kosta A, Maxhelaku S. “optimizing data retrieval
by using mongodb with elasticsearch”. International
Conference on Recent Trends and Applications in Computer
Science and Information Technology, Tirana, Albania,
23-24 November 2018.

[15] Han L, Zhu L. “Design and implementation of elasticsearch
for media data”. IEEE International Conference on
Computer Engineering and Application, Guangzhou, China,
18-20 March 2020.

[16] Lu W, Zhu L, Duan S. “Research and implementation of big
data system of social media”. IEEE/ACIS 17th International
Conference on Computer and Information Science,
Singapore, 6-8 June 2018.

[17] Mongodb, Inc. "Getting started with MongoDB Atlas Full-
Text Search". https://www.mongodb.com/blog/post/
getting-started-with-mongodb-atlas-fulltext-search
(10.07.2021).

[18] Eyada MM, Saber W, El Genidy MM, Amer F. “Performance
evaluation of iot data management using mongodb versus
MySQL databases in different cloud environments”.
IEEE Access, 8, 110656-110668, 2020.

[19] Mehmood E, Anees T. “Performance analysis of not only
SQL semi-stream join using MongoDB for real-time data
warehousing”. IEEE Access, 7, 134215-134225, 2019.

[20] Nurseitov N, Paulson M, Reynolds R, Izurieta C.
“Comparison of JSON and XML data interchange formats:
a case study”. 22nd International Conference on Computer
Applications in Industry and Engineering; San Francisco,
CA, USA, 4-6 November 2009.

[21] Deutsch P. “DEFLATE Compressed Data Format
Specification Version 1.3”. RFC 1951, USA, 1996.

[22] Deutsch P. “GZIP file Format Specification Version 4.3”.
RFC 1952, USA, 1996.

[23] Duda J, Tahboub K, Gadgil NJ, Delp EJ. “The use of
asymmetric numeral systems as an accurate replacement
for Huffman coding”. IEEE Picture Coding Symposium,
Cairns, QLD, Australia, 31 May-3 June 2015.

[24] Moffat A. “Word-based text compression”. Software:
Practice and Experience, 19(2), 185-198, 1989.

[25] Heaps HS. Information Retrieval: Computational and
Theoretical Aspects. 1st ed. Sea Harbor Drive Orlando, FL,
USA, Academic Press, 1978.

[26] Alakuijala J, Farruggia A, Ferragina P, Kliuchnikov E, Obryk
R, Szabadka Z, Vandevenne L. “Brotli: A general-purpose
data compressor”. ACM Transactions on Information
Systems, 37(1), 1-30, 2018.

https://www.mongodb.com/blog/post/%20getting-started-with-mongodb-atlas-fulltext-search
https://www.mongodb.com/blog/post/%20getting-started-with-mongodb-atlas-fulltext-search

