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Abstract  Öz 

In the classic EOQ and EPQ models, the assumption that all products are 
of good quality is not always valid. In some cases, the production system 
may produce a certain amount of defective products due to human 
errors and/or wear of machinery and equipment. In the literature, 
defective products obtained with quality screening are categorized as 
scrap, reworkable, low quality, etc. Generally, low-quality products are 
sold at a reduced price in lots at the end of the selection procedure, while 
scrap products are eliminated from the inventory at a certain cost. 
Reworkable products are also reworked at the end of the quality control 
period and turned into good products. In our study, screening activities 
are carried out during the production period in order to acquire the 
perfect items to run into the demand. For the remaining products, 
screening activity begins at the end of the production period. Allowing 
backorder in production systems both provides efficient production 
schedules and reduces operating costs. In this study, an EPQ model was 
constructed in which all defective products are taken at coincidental 
and reworked, and shortages are allowed. Sensitivity analyzes are also 
provided to evaluate the effects of changes in design variables on the 
optimal solution and to obtain feasible conditions. 

 Klasik ESM ve EÜM modellerinde, tüm ürünlerin iyi kalitede olduğu 
varsayımı her zaman geçerli değildir. Bazı durumlarda, üretim sistemi, 
insan hataları ve/veya makine ve ekipmanların aşınması nedeniyle 
belirli miktarda kusurlu ürün üretebilir. Literatürde kaliteli kontrol ile 
elde edilen hatalı ürünler hurda, yeniden işlenebilir, düşük kalite vb. 
olarak sınıflandırılır. Genel olarak düşük kaliteli ürünler, eleme işlemi 
sonunda partiler halinde indirimli fiyattan satılırken, hurda ürünler ise 
belirli bir maliyetle envanterden çıkartılır. Ayrıca kalite kontrol süreci 
sonunda tamir edilebilir ürünler yeniden çalışılarak kusursuz ürünlere 
dönüştürülür. Çalışmamızda talebi karşılayacak kusursuz ürünleri elde 
etmek için üretim döneminde kalite kontrol çalışmaları yapılmaktadır. 
Kalan ürünler için ise üretim döneminin sonunda kalite kontrol faaliyeti 
başlar. Üretim sistemlerinde ön siparişe izin vermek, hem verimli üretim 
programları sağlar hem de işletme maliyetlerini düşürür. Bu çalışmada, 
tüm kusurlu ürünlerin rastgele bir oranla alınıp yeniden çalışıldığı, 
stoksuzluğa izin verilen bir EÜM modeli geliştirilmiştir. Model 
parametrelerindeki değişikliklerin optimal çözüm üzerindeki etkilerini 
incelemek ve uygun çözüm koşullarını elde etmek için duyarlılık 
analizleri de verilmektedir. 

Keywords: EPQ, Shortages, Rework, Backorder, Quality screening, 
Production lot sizing, Symbolic computation. 

 Anahtar kelimeler: EÜM, Stoksuzluk, tamir, Sonradan karşılama, 
Kalite kontrol, Üretim parti büyüklüğü, Sembolik hesaplama. 

1 Introduction 

Logistics systems started in the hunter-gatherer era, before 
human beings settled down in the Neolithic period. The rapid 
transformation paradigms that occurred in the social life of 
human beings with the industrial revolution paved the way for 
the production and marketing processes to evolve to a different 
point, and the complex relations in production and 
consumption relations made it necessary to manage these 
processes with scientific methods. Following the industrial 
revolution, scientific studies on logistics processes have found 
more place in human life with the First and Second World Wars. 
The period following the Second World War passed into a 
different phase with the influence of computers in industrial 
processes until the 90s. Especially since the 90s, with the 
developments in computer and Internet technologies, logistics 
applications in the industrial field have clearly revealed their 
effective presence. Inventory control models constitute one of 
the most critical areas in logistics applications in the industrial 
field. 

                                                           
*Corresponding author/Yazışılan Yazar 

Inventory control models concerning inventory management 
started with Harris and Taft. The economic order quantity 
(EOQ) model was introduced by F.W. Harris in 1913 following 
the industrial revolution [1]. This model ensures optimal order 
quantity by minimizing inventory holding and ordering costs. 
The second development in this area was the development of 
the economic production quantity (EPQ) model by E.W. Taft in 
1918 [2]. The EPQ model is the basic model that enables a 
production company to find the optimal production amount 
with production costs, holding costs and production 
preparation costs. 

The classical EOQ and EPQ models are based on the assumption 
that all manufactured products are robust. This assumption 
may not always be valid. EPQ models taking into account 
production lot size containing defective products and EOQ 
models considering order lot size have been developed. 
Salameh and Jaber (2000) extends the classical EOQ model by 
accounting for defective product rate that fits a certain 
probability distribution [3]. Hayek and Salameh (2001) built an 
EPQ model in which the defective product rate is a random 
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variable and allows for shortages [4]. These two studies can be 
described as pioneering locomotive studies in this field. After 
these aforementioned studies, models in which defective 
products are categorized as scrap, imperfect quality and 
repairable have started to be produced intensively. 

Chiu (2003) has developed an EPQ model in which a certain 
proportion of defective products are scraped and removed 
from the inventory at a certain cost, while the rest are reworked 
and turned into good quality products by assuming that the 
defective product rate is a random variable conforming to a 
uniform probability distribution and that shortages are allowed 
[5]. Chiu and Chiu (2003) introduced an EPQ model for the 
situation where imperfect goods are scrapped and the 
remainder are reworked and included in the inventory of good 
quality products, where shortages are not allowed [6]. In their 
study, Chan et al. (2003) classified defective items into three 
categories as scrap, reworkable and imperfect. Their rates are 
obtained from the normal distribution curve. They constructed 
an EPQ model assuming that scrap items are take out from the 
depot at a certain cost, imperfect items are sold in lots at a 
discounted price, reworkable items are reworked and added to 
the good quality product inventory [7]. Chiu and Gong (2004) 
built up an EPQ model for the situation where the rate of 
defective products is a coincidental variable, all of them are 
reworked and a certain proportion is scrapped due to the 
imperfect rework process, others are included in the good 
quality product inventory, and shortages are allowed [8]. Chiu 
et al (2004) classified defective products into scrap and 
reworkable. Because of the imperfect rework process, they had 
constructed an EPQ model for situations where some of the 
reworked products are included in the inventory as scrap and 
others as good quality products and shortages are not allowed 
[9]. Jamal et al. (2004) have developed a variety of models to 
solve the optimum lot size in a one-phase system where rework 
is carried out under two operation policies to obtain optimum 
overall system costs [10].  

Chiu et al (2006) classified defective items into two categories 
as scrap and reworkable. After the well-ordered 
manufacturing, the rework operation starts and the reworked 
ones are included in the inventory as good quality products. 
They developed an EPQ model that allows shortages and 
investigated the effects of using rework process on the optimal 
solution [11]. Chiu and Chiu (2006) obtained an EPQ model for 
coincidental rate of defective produced goods, imperfect 
rework process and shortages [11]. Chiu et al (2007) studied 
the optimization of a production system that is subject to level 
of service and backlogging constraints and the reworking of 
defective and scrap products that are randomly produced [12]. 
Chiu (2007) designed a model in which all products are 
screened and the defective ones are classified as d reworkable 
and scrap. Then a model is designed to obtain the optimal 
replenishment policy for inferior goods under rework and 
backordering assumptions [13]. 

The system considered by Ojha et al (2007) which is imperfect 
and produces defective items at a constant rate, assumed that 
the produced items possibly be transported if the full quantities 
are quality approved. Therefore, defective items must be 
reworked and the quality of full lot should be completed until 
the end of the cycle [14]. Eroğlu and Özdemir (2007) [15] and 
Wee (2007) [16] improved the model of Salameh and Jaber 
(2000) [3] to allow shortages. 

Models dealing with machine failures in the production system 
also have an important place in the literature. Chiu et al (2007) 
discussed a model in which defective items are divided into two 
categories as scrap and reworkable items, and that does not 
allow shortages. When the machine fails, production ends and 
the machine is immediately repaired. The number of machine 
failures is assumed to fit the Poisson distribution. After the 
machine is repaired, the rework process is performed and then 
the cycle ends when the stock is exhausted [17]. Chiu (2007) 
examines the production uptime problem with random 
machine malfunctions and rework of produced defective items 
within the scope of abort/ resume policy. Under this policy, 
once the interruption is cleared and the machine is restored, the 
interrupted lot production will resume immediately. Also, 
production inventory cost functions for systems with and 
without machine malfunctions are shown by Chiu [18]. The 
studies on machine breakdowns until today can be listed as 
[19]-[33]. 

Biswas and Sarker (2008) discussed a production system in 
which final goods are obtained with randomly appearing 
defective and scrap items. They entered a production process 
in which defective products, scrap and final goods were 
obtained at irregular intervals. Since the system occasionally 
malfunction, a number of scrap is generated during the 
production and rework processes [34]. 

Hejazi et al (2008) divided the products into 4 categories as 
good, imperfect quality, reworkable and scrap. They had 
developed an EPQ model that does not allow shortages and 
imperfect quality items are sold at reduced prices, where 
reworked items are added to the inventory as good items [35]. 
In an EPQ model with an imperfect rework process, Chiu et al 
(2008) develop an effective rule to speed up the process of 
choosing if an item is scrap or rework and then calculated the 
expected total cost of production inventories and the optimal 
size of the lot [36]. Cardanes-Barron (2009) expanded the 
model developed by Jamal et al. (2004) to a model that allows 
shortages [37]. Krishnamoorthi and Panayappan (2012) 
proposed an EPQ model considering defective items which are 
observed on the production quality control process, cannot be 
observed during the quality control process and are delivered 
to the customer [38]. Sivashankari and Panayappan (2014) had 
developed two EPQ models that allow shortages based on 
whether defective items are reworked or not [39]. Sarkar et al 
(2014) extended an inventory model to allow random defective 
rates and had developed EPQ models for cases where the 
defective rate which is a random variable that fits three 
different distributions as uniform, triangular and beta [40]. 
Haidar et al (2016) had developed two EPQ models that do not 
allow shortages. In model 1, imperfect quality goods are sold at 
a reduced price at the end of the screening operation, and in 
model 2, all of the imperfect products are reworked [41]. 

In their study Nobil et al (2020) classified the products as high-
quality, low-quality, reworkable and scrap. The demand rate of 
high quality goods is fixed, and the demand rate of low quality 
goods is considered as a decreasing mathematical relation of its 
selling price. Under their aforementioned assumptions, they 
developed an EPQ model that allows shortages [42]. In our 
study, an EPQ model was developed in which the production 
system produces imperfect goods to a certain extent and all 
imperfect goods are reworked. Mostly in the literature, the 
quality control rate is considered higher than the production 
rate and thus quality control and production activities are 
carried out simultaneously. However, the screening activity can 
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be difficult and inefficient during the production period as 
highlighted in the related literature. Therefore, in our 
developed model, screening activities are carried out during the 
production period in order to obtain the good items to meet the 
demand. For the remaining products, screening activity begins 
at the end of the production period that is a structure similar to 
the screening activity in Haidar et al (2016) study [41]. 
Additionally, in our study, shortages are permitted and fully 
backordered. The outline of the rest of the paper is as follows. 
In section 2, the assumptions, notation, mathematical 
formulation are given. Then analysis of the model using 
expected total cost per unit time and expected total profit 
function unit time are considered. And also, the feasibility 
conditions of the solution are given. In section 3, a numerical 
example is given to show the validity and applicability of the 
developed model. Also, the sensitivity analysis to examine the 
effects of changes in model-parameters on the optimal solution 
and the necessary conditions for the model to produce feasible 
solutions are considered in Section 3 as a sub-section.  

2 Proposed EPQ model 

In the proposed EPQ model, the production system produces 
defective items due to human errors, equipment and machine 
failures. Since the demand will be met from good items, the 
products should go through the screening process and 
defective and good items must be separated from each other. 
On the other hand, with the assumption that simultaneous 
production and screening activities may be difficult and 
inefficient, it is recommended to start the screening process 
after production. Therefore, it is assumed that the unit 
screening cost during the production period is greater than that 
in the screening period. In order to meet the demand from good 
items during the production period, the good items production 
rate must be greater than the demand rate. Also symbolic 
computation software SageMath was used in the analysis of the 
model and numerical analysis processes. With this point of 
view, the assumptions of the model have been obtained in the 
next subsection. 

2.1 Notation 

The following notation will be used to develop the 
mathematical model. 

𝛼 : Production rate per unit time, 
𝛼1 : Rework rate of defective items per unit time, 
𝛽 : Demand rate of good quality product per unit time, 
𝑐𝑝 : Unit production cost, 

𝑐𝑟  : Unit rework cost, 
𝑑1 : Screening cost per item during production, 
𝑑2 : Screening cost per item after production stops, 
ℎ : Holding cost per unit per unit time, 
ℎ1 : Holding cost of defective items being reworked per 

unit per unit time, 
𝑃 : Random proportion of defective items, with 

probability density function 𝑓(𝑃), 
𝑠 : Unit selling price of good quality items, 
𝐾 : Fixed production setup cost, 
𝑥1 : Screening rate per unit time during production, 
𝑥2 : Screening rate per unit time after production stops, 
𝑦 : Total number of items produced during a production 

cycle, 
𝑡1 : Backordered build up time length, 

𝑡2 + 𝑡3 : Production time length, 
𝑡4 : Screening time length, 
𝑡5 : Rework time length, 
𝑡6 : Inventory consumption time length, 
𝑇 : Production cycle length,   𝑇 = ∑ 𝑡𝑖

6
𝑖=1 . 

2.2 The assumption of the model 

The assumptions of the model are given as follows: 

Shortages are allowed and fully backordered 

The demand during the production is met from good items only. 

The production rate of good items is greater than the demand 
rate, (1 − 𝑃)𝛼 > 𝛽  

The unit screening cost during the production period is greater 
than that in the screening period, 𝑑1 > 𝑑2.  

The screening rate during the production is 𝑥1 =
𝛽

1−𝑃
 

The holding cost of defective items being reworked is greater 
than that of the good items, ℎ1 > ℎ  

2.3 Mathematical formulation and analysis of the model 

Let's consider a production system where a single item of 
product is produced. The system produces at 𝛼 rate and its P 
ratio is assumed to be defective production. The defective 
product ratio, P, is considered to be a random variable that fits 
a certain probability distribution. In order to meet the demand 
from good items during the production period, it is assumed 

that screening is performed at 𝑥1 =
𝛽

1−𝑃
 rate (instead of full 

screening). This assumption was made by Haidar et al [41], 
stating the difficulty of performing full screening during 
production. After the production is finished, the screening 
process of the remaining products begins. Since the  
𝛽

1−𝑃
(𝑡2 + 𝑡3) amount of the produced 𝑦 products are screened 

in the production period, the remaining 𝑦 −
𝛽

1−𝑃
(𝑡2 + 𝑡3) 

amount will be screened in the 𝑡4 period with 𝑥2 rate. 

After the screening process is over, the rework process begins, 
in which defective items are turned into good items. The graphs 
of the inventories of good and defective items are given in 
Figure 1 and Figure 2, respectively. 

 

Figure 1. Inventory level of good items. 

 

Figure 2. Inventory level of defective items. 

During (𝑡2 + 𝑡3) period, at least 𝛽 products should be examined 
in order to meet the demand from good items. Therefore, 
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during, (𝑡2 + 𝑡3) period, screening rate will be 𝑥1 =
𝛽

1−𝑝
 and 

defective rate will be  
𝛽𝑝

1−𝑝
 

In the 𝑡4 period, on the other hand amount of products not 
inspected in the (𝑡2 + 𝑡3) period will be examined with the 
screening rate of 𝑥2. 

After the screening period, that is, during 𝑡5, defective items are 
reworked with 𝛼1 rate and become good items. Since the 
produced 𝑦 products are totally good items after reworking the 
defects, the cycle length 𝑇 and rework time 𝑡5 can be expressed 
as follows: 

𝑇 = 𝑦 𝛽⁄  (1) 

𝑡5 =
𝑝𝑦

𝛼1
 (2) 

As 𝑦 products are produced with 𝛼 rate at (𝑡2 + 𝑡3) period, one 
can write: 

𝑡2 + 𝑡3 = 𝑦 𝛼⁄  (3) 

And as 𝑦 −
𝛽(𝑡2+𝑡3)

1−𝑃
 products are screened with 𝑥2 rate, the 

screening time length 𝑡4 can be written as: 

𝑡4 = (
1

𝑥2
) (1 −

𝛽

𝛼(1 − 𝑝)
) 𝑦 (4) 

Considering Figure 1 and Figure 2, the inventory level at the 
end of the production period (𝑧1) is as follows: 

𝑧1 = (1 −
𝛽

𝛼(1 − 𝑝)
) 𝑦 − 𝑤 (5) 

The inventory level at the end of the screening period (𝑧2) is: 

𝑧2 = (1 − 𝑝 − 𝛽 𝑥2⁄ ) (1 −
𝛽

𝛼(1 − 𝑝)
) 𝑦 − 𝑤 (6) 

The inventory level at the end of the rework period (𝑧3) 𝑖𝑠: 

𝑧3 = [(1 − 𝛽 𝛼1⁄ )𝑝 + (1 − 𝑝 − 𝛽 𝑥2⁄ ) (1 −
𝛽

𝛼(1 − 𝑝)
)] 𝑦

− 𝑤 
(7) 

The inventory consumption time length (𝑡6) is: 

𝑡6 = [(1 − 𝛽 𝛼1⁄ )𝑝 + (1 − 𝑝 − 𝛽 𝑥2⁄ ) (1

−
𝛽

𝛼(1 − 𝑝)
)] 𝑦 𝛽⁄ − 𝑤 𝛽⁄  

(8) 

Defective product quantities; at the end of the production 
period (𝑧4) and at the end of the screening period (𝑧5) are: 

𝑧4 = (
𝑝𝛽

𝛼(1 − 𝑝)
) 𝑦 (9) 

𝑧5 = 𝑝𝑦 (10) 

backorder build uptime (𝑡1) is 

𝑡1 = 𝑤 𝛽⁄  (11) 

The 𝑡2 period in order to eliminate the backorder is: 

𝑡2 =
𝑤

𝛼 −
𝛽

1 − 𝑝

 
(12) 

And the production period 𝑡3 in which the inventory is positive: 

𝑡3 =
𝑦

𝛼
−

𝑤

𝛼 −
𝛽

1 − 𝑝

 
(13) 

Total cost per cycle , 𝑇𝐶(𝑦, 𝑤), can be given as 

𝑇𝐶(𝑦, 𝑤) = 𝑐𝑝𝑦 + 𝑐𝑟𝑃𝑦 + 𝑑1 [
𝛽(𝑡2+𝑡3)

1−𝑃
] + 𝑑2 [𝑦 −

𝛽(𝑡2+𝑡3)

1−𝑃
] + 𝐾 + ℎ [

𝑧1𝑡3

2
+

(𝑧1+𝑧2)𝑡4

2
+

(𝑧2+𝑧3)𝑡5

2
+

𝑧3𝑡6

2
+

𝑧4(𝑡2+𝑡3)

2
+

(𝑧4+𝑧5)𝑡4

2
]+ℎ1 (

𝑧5𝑡5

2
) + ℎ𝑏 (

𝑡1+𝑡2

2
)𝑤  

(14) 

 

𝑇𝐶(𝑦, 𝑤) = [𝑐𝑝 + 𝑐𝑟𝑃 + 𝑑1 (
𝛽

𝛼(1 − 𝑃)
)

+ 𝑑2 (1 −
𝛽

𝛼(1 − 𝑃)
)] 𝑦 + 𝐾

+ ⟨
ℎ

2
{
1

𝛽
+

1 −
𝛽
𝛼

𝛼
−

2

𝛼
(

1

1 − 𝑃
)

+
1

𝛼
[2 (

𝑃

1 − 𝑃
) +

𝛽

𝛼
(

1

(1 − 𝑃)2
)]

− 2 (
𝛽

𝛼2
) (

𝑃

(1 − 𝑃)2
) − (

1

𝛼1
) 𝑃2

+ (
𝛽

𝛼2
) (

𝑃

1 − 𝑃
)
2

} +
ℎ1

2
(
𝑃2

𝛼1
)⟩𝑦2

− (
ℎ

𝛽
)𝑤𝑦

+ (
ℎ + ℎ𝑏

2
){

1

𝛽
+

1

𝛼 −
𝛽

(1 − 𝑃)

}𝑤2 

(15) 

expected total cost per cycle, 𝐸𝑇𝐶(𝑦, 𝑤): 

𝐸𝑇𝐶(𝑦, 𝑤) = [𝑐𝑝 + 𝑐𝑟𝐸[𝑃] + 𝑑1 (
𝛽

𝛼
𝐸 [

1

1 − 𝑃
])

+ 𝑑2 (1 −
𝛽

𝛼
𝐸 [

1

1 − 𝑃
])] 𝑦 + 𝐾

+ ⟨
ℎ

2
{
1

𝛽
+

1 −
𝛽
𝛼

𝛼
−

2

𝛼
𝐸 [

1

1 − 𝑃
]

+
1

𝛼
[2𝐸 [

𝑃

1 − 𝑃
] +

𝛽

𝛼
𝐸 [

1

(1 − 𝑃)2
]]

− 2 (
𝛽

𝛼2
) 𝐸 [

𝑃

(1 − 𝑃)2
] − (

1

𝛼1
)𝐸[𝑃2]

+ (
𝛽

𝛼2
) 𝐸 [(

𝑃

1 − 𝑃
)

2

]} +
ℎ1

2𝛼1
𝐸[𝑃2]⟩ 𝑦2

− (
ℎ

𝛽
)𝑤𝑦

+ (
ℎ + ℎ𝑏

2
){

1

𝛽
+ 𝐸 [

1

𝛼 −
𝛽

(1 − 𝑃)

]}𝑤2 

(16) 

Expected cycle length, 𝐸[𝑇] is 
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𝐸[𝑇] = 𝑦 𝛽⁄  (17) 

And expected total cost per unit time, 𝐸𝑇𝐶𝑈(𝑦, 𝑤), can be 
written as   

𝐸𝑇𝐶𝑈(𝑦, 𝑤) = [𝑐𝑝 + 𝑐𝑟𝐸[𝑃] + 𝑑1 (
𝛽

𝛼
𝐸 [

1

1−𝑃
]) + 𝑑2 (1 −

𝛽

𝛼
𝐸 [

1

1−𝑃
])] 𝛽 +

𝐾𝛽

𝑦
+ ⟨

ℎ

2
{

1

𝛽
+

1−
𝛽

𝛼

𝛼
−

2

𝛼
𝐸 [

1

1−𝑃
] +

1

𝛼
[2𝐸 [

𝑃

1−𝑃
] +

𝛽

𝛼
𝐸 [

1

(1−𝑃)2
]] − 2 (

𝛽

𝛼2
)𝐸 [

𝑃

(1−𝑃)2
] −

(
1

𝛼1
)𝐸[𝑃2] + (

𝛽

𝛼2
)𝐸 [(

𝑃

1−𝑃
)
2
]} +

ℎ1

2𝛼1
𝐸[𝑃2]⟩ 𝛽𝑦 − ℎ𝑤 +

(
ℎ+ℎ𝑏

2
) {

1

𝛽
+ 𝐸 [

1

𝛼−
𝛽

(1−𝑃)

]}
𝛽𝑤2

𝑦
  

(18) 

Similarly, by defining 

𝐴1 = [𝑐𝑝 + 𝑐𝑟𝐸[𝑃] + 𝑑2 + (𝑑1 − 𝑑2) (
𝛽

𝛼
)𝐸 [

1

1 − 𝑃
]] 𝛽 (19) 

𝐴2 = ⟨
ℎ

2
{
1

𝛽
+

1 −
𝛽
𝛼

𝛼
−

2

𝛼
𝐸 [

1

1 − 𝑃
]

+
1

𝛼
[2𝐸 [

𝑃

1 − 𝑃
] +

𝛽

𝛼
𝐸 [

1

(1 − 𝑃)2]]

− 2 (
𝛽

𝛼2
)𝐸 [

𝑃

(1 − 𝑃)2
] − (

1

𝛼1
)𝐸[𝑃2]

+ (
𝛽

𝛼2)𝐸 [(
𝑃

1 − 𝑃
)
2

]} +
ℎ1

2𝛼1
𝐸[𝑃2]⟩ 𝛽 

(20) 

𝐴3 = (
ℎ + ℎ𝑏

2
){

1

𝛽
+ 𝐸 [

1

𝛼 −
𝛽

(1 − 𝑃)

]}𝛽 (21) 

𝐸𝑇𝐶𝑈(𝑦, 𝑤), can be written more compactly as follows: 

𝐸𝑇𝐶𝑈(𝑦, 𝑤) = 𝐴1 +
𝐾𝛽

𝑦
+ 𝐴2𝑦 − ℎ𝑤 + 𝐴3

𝑤2

𝑦
 (22) 

The expected total profit function unit time 𝐸𝑇𝑃𝑈(𝑦, 𝑤), using 
𝐴1, 𝐴2, 𝐴3 can be written as follows: 

𝐸𝑇𝑃𝑈(𝑦, 𝑤) = 𝑠𝛽 − 𝐸𝑇𝐶𝑈(𝑦,𝑤) (23) 

𝐸𝑇𝑃𝑈(𝑦, 𝑤) = 𝑠𝛽 − 𝐴1 −
𝐾𝛽

𝑦
− 𝐴2𝑦 + ℎ𝑤 − 𝐴3

𝑤2

𝑦
 (24) 

Since 𝐸𝑇𝑃𝑈(𝑦,𝑤) is concave, the optimum amount of 𝑦 
produced and the optimum amount of deficiency 𝑤 are 
obtained by differentiating 𝐸𝑇𝑃𝑈(𝑦,𝑤) by 𝑦 and then by 𝑤 and 
setting the partial derivatives to zero. The partial differential 
equations of 𝐸𝑇𝑃𝑈(𝑦, 𝑤) are 

𝜕𝐸𝑇𝑃𝑈(𝑦, 𝑤)

𝜕𝑦
=

𝐾𝛽

𝑦2 − 𝐴2 + 𝐴3

𝑤2

𝑦2 = 0 (25) 

𝜕𝐸𝑇𝑃𝑈(𝑦, 𝑤)

𝜕𝑤
= ℎ − 2𝐴3

𝑤

𝑦
= 0 (26) 

Where 

𝑦 = √
4𝐴3𝐾𝛽

4𝐴2𝐴3 − ℎ2 (27) 

𝑤 = √
ℎ2𝐾𝛽

𝐴3(4𝐴2𝐴3 − ℎ2)
 (28) 

The Hessian matrix, 𝐻, can be written as: 

𝐻 =

[
 
 
 
 
𝜕2𝐸𝑇𝑃𝑈(𝑦, 𝑤)

𝜕𝑦2

𝜕2𝐸𝑇𝑃𝑈(𝑦, 𝑤)

𝜕𝑦𝜕𝑤

𝜕2𝐸𝑇𝑃𝑈(𝑦, 𝑤)

𝜕𝑤𝜕𝑦

𝜕2𝐸𝑇𝑃𝑈(𝑦, 𝑤)

𝜕𝑤2 ]
 
 
 
 

 (29) 

If [𝑦 𝑤]𝐻[𝑦 𝑤]𝑇 < 0, 𝑦,𝑤 ≠ 0 then 𝐸𝑇𝑃𝑈(𝑦, 𝑤) function is 
strictly concave. 

From (29), as [𝑦 𝑤]𝐻[𝑦 𝑤]𝑇 =
−2𝐾𝛽

𝑦
< 0, 𝐸𝑇𝑃𝑈(𝑦, 𝑤) 

function is therefore strictly concave.  

1.1 Feasibility conditions of the solution 

In order to have a feasible solution, the conditions 
𝑦, 𝑤, 𝑧1, 𝑧2, 𝑧3 > 0 must be satisfied. Therefore, for 𝑦,𝑤 > 0, 
since 𝐴3 > 0, it must be 4𝐴2𝐴3−ℎ2 > 0. Thus, condition-1 is 
obtained as follows: 

Condition-1: 

4𝐴2𝐴3 > ℎ2 (30) 

On the other hand, for 𝑧1, 𝑧2, 𝑧3 > 0, the following conditions 
must be satisfied: 

Condition-2:      

ℎ

2𝐴3
+

𝛽

𝛼
𝐸 [

1

1 − 𝑃
] < 1 (31) 

Condition-3:    

𝐸[𝑃] +
𝛽

𝑥
< 1 (32) 

Condition-4:     

𝛽

𝛼1
+

ℎ

2𝐴3
− (1 − 𝛽 𝑥⁄ ) (1 −

𝛽

𝛼
𝐸 [

1

1 − 𝑃
]) + 𝐸[𝑃]

−
𝛽

𝛼
𝐸 [

𝑃

1 − 𝑃
] < 1 

(33) 

A feasible solution is obtained in cases where these 4 conditions 
are simultaneously satisfied. 

2 Numerical example 

2.1 Parameters of the numerical example 

In this section, a numerical example will be given to show the 
validity and applicability of the developed model. Let's consider 
that a firm produces a single item of goods. Let's also assume 
that the demand for the goods is 1200 pieces/day, the 
production capacity is 2000 pieces/day, the rework capacity is 
1600 pieces/day and the screening capacity is 5000 pieces/day. 
On the other hand, let's consider the setup cost as 1500 $, 
production cost as 104 $/unit, rework cost as 8 $/unit, 
inventory holding cost as 20 $/unit/unit time, shortages cost as 
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24 $/unit/unit time, the inventory holding cost of defective 
items during reworking as 22 $/unit/unit time, screening costs 
during production and screening as 0.6 $/unit and 0.5 $/unit, 
respectively and selling price of good items as 200 $/unit. 
Assuming that the defect rate is a uniformly distributed random 
variable, its probability density function is taken as follows: 

𝑓(𝑝) = {

1

𝑔 − 𝑎
, 𝑎 ≤ 𝑝 ≤ 𝑔

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (34) 

where 𝑎 = 0 and 𝑔 = 0.1. For the numerical example, the 
parameters of the model are taken as: 

𝛼 = 2000,𝛽 = 1200, 𝛼1 = 1600, 𝑥2 = 5000,𝐾 = 1500,
𝑠 = 200, 

𝑐𝑃 = 104, 𝑐𝑟 = 8, ℎ = 20, ℎ1 = 22, ℎ𝑏 = 24, 𝑑1 = 0.6, 𝑑2 = 0.5 

2.4 Feasibility of the numerical example 

From the formula 𝐸[𝑔(𝑝)] = ∫𝑔(𝑝)𝑓(𝑝)𝑑𝑝, the following 
expected values are obtained: 

𝐸 [
1

1 − 𝑝
] = 1.053605 

𝐸 [
𝑝

1 − 𝑝
] = 0.053605 

𝐸 [
𝑝

(1 − 𝑝)2
] = 0.057506 

𝐸 [(
𝑝

1 − 𝑝
)
2

] = 0.003901 

𝐸 [
1

(1 − 𝑝)2] = 1.111111 

𝐸[𝑝] = 0.05 

𝐸[𝑝2] = 0.003333 

𝐸 [
1

𝛼 −
𝛽

1 − 𝑝

] = 0.001363 

As a result of the solution of the model, it is seen from equation 
(50) that the production amount is 𝑦 = 888.94 units, from 
equations (45) and (44) the monthly average profit and cost are 
𝐸𝑇𝑃𝑈(𝑦,𝑤) = 109,994.37$ and 𝐸𝑇𝐶𝑈(𝑦,𝑤) = 130,005.63$, 
respectively. Other values obtained from the solution are as 
follows. 

𝑤 = 153.3, 𝑧1 = 173.7, 𝑧2 = 78.9 

𝑧3 = 90.5, 𝑧4 = 28.1, 𝑧5 = 44.4 

𝑡1 = 0.1278, 𝑡2 = 0.2090, 𝑡3 = 0.2355 

𝑡4 = 0.0654, 𝑡5 = 0.0278, 𝑡6 = 0.0754 

From the conditions in (30)-(33): 

condition-1 : 400 < 928.31,  

condition-2: 0.8046 < 1,  

condition-3: 0.29 < 1,  

condition-4: 0.6607 < 1, 

are obtained. Since all the conditions are satisfied, the optimum 
solution obtained is feasible. The graphical representation of 
the numerical solution is given in Figure 3. 

 

Figure 3. Graphical representation of the numerical solution. 

2.5 Sensitivity analysis of the numerical example 

On the other hand, when the sensitivity of the model according 
to the defect rate is examined, it is observed that the expected 
monthly profit decreases when the defective product rate 
increases, and this is an expected result. At the same time, as 
the defect rate increases, both the optimum production 
quantities (𝑦) and the maximum shortages quantities (𝑤) 
decrease. Solution values for this analysis are given in Table 1. 

In Table 2, it is observed that the average defective rate (𝐸[𝑝]) 
did not change, but the expected monthly profit decreased and 
the expected cost increased as a result of the increase in the 
range of the defect rate (𝑔 − 𝑎). Thus, it can be concluded that 
in addition to the efforts of companies to reduce the defect rate, 
it is also important for their profitability to reduce the 
variability of the defect rate. The changes of increasing the 
production capacity (𝛼) on the optimum solution are given in 
Table 3. Unless demand changes, increasing capacity does not 
have a significant effect on profitability. Even if the effect is 
small, the profit decreases while the capacity increases. To 
examine the effects of demand (𝛽) on the optimum solution, it 
is necessary to take a look at the solution results in Table 4. 

Let 𝛼 = 12,000, 𝛼1 = 9,600, 𝑥 = 15,000 in order not to 
encounter the infeasible solution as much as possible. 
Naturally, with the increase in the amount of demand, the 
production amount (𝑦), the monthly expected total profit 
(𝐸𝑇𝑃𝑈(𝑦, 𝑤)) and the cost (𝐸𝑇𝐶𝑈(𝑦, 𝑤)) are also expected to 
increase. The analyses given in Table 4 confirm with the 
aforementioned explanations. The effects of defective rate, 
production capacity and demand on the optimum solution are 
given in Figure 4, Figure 5 and Figure 6. 

 

Table 1. The effects of expected defective rate on optimum solution.  

𝐸[𝑝] 𝑔 𝑎 𝐸𝑇𝑃𝑈(𝑦,𝑤) 𝑦 𝑤 𝐸𝑇𝐶𝑈(𝑦, 𝑤) 
0.0500 0.1000 0 109,994.37 888.94 153.31 130,005.63 

0.0700 0.1400 0 109,757.99 879.67 147.68 130,242.01 

0.1000 0.2000 0 109,390.65 863.51 137.82 130,609.35 

0.1200 0.2400 0 109,134.92 850.91 130.05 130,865.08 

0.1500 0.3000 0 108,723.22 827.36 115.25 131,276.78 

0.1999 0.3998 0 107,567.84 716.96 38.59 132,432.16 

0.2000 0.4000 0 infeasible infeasible infeasible infeasible 
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Table 2. Effects of defective rate variation interval on optimum solution. 

𝐸[𝑝] 𝑔 𝑎 𝐸𝑇𝑃𝑈(𝑦,𝑤) 𝑦 𝑤 𝐸𝑇𝐶𝑈(𝑦,𝑤) 

0.15 0.30 0.00 108,723.22 827.36 115.25 131,276.78 
0.15 0.25 0.05 108,777.52 837.72 121.84 131,222.48 
0.15 0.20 0.10 108,805.77 843.20 125.29 131,194.23 
0.15 0.17 0.13 108,812.72 844.56 126.13 131,187.28 

Table 3. The effects of production capacity on optimum solution. 

𝛼 𝐸𝑇𝑃𝑈(𝑦, 𝑤) 𝑦 𝑤 𝐸𝑇𝐶𝑈(𝑦, 𝑤) 
2000 109,994 888.9 153.3 130,006 
2200 109,759 838.8 166.9 130,241 
2400 109,572 802.7 177.3 130,428 
3200 109,091 722.6 202.7 130,909 
9000 108,265 616.6 242.6 131,735 

11000 108,188 608.3 246.1 131,812 
16500 108,074 596.3 251.3 131,926 
17000 108,067 595.7 251.6 131,933 
24000 108,004 589.2 254.4 131,996 
25000 107,998 588.6 254.7 132,002 

Table 4. Effects of demand on optimum solution. 

𝛽 𝐸𝑇𝑃𝑈(𝑦,𝑤) 𝑦 𝑤 𝐸𝑇𝐶𝑈(𝑦, 𝑤) 
1200 108160 605.4 247.5 131840 
1500 136073 686.3 272.7 163927 
1800 164071 762.6 294.2 195929 
2100 192134 835.9 312.8 227866 
2500 229636 930.6 333.9 270364 
3000 276622 1040.7 355.2 323378 
3500 323709 1162.3 371.8 376291 
4500 418126 1399.6 392.6 481874 
6500 607753 1944.8 390.5 692247 
7000 655307 2017.8 380.6 744693 
7500 infeasible infeasible infeasible infeasible 

 𝑧2 < 0 𝑧2 < 0 𝑧2 < 0 𝑧2 < 0 
 

 

Figure 4. The effects of defective rate on optimum solution. 

 

Figure 5. The effects of production capacity on optimum 
solution. 

 

Figure 6. The effects of demand on optimum solution. 

3 Conclusions 

In this study, a production inventory system that produces 
defective products to a certain extent and in which all defective 
products become good items by rework is taken into 
consideration. Thus, an EPQ model has been developed for a 
process in which shortages is allowed and the production, 
quality control and rework periods follow each other.  

The operation of the model and its feasibility conditions have 
been mathematically proven. At the same time, the operation 
and feasibility conditions of the model were calculated on the 
numerical example. Also, using sensitivity analysis, the 
transition points of the model from solution to non-solution 
were shown under the given parameters. 
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As a further study, the model can be extended with parameters 
as carbon emission, taxes, etc. that take into account the 
environmental and social responsibility, which has been 
focused on recently. Moreover, the model can be extended by 
taking into account the partial backorder, machine 
breakdowns, production and rework setup times. 
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